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Abstract17

1. Recent advances in biologging have resulted in animal location data at unprecedentedly high18

temporal resolutions, sometimes many times per second. However, many current methods for19

analysing animal movement (e.g. step selection analysis or state-space modelling) were devel-20

oped with lower-resolution data in mind. To make such methods usable with high-resolution21

data, we require techniques to identify features within the trajectory where movement deviates22

from a straight line.23

24

2. We propose that the intricacies of movement paths, and particularly turns, reflect deci-25

sions made by animals so that turn points are particularly relevant for behavioural ecologists.26

As such, we introduce a fast, accurate algorithm for inferring turning-points in high-resolution27

data. For analysing big data, speed and scalability are vitally important. We test our algo-28

rithm on simulated data, where varying amounts of noise were added to paths of straight-line29

segments interspersed with turns. We also demonstrate our algorithm on data of free-ranging30

oryx (Oryx leucoryx). We compare our algorithm to existing statistical techniques for break-31

point inference.32

33

3. The algorithm scales linearly and can analyse several hundred-thousand data-points in34

a few seconds on a mid-range desktop computer. It identified turnpoints in simulated data35

with complete accuracy when the noise in the headings had a standard deviation of ±8◦, well36

within the tolerance of many modern biologgers. It has comparable accuracy to the existing37

algorithms tested, and is up to three orders of magnitude faster.38

39

4. Our algorithm, freely available in R and Python, serves as an initial step in processing40

ultra high-resolution animal movement data, resulting in a rarefied path that can be used as41

an input into many existing step-and-turn methods of analysis. The resulting path consists of42

points where the animal makes a clear turn, and thereby provides valuable data on decisions43
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underlying movement patterns. As such, it provides an important breakthrough required as a44

starting point for analysing sub-second resolution data.45

1 Introduction46

Animal movement is a key process underlying many ecological systems (Nathan et al., 2008;47

Kays et al., 2015; Hays et al., 2016). Until recently, our understanding of the drivers of move-48

ment was limited by the resolution of data obtainable by technologies such as global positioning49

systems (GPS) and Argos telemetry (Johnson et al., 2002; Jerde and Visscher, 2005; Hurford,50

2009; McClintock et al., 2015). However, technological advances, particularly regarding ac-51

celerometers and magnetometers, have enabled tracks to be constructed at extremely high52

resolutions (Wilson et al., 2008; Brown et al., 2013; Noda et al., 2014; Walker et al., 2015;53

Bidder et al., 2015; Williams et al., 2017). Indeed, often the time interval between consecutive54

locations is shorter than the time it takes for an animal to travel a distance equal to its body55

length, so that the movement data is, for all practical purposes, continuous (Wilmers et al.,56

2015).57

Whilst such data open up a wealth of opportunity for better understanding of animal58

movement, many of the existing mathematical and statistical techniques for analysing location59

data were developed with older, coarser data in mind. As such, they often fail to scale-up to60

the new world of big, high-resolution data: techniques that work well on 1,000s of data points61

gathered at hourly intervals may be very different to those required to analyse 1,000,000s of62

data points at a resolution of 10Hz.63

For example, many highly successful techniques, such as state-space modelling (Morales64

et al., 2004; Jonsen et al., 2005; Patterson et al., 2008) and step selection analysis (Fortin65

et al., 2005; Rhodes et al., 2005; Forester et al., 2009; Avgar et al., 2016), were formulated for66

data where there is reasonable chance of finding interesting behavioural information in each67

‘step’ between successive data points. Yet, if the datapoints are only a fraction of a second68

apart, the resulting information is minimal, and it is necessary to find points that correspond to69
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the animal doing something more interesting than simply carrying-on in the same straight-line70

trajectory.71

Consequently, for high-resolution data, we need techniques that can infer when the animal72

is making a turn. The idea of examining animal paths as ‘steps and turns’ has been at the heart73

of movement ecology for several decades (Kareiva and Shigesada, 1983; Bovet and Benhamou,74

1988; Turchin et al., 1991; Turchin, 1998) in various forms, including step selection analysis,75

biased correlated random walks (Codling et al., 2008), many state-space models, and even76

continuous-time models (Parton et al., 2016). So to apply such ‘step and turn’ modelling77

techniques to modern, ultra-high resolution data, we need a way of rapidly and accurately78

inferring the turning points in the data-stream.79

The aim of this paper is to provide such a technique. The idea is to view the path as80

a stream of headings of the animal, rather than locations. We then look for switches in the81

heading by sliding a small window across the path and observing where the standard deviation82

across the window spikes (Fig. 1). This indicates a turn. If required, we can further post-83

process the data by removing ‘small’ turning angles, that are not deemed to be indicative of84

an actual behavioural decision. The resulting algorithm scales linearly with the length of the85

data stream, and can process 100,000s of data points in a few seconds on a mid-range desktop86

(Intel i7 2.5GHz processor).87

This algorithm leads to a description of the animal’s movement in terms of straight-line88

segments interspersed with turns, giving a biologically meaningful summary of the animal’s89

movement behaviour whereby the turns are likely to represent actual decisions of the animal.90

This contrasts with many studies involving lower-resolution data, where the turns are implicitly91

assumed to occur precisely at the points where the locations were measured (Morales et al.,92

2004; Fortin et al., 2005; Avgar et al., 2016) [but see Turchin et al. (1991); Codling and Plank93

(2011), mentioned in more detail below]. Therefore, combined with high-resolution data, our94

algorithm opens the door to more biologically accurate application of popular techniques for95

analysing ‘move and turn’ data, such as step selection analysis and state space models.96



5

To test the efficacy of our algorithm, we use a combination of simulated and real data.97

For the simulations, we construct paths of straight-line segments joined together by sharp98

turns, then add varying amounts of noise, to reflect both the error inherent in data-gathering99

technologies and the noise arising from animal locomotion (e.g. small ‘rocking’ movements of100

the sensor due to the animal’s gait, or avoidance of small obstacles like rocks). This enables us101

to analyse the accuracy of our algorithm in inferring the correct turning points. We then use102

data on free ranging oryx to demonstrate how to apply the technique to a real-world scenario.103

Ours is not the first algorithm to segment data into straight lines and turns. Turchin et al.104

