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Polar Transformation on Image Features for

Orientation-Invariant Representations

Jinhui Chen†, Zhaojie Luo†, Zhihong Zhang∗, Faliang Huang, Zhiling Ye, Tetsuya Takiguchi,

and Edwin R. Hancock, Fellow, IEEE

Abstract—The choice of image feature representation plays
a crucial role in the analysis of visual information. Although
vast numbers of alternative robust feature representation models
have been proposed to improve the performance of different
visual tasks, most existing feature representations (e.g. hand-
crafted features or Convolutional Neural Networks (CNN)) have
a relatively limited capacity to capture the highly orientation-
invariant (rotation/reversal) features. The net consequence is
suboptimal visual performance. To address these problems, this
study adopts a novel transformational approach, which investi-
gates the potential of using polar feature representations. Our
low level consists of a histogram of oriented gradient, which
is then binned using annular spatial bin-type cells applied to
the polar gradient. This gives gradient binning invariance for
feature extraction. In this way, the descriptors have signifi-
cantly enhanced orientation-invariant capabilities. The proposed
feature representation, termed orientation-invariant histograms of
oriented gradients (Oi-HOG), is capable of accurately processing
visual tasks (e.g., facial expression recognition). In the context
of the CNN architecture, we propose two polar convolution
operations, referred to as Full Polar Convolution (FPolarConv)
and Local Polar Convolution (LPolarConv), and use these to
develop polar architectures for the CNN orientation-invariant
representation. Experimental results show that the proposed
orientation-invariant image representation, based on polar mod-
els for both handcrafted features and deep learning features, is
both competitive with state-of-the-art methods and maintains a
compact representation on a set of challenging benchmark image
datasets.

Index Terms—Rotation-invariant and reversal-invariant repre-
sentation, HOG, CNN.

I. INTRODUCTION

IMAGES dominate multimedia data. The manipulation of

this data is therefore dependent on the availability of effec-

tive visual tools (e.g., image classification/retrieval engines).

One of the most significant challenges is to develop robust

image feature representation models [1], which can used for

a wide range of visual tasks, such as scene classification [2],

image annotation [3], object recognition/localization [4] etc.

Existing feature representation methods can be roughly di-

vided into two categories, namely a) conventional handcrafted
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(b) Image classification based

on deep features (CNN)

Fig. 1: Sensitivity of the handcrafted features and CNN

features to large transformation: (a) Error result of the FER

caused by the head-rotated cases due to the handcrafted feature

(HOG) is not rotation- invariant; (b) The feature extracted on

CNN model lacks of reversal invariance, which leads to a

non-correlation probability calculated by feature correlations

between test and target (reversed case) images (containing

same-class objects) for image classification.

descriptor based image features and b) deep neural network

based image features. Specifically, handcrafted descriptors are

one of the most popular feature representation models. They

can be used as input to probabilistic algorithms for learning

classifiers designed to produce discriminative visual words.

Recently, with the availability of both large-scale publicly

available image datasets and high-performance processors,

deep feature models and in particular Convolutional Neural

Network (CNN), are viewed as the state-of-the-art in numerous

visual tasks [5], [6]. However, many papers in the literature

reveal that both deep and handcrafted representation models

are sensitive to orientation (reversal or rotation) deformations

[5