(1991) developed a method that has proved popular in movement ecology for a number of105

years. An alternative method was later put forward by Codling and Plank (2011). However,106

these methods were both designed for the sort of low-resolution data that has historically been107

available, and we show here that they do not perform so well with higher resolution data. Away108

from movement ecology, several sophisticated and general techniques have been developed to109

segment data streams, mainly concerned with studying DNA sequences [e.g. Picard et al.110

(2005); Erdman and Emerson (2008); Franke et al. (2012); Rivera and Walther (2013)]. These111

have the advantage of being well-grounded in statistical theory. The best-performing technique112

[pruned dynamic programming, according to Hocking et al. (2013)] has also been written into a113

flexible and convenient R package, called Segmentor3IsBack (Cleynen et al., 2014). However,114

when we applied this algorithm to data, it was typically 103 times slower than ours, which115

could cause it to be prohibitively slow for very long data streams.116

In summary, we describe here a fast, light-weight algorithm for inferring turning points in117

high-resolution animal movement data. We hope that this will enable more sophisticated use118

of step-and-turn analysis techniques, where the turns are more closely related to the underlying119

behavioural decisions of the animal (Wilson et al., 2013).120
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2 Methods121

2.1 The turning-point algorithm122

We describe an algorithm to be used on data of animal headings. This contrasts with many123

animal movement studies which focus on locational (or positional) data. The reasons for this124

are that (a) high resolution data tends to arrive from magnetometers that record headings125

rather than locations, and (b) headings are the natural parameter for determining turning126

points (TPs).127

The essence of the algorithm is contained in the following two steps. First, we slide a window128

across a time-series of headings and looking for places where the squared circular standard129

deviation (SCSD) across that window spikes. The SCSD is a measure of the ‘spread’ of angles,130

and is used in place of the variance to account for the circular nature of angular distributions.131

Note that we choose not to use the term ‘circular variance’ as, in circular statistics, this is132

not consistently defined and may not be the square of the circular standard deviation [see e.g.133

Berens (2009)]. The spikes in SCSD indicate that the animal has turned. Second, we refine134

the set of candidate TPs by rejecting those that are below some threshold value.135

To describe the algorithm precisely, we need to introduce some notation. Let h1, . . . , hN136

be a time series of headings for the animal, collected at evenly-spaced time-points t1, . . . , tN .137

Consider a small time window, W , about each data point and calculate the SCSD, si, of the138

heading across this window. In other words, si is the SCSD of {hi−W/2, . . . , hi+W/2} for each139

time-point ti where i ∈ {1 +W/2, . . . , N −W/2} (W must be an even number). The SCSD is140

given by the following formula141

si = ln

(

1

R̄2
i

)

, (1)142

143

where R̄i =

√

sin(hi)
2
+ cos(hi)

2
, sin(hi) is the average of {sin(hi−W/2), . . . , sin(hi+W/2)}, and144

cos(hi) is the average of {cos(hi−W/2), . . . , cos(hi+W/2)}. The SCSD copes with the fact that145
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0◦ = 360◦, which stops us from using the usual definition of ‘standard deviation’.
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Fig. 1. Method for inferring turning points from circular standard deviation. The
red curve gives the recorded headings of an example oryx, measured at 40Hz resolution. The
squared circular standard deviation (SCSD) of the heading across a sliding window of size
W = 200 data points is given by the black curve. Where this spikes above the mean SCSD,
we infer that a turn might have taken place. We then do a second check to see that the
heading has changed by more than a given threshold angle θthresh (see Main Text for more
details). For example, this removes the points misidentified as turns at around timesteps
21,000 and 22,000.

146

The value of si will ‘spike’ when the animal turns sharply. We use these spikes to in-147

fer changes in the direction of the animal’s movement (Fig. 1). More precisely, a spike in148

the time series, {s1+W/2, . . . , sN−W/2}, of SCSDs is defined to be a contiguous set of points,149

{si, . . . , si+k}, each of which is greater than the mean, µ, of the set {s1+W/2, . . . , sN−W/2}. The150

mid-point of each spike is collected, to form a subset of T = {t1, . . . , tN} of candidate TPs.151

This set is reduced further by removing any candidate TPs for which the turning angle is below152

a certain threshold, θthresh (see Supplementary Appendix A for details). This procedure results153

in a set {tc1 , . . . , tcn} ⊂ T of inferred TPs.154
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Code for the complete algorithm is given in the Supplementary Information, as the R script155

find turnpoints.R and the Python script find turnpoints.py. Supplementary Appendix B156

explains how to modify and run the R code. Both programmes have the same function and the157

user can choose whichever language is more convenient.158

2.2 Simulated data159

To test the efficacy of this algorithm at picking out turning angles, we construct a collection of160

simulated trajectories. Each trajectory consists of 72, 000 data points, which can be viewed, for161

example, as a 30 minute path collected at a resolution of 40Hz, or a four-hour path collected162

at 5Hz. The actual heading of the animal at time t is denoted by µt.163

We assume that the times between successive TPs are drawn from an exponential distri-164

bution with mean η. For our simulations, η = 1, 200 time-steps. Turning angles are drawn165

randomly and uniformly from the set [−π,−φthresh) ∪ (φthresh, π), so that ‘turns’ are always166

greater than a threshold value, φthresh. The set of times at which the simulated animal makes167

a turn is denoted by {T1, . . . , Tm}. Our choice of η = 1, 200 and a trajectory of length 72, 000168

roughly mimics 30 minutes of oryx data, collected at 40Hz, turning on average every 30 seconds.169

Because real data contains noise, we do not record the actual headings µt. Rather we170

simulate ‘observed’ headings, ht, drawn from a von Mises distribution with mean µt and con-171

centration parameter κ. Therefore the resulting path is a sequence of straight-line segments172

with noise added, interspersed with turns of greater than φthresh. For our analysis, we set173

φthresh = 30◦.174

We construct simulated trajectories for a variety of values of κ and run each simulated175

trajectory through our inference algorithm for a variety of values of W and θthresh. For each176

trajectory, to determine how close the inferred set of TPs, {tc1 , . . . , tcn}, is to the actual set,177

{T1, . . . , Tm}, we calculate a True Positive Rate (TPR) and a False Positive Rate (FPR) using178

the following procedure. We split the path into windows of size W . If a window contains a179

true TP (i.e. one of T1, . . . , Tm) then this window is considered a True Condition, otherwise it180
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is a False Condition. If the window corresponding to a True Condition (resp. False Condition)181

contains one of the values {tc1 , . . . , tcn} then it is a True Positive (resp. False Positive). Then182

the TPR (resp. FPR) is the number of true positives (resp. false positives) divided by the183

number of true conditions (resp. false conditions). Using the window in this way means that184

we accept as “True Positives” inferred TPs that are very close to real TPs (i.e. within W time-185

steps), but they do not have to be exactly the same points. Calculating (TPR,FPR) pairs for186

a variety of values of W and θthresh enables us to construct a receiver operating characteristic187

(ROC) curve for each value of κ (Brown and Davis, 2006).188

We compare each ROC curve to the corresponding curve obtained by applying a previous189

turning-point algorithm, introduced by Turchin et al. (1991), to each path. Turchin’s algorithm190

determines a turning point by iterating through a time series of locations (rather than headings),191

x0, ..., xK . If the locations x0, . . . , xk−1 are all within a distance of ǫ from the straight line192

between x0 and xk−1, but some of the locations x0, . . . , xk are at a distance greater than ǫ from193

the straight line between x0 and xk, then the algorithm says that xk−1 is the first TP. Other194

TPs are constructed iteratively (for full details, see Turchin et al. (1991); Turchin (1998)).195

For a given simulated trajectory, to compute the associated ROC curve for Turchin’s al-196

gorithm, we vary ǫ and calculate each TPR- and FPR-value. One would expect low ǫ to give197

many TPs, so produce high values for both FPR and TPR. On the other hand, a high value of198

ǫ might be expected to produce low FPR and TPR. We also compare our method to a more199

recent method of Codling and Plank (2011) (see Supplementary Appendix D).200

2.3 Case study on oryx movement201

To demonstrate the efficacy of our algorithm on a real dataset, we use high-resolution magne-202

tometer data of oryx living in Mahazat as-Sayd, a protected area located in west-central Saudi203

Arabia (28◦15 N, 41◦40E). The area consists of open steppe desert and is characterised by arid204

climate with hot summers, mild winters and low rainfall (Ostrowski et al., 2003). Vegetation is205

sparse, and predominated by perennial grasses and sporadically distributed small Acacia trees206
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(Mandaville, 1990).207

The six oryx used in this study were captured during February 2015. After capture, they208

were fitted with loggers containing tri-axial accelerometers and tri-axial magnetometers (Daily209

Diary units, Wildbyte Technologies Ltd., Swansea, UK) which were set to record for 10 days210

at 40Hz in each channel. Each oryx was fitted with two daily diary units. One unit was glued211

to the head of the animal, behind the horns, using quick-set epoxy resin, and the other was212

fixed using cable ties and adhesive tape to a collar around the animals neck. Data for this213

study were taken from the magnetometer fitted to the neck, so that the headings represent the214

trajectory of the animal, rather than the direction it is facing.215

Following logger deployment, animals were allowed to recover in an outside enclosure (25×216

25m) for approximately eight hours after which they were released into the larger enclosure217

(2× 1km). For this study, we examine a sample path in the larger enclosure for each of the six218

oryx. These paths have varying lengths, the shortest is 1 hour (∼ 140, 000 headings) and the219

longest is 2 hours 15 minutes (∼ 320, 000 headings; see Supplementary Table ST1).220

For real trajectories, analysis of TPR and FPR is not possible, since we do not have knowl-221

edge of the ‘true’ turning-points. Instead, to assess how good a proposed set of TPs is, we222

construct a path of straight-line segments between each pair of consecutive TPs. We com-223

pare this piecewise-linear model with the path given by the data, assuming that the animal224

is moving at constant speed, v (chosen arbitrarily). This latter path is given by a collection225

of points x(t1), . . . ,x(tN ), where x(ti) = (x(ti), y(ti)) is a 2D vector for each i ∈ {1, . . . , N},226

x(t1) = (0, 0), and227

x(ti) =

i−1
∑

j=1

v(tj+1 − tj) cos(hj),228

y(ti) =

i−1
∑

j=1

v(tj+1 − tj) sin(hj). (2)229

230

http://www.wildbyte-technologies.com
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For a given set of inferred TPs, {tc1 , . . . , tcn}, the model path is231

m(ti) = x(tck) +
ti − tck

tck+1
− tck

[x(tck+1
)− x(tck)] + ξt, for ti ∈ [tck , tck+1

], (3)232

233

where ξt ∼ N(0, σ2) is a random variable from a Normal distribution with zero mean and234

covariance matrix σ2I, where I is the two-dimensional identity matrix.235

Note that, if we were to have a data set containing the speed at any point in time, the236

assumption that v is constant could be dropped and the actual speeds used instead. Further-237

more, if we were to have locational data rather than just headings, we could use the measured238

locations as (x(ti), y(ti)) rather than constructing them using Equation (2). For the oryx data239

we do not have such information. However, if any future study contains locational (or po-240

sitional) information at a high frequency – e.g. from dead-reckoning (Wilson et al., 2008) –241

then these locations should be used directly to construct a piecewise-linear model similar to242

Equation (3).243

An estimate for the standard deviation, σ, can be calculated empirically, as follows. Let244

d(ti) = x(ti)−〈m(ti)〉 for each i ∈ {1, . . . , N}, where 〈m(ti)〉 is the mean ofm(ti). Since 〈m(ti)〉245

is the point on a straight line between inferred turning points corresponding to x(ti), d(ti) is246

the deviation of the measured location from the corresponding location on this straight line (i.e.247

the residual). Then σ is estimated to be the standard deviation of the set {d(t1), . . . ,d(tN )}. A248

smaller σ indicates a better fit of the model to the data. Since σ is dependent on our (arbitrary)249

choice of animal speed, we define a normalised standard deviation, σ̄ = σ/〈li〉, where 〈li〉 is250

the mean of the step lengths li = |x(tck) − x(tck−1
)|. Then σ̄ is a dimensionless quantity,251

independent of v.252

For analysis of the oryx data, we choose values forW and θthresh by examining (a) those that253

perform well on simulated data (i.e. low FPR and high TPF), (b) those that are biologically254

justifiable (i.e. expert opinion). We also construct videos of the trajectories, with the turnpoints255

super-imposed, so one can visually inspect whether the estimations of TPs look reasonable to256

the human eye. This aids in determining whether our choice of W and θthresh give the correct257
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information.258

We use the oryx data to compare our algorithm with the output of the Segmentor3isBack259

package. Segmentor3isBack is a general-use programme that segments data-streams into K260

segments, whereK is fixed (and user-defined). The package can also find the theoretical optimal261

value of K for fitting a trajectory of straight-line segments interspersed with break-points. We262

compare the time it takes to run the respective algorithms, as well as the resulting σ̄ values,263

when K is set to be equal to the number of segments given by our algorithm. For this, we fix264

W = 40 and θthresh = 30◦.265

We also compare our algorithm to Turchin’s algorithm, where ǫ is set so that resulting266

number of segments is equal to that given by our algorithm. Turchin’s algorithm has to be267

applied to the reconstructed path (Equation 2) rather than the raw headings. It also defines268

turns in such a way as to minimise the distance between the model path (Equation 3) and the269

reconstructed one (Equation 2. It can thus be viewed as providing a rough estimate of the270

minimum σ̄ that may be attainable. We also examined the effect of pre-processing our data271

by smoothing-out possible noise arising from the animal’s gait or minor obstacle avoidance,272

before running it through out algorithm. This provides a prior smoothing before the implicit273

smoothing given by choice of window size, W . Details are given in Supplementary Appendix274

C.275

3 Results276

3.1 Simulated data: comparison with previous approaches277

Fig. 2 shows three simulated trajectories, with an increasing level of noise from left to right.278

The ROC curves (Panels j-l) indicate that the method proposed here finds the TPs with279

significantly better accuracy than the method of Turchin et al. (1991). Indeed, for the example280

where the SD in the error of the heading measurements is only ±8.1◦, our method had a TPR281

of 1 and FPR of 0, meaning it caught all of the true TPs and did not falsely identify any282
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TPs. This suggests that if an animal really is moving in straight-lines separated by distinct283

turns, then our method will be extremely accurate at picking these up, as long as the SD in284

the heading measurements is not too great (i.e. of the order of < 10◦). The method of Codling285

and Plank (2011) performed worst of the three and is probably only suitable where data is286

much lower resolution (see Supplementary Appendix D).287

3.2 Oryx data288

To identify turns in the oryx data, we found that a window size of W = 40 data points289

and θthresh = 30◦ gave accurate results for determining both broad- and fine-scale movement290

decisions. Since data were taken 40 times per second, this means that we are only integrating-291

out behavioural features that occur on a subsecond resolution, which are likely to be minimal-to-292

nonexistent. Fig. 3a shows an example of an oryx path with these inferred turns superimposed.293

At first glance, it appears as if there are a number of places where turns are identified where294

they do not appear to be present. However, by zooming-in, we observe that the algorithm is295

actually correctly identifying very fine-scale movements correctly (see inset of Fig. 3a).296

Depending on the biological question being sought, a user may not be interested in very297

fine-scale movements, so may wish to smooth out behaviour over a longer time-interval. For298

example, we also used a window size of W = 200, corresponding to five seconds of movement,299

to analyse the same oryx path as in Fig. 3b. Here, the very fine-scale movements are integrated300

out, leaving a much smaller set of TPs (155 compared with 498). Videos of the trajectory of301

Oryx 1 with the inferred turning points for W = 40 and W = 200 are given in Supplemen-302

tary Videos SV1 (cpsv1.mp4) and SV2 (cpsv2.mp4), respectively. Pre-processing data using303

subsampling or smoothing had almost no effect on the inference (Supplementary Appendix C).304

Table 1 summarises the number of TPs inferred for each of the six oryx paths, using305

θthresh = 30◦ and W ∈ {40, 200}, together with the normalised standard deviation, σ̄ of the306

data from the piecewise-linear model given by Equation (3). Observe that this normalised307

standard deviation is similar for both W = 40 and W = 200. The reason for this is that,308
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Table 1. Application to oryx data. The first column is the oryx identifier. The second
(resp. fourth) gives the normalised standard deviation of the model from the data for a
window size of W = 40 (resp. W = 200) data points, representing 1 second (resp. 5 seconds)
of movement. The third (resp. fifth) gives the number of inferred turning points (TPs) for a
window size of W = 40 (resp. W = 200) data points.

Oryx ID σ̄ (W = 40) No. TPs (W = 40) σ̄ (W = 200) No. TPs (W = 200)

1 0.0601 498 0.0612 155
2 0.0783 892 0.0792 261
3 0.381 557 0.508 153
4 0.477 863 0.180 217
5 0.176 639 0.187 183
6 0.247 929 0.198 237

although the step lengths are longer for the piecewise-linear models with fewer TPs (W = 200),309

small-scale turns are treated as noise rather than signal, thus increasing the amount of error310

proportionately.311

Comparing our algorithm with Segmentor3isBack, we see that the latter tends to be about312

103 times slower (e.g. 46 minutes compared to 3.6 seconds; see Supplementary Table ST1 for313

precise figures). The resulting path of straight lines and turns is a marginally better fit in five314

of the six cases (Supplementary Table ST1), which is to be expected, since Segmentor3isBack315

is designed to find the theoretical best-fit path. However, the difference tends to be minor,316

both by comparing σ̄-values and by visually inspecting the paths (Supplementary Figure SF4).317

Comparison with Turchin’s algorithm, applied to the reconstructed path (Equation 2),318

reveals that Turchin’s algorithm is 1-2 orders of magnitude slower (e.g. 220 seconds compared319

to 3.6 seconds; see Supplementary Table ST2 for precise figures). Turchin’s algorithm generally320

results in a lower σ̄. This is to be expected as Turchin’s method defines turns as places where321

there is a deviation from a straight-line of more than a fixed value, so implicitly seeks to322

minimise σ̄. However, our simulation analysis reveals that this is not such an accurate method323

for determining where turns have actually occurred, as it is more likely to misdetect noise as324

signal than our approach (Fig. 2). Therefore the resulting inferred set of turning points is not325

as reliable as our algorithm, even though the constructed piecewise linear path may turn out326
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to have a slightly better fit.327

4 Discussion328

We have described a fast, accurate algorithm for detecting turning-points in animal movement329

data, particularly tailored for use with very high-resolution data. Given a path of straight-330

moves and turns, where headings have been measured to within an accuracy of within ±8.1◦331

standard deviation, the algorithm succeeds in detecting all turning points, without falsely332

detecting any (Fig. 2). If the accuracy is only ±19.6◦, the algorithm was still able to identify333

56 of 59 turnings points, whilst misclassifying 8 non-turns as turning points. Since many334

modern measuring devices, such as magnetometers, have an accuracy within ±5◦ (Li et al.,335

2006), this suggests our algorithm is well-suited to identifying turning-points in such data (as336

long as the tag is attached well and does not shift location on the animal significantly).337

This accuracy compares well with previous methods. Perhaps the most oft-used in move-338

ment ecology has been that of Turchin et al. (1991), which ours markedly improves upon (Fig.339

2). A more sophisticated method, imported from literature on statistics and DNA segmen-340

tation (Cleynen et al., 2014), does a reasonable job on real data (Supplementary Table ST1,341

Supplementary Figure SF4) but is around three orders of magnitude slower than our method342

(Supplementary Table ST1). Indeed, the speed of our algorithm is a very important feature.343

Datasets are becoming ever larger, so having fast algorithms without significant scaling prob-344

lems is very important. Ours will analyse hundreds of thousands of data points in a few seconds345

on an ordinary desktop and scales linearly. Therefore, we expect that even tracks of a billion346

locations (40Hz for a year) would be analysable in only a few hours.347

Our method complements existing research in analysis of behavioural changepoints in an-348

imal paths, recently reviewed by Edelhoff et al. (2016). These methods look at movement349

paths at a broader scale, segmenting them into sections corresponding to different behavioural350

modes. Edelhoff et al. (2016) explained how this analysis can be broken down into four stages351

[see Fig. 1 from Edelhoff et al. (2016)], with the third stage ostensibly very similar to the352
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sort of turning-point analysis described here. However, a detailed look reveals that the papers353

that are referenced regarding this third stage are, in fact, seeking answers to issues that are354

somewhat different to the aims of this paper, which we explain in the next two paragraphs.355

Our contention will be that the method presented here is a sub-step prior to Edelhoff et al.’s356

third step, required when data is very high resolution (a case not considered in Edelhoff et al.).357

Several methods for behavioural changepoint analysis (BCPA) have been proposed in the358

literature. Many of them begin with a description of movement in terms of summary statistics.359

For example, Gurarie et al. (2009) gives an algorithm for determining significant changes in360

persistence velocity and turning velocity. Similar ideas were given a more general and the-361

oretical treatment by Buchin et al. (2011). Nams (2014) generalises BCPA by developing a362

technique for detecting behavioural changepoints that can make use of a wide variety of sum-363

mary statistics, and also clusters the resulting path-segments into distinct behavioural states.364

Postlethwaite et al. (2013) proposes a ‘straightness index’ for rapid inference of behavioural365

states. Gurarie et al. (2016) summarises and compares a variety of methods for detecting366

behavioural changes.367

However, all such behavioural changepoint techniques require that the path be already368

described using some sort of summary statistic (e.g. velocity, tortuousity, turning angle distri-369

bution etc.). Our paper provides a method to infer specific summary statistics (i.e. step lengths370

and turning angles) from big, high-resolution datasets, thus enabling existing behavioural371

changepoint analysis techniques to be used with high-resolution data. We thus anticipate372

that the output of our algorithm could be effectively used as an input to BCPA and similar373

methods.374

Our method, based on the circular statistics of headings, has some mathematical similarities375

with certain methods of deriving toruousity in movement paths (Benhamou, 2004). If the un-376

derlying distribution of headings comes from a wrapped normal distribution then the SCSD is377

an unbiased estimator of the variance of the underlying (unwrapped) normal distribution (Mar-378

dia, 2014). The mean of the cosine of a wrapped normal distribution is then c = exp(−SCSD/2)379
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(Mardia and Jupp, 2009). The quantity c has been applied to turning angles of animal paths380

to measure the tortuousity of such paths, since it interpolates between 0 for an uncorrelated381

random walk to 1 for ballistic movement (Bovet and Benhamou, 1988). Indeed, it has been382

used, combined with a sliding window, to detect changes in the behavioural mode of animals383

(Benhamou, 2004). So there are some strong similarities between this approach and ours. The384

main differences are that the existing studies using c have been concerned with behavioural385

changepoints rather than (smaller scale) turning points, and generally applied to turning angles386

rather than headings (since the underlying questions are different). Also, the wrapped normal387

assumption that links the two is not so easy to justify when applied to our scenario, especially388

near turning points.389

The study of Byrne et al. (2009) also examines changes in behaviour, but this time by390

explicitly looking for a change in direction. The aim was to identify the points at which391

an animal decides to move towards a particular location. The method compares the sum of392

the lengths of two straight line segments |xn−1 − xn| + |xn − xn+1| with the resultant length393

|xn−1 − xn+1| to infer a change in direction if the latter is much smaller than the former.394

Whilst this method asks a similar question to the one examined here, in fact it is not395

designed to pick up every turn, but just those that indicate a decision to move to a specific396

location. Indeed, it quite deliberately ignores small, temporary changes in direction, as Fig.397

4 from Byrne et al. (2009) demonstrates. Our algorithm, on the other hand, does attempt to398

detect every change in direction, however temporary it is. However, it is possible for the user399

to factor-out temporary changes by choosing a large window size, W . Ultimately, the choice of400

whether it is best to use our algorithm or the one from Byrne et al. (2009) will depend on the401

specific biological question, and the summary statistics desired to answer it (notwithstanding402

additional issues regarding computational speed for big data sets).403

In general, the choice of both W and θthresh depends on various factors and a combination404

of statistical tests and expert knowledge will be required in order for this be set appropriately.405

Our simulation analysis indicates that there is an optimal W and θthresh for a given simulation406
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scenario, defined by the point at the upper-left-most extreme of the ROC curve (see Fig.407

2j-l). However, for real data it is not possible to construct such a ROC curve and find the408

actual optimum. Instead we recommend calculating the variation of the real trajectory from a409

piecewise-linear model trajectory with turns at the inferred turning points. Such a trajectory410

is described in Equation (3). Furthermore, we give a dimensionless quantity, denoted by σ̄,411

for testing this fit. To choose W and θthresh, we recommend, in the first instance, running our412

algorithm over a range of values and calculating σ̄ for each.413

Although lower values of σ̄ indicate a better fit, the correct choice of W and θthresh also414

depends upon the biological properties of the study species and the underlying scientific ques-415

tions. This is where expert opinion becomes important, and blindly picking the W and θthresh416

that minimise σ̄ may not always be the best option. In particular, the turn radii of the species417

is an important quantity. The minimum turn radius of an animal depends partly on its move-418

ment speed, with faster moving individuals (or species) tending to have greater turn radii419

(Alexander, 2002a), with this condition generally holding whether the animal in question is420

aerial (Thomas, 1996), terrestrial (Alexander, 2002b) or aquatic (but see Blake et al. (1995)421

and references therein), although values differ in the different media. In particular, it is worth422

noting that terrestrial mammals, such as the oryx used in this work, may turn through 90◦ in423

less than 1s whereas, because a flying bird has a turn radius that is proportional to the flight424

speed squared (Thomas, 1996), a similar 90◦ turn by a large gliding bird such as a condor425

(Vultur gryphus) may take several seconds during which time the bird may have travelled 50m426

(McGahan, 1973).427

In addition to this, there are extrinsic factors that may mean an animal moves in a curve428

rather than a straight line between successive decisions to change direction. For example,429

topography could affect a terrestrial animal, and water (resp. air) currents will affect aquatic430

(resp. airborne) animals. Therefore, when finding turning-points in such data, it is necessary431

to factor-out such extrinsic effects. (Note that the oryx studied here are unlikely to be largely432

affected by such factors, as they roam on relatively flat and open terrain.) If, once all these433
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factors are accounted for, an animal’s path is curvilinear, rather than consisting of straight-434

lines and turns, then our algorithm is simply inappropriate for analysing the path and should435

not be used.436

If there is noise in the data arising from specific known artifacts, such as effects of rocky437

terrain or animal gait, then it may be beneficial to pre-process the data prior to analysis so as438

to smooth-out this noise. Some possible pre-processing methods are given in Supplementary439

Appendix C. We recommend users test for such noise, ideally by examining short paths where440

the animal has been directly observed to go in a straight line. If this is not possible, attaching441

the magnetometer to a human in the same terrain where the animal resides can give an idea442

(albeit imperfect) of the noise due to an uneven terrain. Similarly, we recommend that users443

obtain an idea of the noise inherent in the magnetometer by leaving it immobile at a fixed444

heading for some time. If there any of these types of noise are either large or autocorrelated,445

then it may be beneficial to examine the effect of pre-processing the data. For the oryx exam-446

ined here, however, such pre-processing had almost no effect on the inference (Supplementary447

Appendix C).448

Our method makes an implicit choice to define a candidate turn as a point at which the449

SCSD goes above the global mean. Whilst this choice appears to work adequately in the450

situations studied here, it is not the only possible way to define a turn. For example, one could451

examine the cumulative SCSD and look for sharp changes in the resulting time series, using452

the methods described by Knell and Codling (2012). There, the authors examined how the453

cumulative sum (CUSUM) of any summary statistic (not necessarily SCSD) will change sharply454

over time when the behaviour changes (in the context of our study, this ‘behavioural change’455

would be between straight-moving and turning). However, the CUSUM method also relies on456

an arbitrary choice of a parameter [labelled ε by Knell and Codling (2012)] to determine where457

such sharp changes occur in the time series. Although the authors demonstrate a method for458

calculating an optimal ε in certain circumstances, it is not clear whether it would always be459

possible to derive such an optimum in any situation. Therefore, whilst a CUSUM approach460
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to SCSD may sometimes be a useful option for the user to bear in mind, it may also end up461

simply replacing one arbitrary choice with another.462

In summary, our algorithm is a quick and accurate method for splitting up long streams463

of ultra high resolution animal movement data into straight-line segments and turns. The464

output of such segmentation can then be used to detect behavioural features using the myriad465

techniques that require step-and-turn descriptions, such as step selection analysis, behavioural466

changepoint analysis, state space models, and more. In particular, step selection analysis (SSA)467

would greatly benefit from an approach whereby the ‘steps’, which typically mean a move-468

ment from one measured location to the next, are replaced with the more behaviourally-driven469

‘moves’ from one turning point to the next. SSA seeks to understand whether a movement470

along one straight-line path is preferable to another and how that is correlated to environmen-471

tal covariates. Evidently, this inference will be improved if the animal’s actual movement from472

one point to the next well-approximates a straight line. So replacing ‘steps’ with ‘moves’ seems473

to be the correct way forward.474

With some of the other aforementioned techniques, such as behavioural changepoint analy-475

sis, it is less clear whether ‘steps’ or ‘moves’ would be more appropriate [to borrow terminology476

from Turchin (1998), Section 5.2]. If a technique uses turning angles as a summary statistic477

for analysing behaviour, it would seem more appropriate to use ‘moves’ as the angles would478

correspond to actual turns by the animal, which may be energetically costly (Wilson et al.,479

2013). For example, the calculations of persistence velocity and turning velocity in Gurarie480

et al. (2009) would be improved by using ‘moves’. However, if the analysis relies upon regular481

sampling of animal locations then one may have to use ‘steps’. For example, techniques such482

as Morales et al. (2004); Beyer et al. (2013) rely on step-length distributions between locations483

gathered (roughly) regularly in time. These would need to be carefully adapted before use with484

a sequence of ‘moves’ of different time-periods. That said, if such an adaption can be made,485

a switch from ‘step length distribution’ to ‘move length distribution’ would be possible within486

these frameworks, and may make them more behaviourally-grounded. In conclusion, given its487
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potential for use to improve a broad range of existing techniques, our algorithm should serve488

as an important tool for making sense of the type big data increasingly available to movement489

ecologists.490
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Fig. 2. Simulated paths. The top panels (a-c) give three simulated trajectories with increasing amounts of noise
from left to right. Specifically, panel (a) has κ = 50 so the standard deviation (SD) in the heading is 8.1◦; panel (b)
has κ = 10, corresponding to an SD of 18.6◦; panel (c) has κ = 1 so SD= 72.6◦. The actual TPs are superimposed on
the trajectories in panels (a-c) as crosses. Panels (d-f) zoom in on panels (a-c) respectively around the first turning
point, giving a better visual impression of the noise in the data. Panels (g-i) show the same trajectories as (a-c)
respectively, but this time the red crosses show inferred TPs using the inference method described in the Main Text.
Panels (j-l) show ROC curves, corresponding to the trajectories in (a-c) respectively, for both the method introduced
here (dots and solid curves) and an older method due to Turchin et al. (1991) (crosses and dashed curves).
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Fig. 3. Example oryx path. Both panels show the path of a single oryx (ID=1 in Table
1). In Panel (a) the red crosses denote the inferred turning points (TPs) using a window size
W = 40 (corresponding to 1 second of movement) and a turning threshold angle of
θthresh = 30◦. The inset zooms in on a fragment of the path, to demonstrate the very
small-scale turns that are revealed by this analysis, alongside broader-scale turning decisions.
In Panel (b), the TPs are inferred using a window size of W = 200 (5 seconds of movement).
The very fine-scale turns are now smoothed-out (inset, Panel b), which allows the user to
focus on broader-scale patterns.



24

References509

Alexander, R. M. 2002a. The Merits and Implications of Travel by Swimming, Flight and510

Running for Animals of Different Sizes. Integrative and Comparative Biology, 42:1060–1064.511

Alexander, R. M. 2002b. Stability and manoeuvrability of terrestrial vertebrates. Integrative512

and Comparative Biology, 42:158–164.513

Avgar, T., J. R. Potts, M. A. Lewis, and M. S. Boyce. 2016. Integrated step selection analysis:514

bridging the gap between resource selection and animal movement. Methods in Ecology and515

Evolution, 7:619–630.516

Benhamou, S. 2004. How to reliably estimate the tortuosity of an animal’s path: straightness,517

sinuosity, or fractal dimension? Journal of Theoretical Biology, 229:209–220.518

Berens, P. 2009. CircStat: a MATLAB toolbox for circular statistics. Journal of Statistical519

Software, 31:1–21.520

Beyer, H. L., J. M. Morales, D. Murray, and M.-J. Fortin. 2013. The effectiveness of Bayesian521

state-space models for estimating behavioural states from movement paths. Methods in522

Ecology and Evolution, 4:433–441.523

Bidder, O., J. Walker, M. Jones, M. Holton, P. Urge, D. Scantlebury, N. Marks, E. Magowan,524

I. Maguire, and R. Wilson. 2015. Step by step: reconstruction of terrestrial animal movement525

paths by dead-reckoning. Movement Ecology, 3:23.526

Blake, R., L. Chatters, and P. Domenici. 1995. Turning radius of yellowfin tuna (Thunnus527

albacares) in unsteady swimming manoeuvres. Journal of Fish Biology, 46:536–538.528

Bovet, P. and S. Benhamou. 1988. Spatial analysis of animals’ movements using a correlated529

random walk model. Journal of Theoretical Biology, 131:419–433.530

Brown, C. D. and H. T. Davis. 2006. Receiver operating characteristics curves and related531

decision measures: A tutorial. Chemometrics and Intelligent Laboratory Systems, 80:24–38.532



25

Brown, D. D., R. Kays, M. Wikelski, R. Wilson, and A. P. Klimley. 2013. Observing the533

unwatchable through acceleration logging of animal behavior. Animal Biotelemetry, 1:20.534

Buchin, M., A. Driemel, M. Van Kreveld, and V. Sacristán. 2011. Segmenting trajectories:535

A framework and algorithms using spatiotemporal criteria. Journal of Spatial Information536

Science, 2011:33–63.537

Byrne, R., R. Noser, L. Bates, and P. Jupp. 2009. How did they get here from there? Detecting538

changes of direction in terrestrial ranging. Animal Behaviour, 77:619–631.539

Cleynen, A., M. Koskas, E. Lebarbier, G. Rigaill, and S. Robin. 2014. Segmentor3IsBack: an R540

package for the fast and exact segmentation of Seq-data. Algorithms for Molecular Biology,541

9:6.542

Codling, E. A. and M. J. Plank. 2011. Turn designation, sampling rate and the misidentification543

of power laws in movement path data using maximum likelihood estimates. Theoretical544

Ecology, 4:397–406.545

Codling, E. A., M. J. Plank, and S. Benhamou. 2008. Random walk models in biology. Journal546

of the Royal Society Interface, 5:813–834.547

Edelhoff, H., J. Signer, and N. Balkenhol. 2016. Path segmentation for beginners: an overview548

of current methods for detecting changes in animal movement patterns. Movement Ecology,549

4:21.550

Erdman, C. and J. W. Emerson. 2008. A fast Bayesian change point analysis for the segmen-551

tation of microarray data. Bioinformatics, 24:2143–2148.552

Forester, J., H. Im, and P. Rathouz. 2009. Accounting for animal movement in estimation of553

resource selection functions: sampling and data analysis. Ecology, 90:3554–3565.554

Fortin, D., H. Beyer, M. Boyce, D. Smith, T. Duchesne, and J. Mao. 2005. Wolves influence555



26

elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. Ecology,556

86:1320–1330.557

Franke, J., C. Kirch, and J. T. Kamgaing. 2012. Changepoints in times series of counts. Journal558

of Time Series Analysis, 33:757–770.559

Gurarie, E., R. D. Andrews, and K. L. Laidre. 2009. A novel method for identifying behavioural560

changes in animal movement data. Ecology Letters, 12:395–408.561

Gurarie, E., C. Bracis, M. Delgado, T. D. Meckley, I. Kojola, and C. M. Wagner. 2016. What is562

the animal doing? Tools for exploring behavioural structure in animal movements. Journal563

of Animal Ecology, 85:69–84.564

Hays, G. C., L. C. Ferreira, A. M. Sequeira, M. G. Meekan, C. M. Duarte, H. Bailey, F. Bailleul,565

W. D. Bowen, M. J. Caley, D. P. Costa, et al. 2016. Key questions in marine megafauna566

movement ecology. Trends in Ecology & Evolution, 31:463–475.567

Hocking, T. D., G. Schleiermacher, I. Janoueix-Lerosey, V. Boeva, J. Cappo, O. Delattre,568

F. Bach, and J.-P. Vert. 2013. Learning smoothing models of copy number profiles using569

breakpoint annotations. BMC Bioinformatics, 14:164.570

Hurford, A. 2009. GPS measurement error gives rise to spurious 180 turning angles and strong571

directional biases in animal movement data. PLoS One, 4:e5632.572

Jerde, C. L. and D. R. Visscher. 2005. GPS measurement error influences on movement model573

parameterization. Ecological Applications, 15:806–810.574

Johnson, C. J., D. C. Heard, and K. L. Parker. 2002. Expectations and realities of GPS animal575

location collars: results of three years in the field. Wildlife Biology, 8:153–159.576

Jonsen, I. D., J. M. Flemming, and R. A. Myers. 2005. Robust state–space modeling of animal577

movement data. Ecology, 86:2874–2880.578



27

Kareiva, P. and N. Shigesada. 1983. Analyzing insect movement as a correlated random walk.579

Oecologia, 56:234–238.580

Kays, R., M. C. Crofoot, W. Jetz, and M. Wikelski. 2015. Terrestrial animal tracking as an581

eye on life and planet. Science, 348:aaa2478.582

Knell, A. S. and E. A. Codling. 2012. Classifying area-restricted search (ARS) using a partial583

sum approach. Theoretical Ecology, 5:325–339.584

Li, Y., A. Dempster, B. Li, J. Wang, and C. Rizos. 2006. A low-cost attitude heading reference585

system by combination of GPS and magnetometers and MEMS inertial sensors for mobile586

applications. Journal of Global Positioning Systems, 1:0.587

Mandaville, J. P. 1990. Flora of Eastern Saudi Arabia. London: Kegan Paul Int.588

Mardia, K. V. 2014. Statistics of directional data. Academic Press.589

Mardia, K. V. and P. E. Jupp. 2009. Directional statistics, volume 494. John Wiley & Sons.590

McClintock, B. T., J. M. London, M. F. Cameron, and P. L. Boveng. 2015. Modelling animal591

movement using the Argos satellite telemetry location error ellipse. Methods in Ecology and592

Evolution, 6:266–277.593

McGahan, J. 1973. Gliding flight of the Andean condor in nature. Journal of Experimental594

Biology, 58:225–237.595

Morales, J. M., D. T. Haydon, J. Frair, K. E. Holsinger, and J. M. Fryxell. 2004. Extract-596

ing more out of relocation data: building movement models as mixtures of random walks.597

Ecology, 85:2436–2445.598

Nams, V. O. 2014. Combining animal movements and behavioural data to detect behavioural599

states. Ecology Letters, 17:1228–1237.600



28

Nathan, R., W. M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, and P. E. Smouse. 2008.601

A movement ecology paradigm for unifying organismal movement research. Proceedings of602

the National Academy of Sciences, 105:19052–19059.603

Noda, T., Y. Kawabata, N. Arai, H. Mitamura, and S. Watanabe. 2014. Animal-mounted604

gyroscope/accelerometer/magnetometer: In situ measurement of the movement performance605

of fast-start behaviour in fish. Journal of Experimental Marine Biology and Ecology, 451:55–606

68.607

Ostrowski, S., J. B. Williams, and K. Ismael. 2003. Heterothermy and the water economy of608

free-living Arabian oryx (Oryx leucoryx). Journal of Experimental Biology, 206:1471–1478.609

Parton, A., P. G. Blackwell, and A. Skarin. 2016. Bayesian inference for continuous time animal610

movement based on steps and turns. In International Conference on Bayesian Statistics in611

Action, pages 223–230. Springer.612

Patterson, T. A., L. Thomas, C. Wilcox, O. Ovaskainen, and J. Matthiopoulos. 2008. State–613

space models of individual animal movement. Trends in Ecology & Evolution, 23:87–94.614

Picard, F., S. Robin, M. Lavielle, C. Vaisse, and J.-J. Daudin. 2005. A statistical approach for615

array CGH data analysis. BMC Bioinformatics, 6:27.616

Postlethwaite, C. M., P. Brown, and T. E. Dennis. 2013. A new multi-scale measure for617

analysing animal movement data. Journal of Theoretical Biology, 317:175–185.618

Rhodes, J., C. McAlpine, D. Lunney, and H. Possingham. 2005. A spatially explicit habitat619

selection model incorporating home range behavior. Ecology, 86:1199–1205.620

Rivera, C. and G. Walther. 2013. Optimal detection of a jump in the intensity of a Poisson621

process or in a density with likelihood ratio statistics. Scandinavian Journal of Statistics,622

40:752–769.623



29

Thomas, A. L. 1996. The flight of birds that have wings and a tail: variable geometry expands624

the envelope of flight performance. Journal of Theoretical Biology, 183:237–245.625

Turchin, P. 1998. Quantitative analysis of movement: measuring and modeling population re-626

distribution in animals and plants, volume 1. Sinauer Associates Sunderland, Massachusetts,627

USA.628

Turchin, P., F. Odendaal, and M. Rausher. 1991. Quantifying insect movement in the field.629

Environmental Entomology, 20:955–963.630

Walker, J. S., M. W. Jones, R. S. Laramee, M. D. Holton, E. L. Shepard, H. J. Williams,631

D. M. Scantlebury, J. M. Nikki, E. A. Magowan, I. E. Maguire, et al. 2015. Prying into the632

intimate secrets of animal lives; software beyond hardware for comprehensive annotation in633

Daily Diary tags. Movement Ecology, 3:29.634

Williams, H. J., M. D. Holton, E. L. Shepard, N. Largey, B. Norman, P. G. Ryan, O. Duriez,635

M. Scantlebury, F. Quintana, E. A. Magowan, et al. 2017. Identification of animal movement636

patterns using tri-axial magnetometry. Movement Ecology, 5:6.637

Wilmers, C. C., B. Nickel, C. M. Bryce, J. A. Smith, R. E. Wheat, and V. Yovovich. 2015. The638

golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology.639

Ecology, 96:1741–1753.640

Wilson, R. P., I. W. Griffiths, P. A. Legg, M. I. Friswell, O. R. Bidder, L. G. Halsey, S. A.641

Lambertucci, and E. L. C. Shepard. 2013. Turn costs change the value of animal search642

paths. Ecology Letters, 16:1145–1150.643

Wilson, R. P., E. Shepard, and N. Liebsch. 2008. Prying into the intimate details of animal644

lives: use of a daily diary on animals. Endangered Species Research, 4:123–137.645


	Introduction
	Methods
	The turning-point algorithm
	Simulated data
	Case study on oryx movement

	Results
	Simulated data: comparison with previous approaches
	Oryx data

	Discussion

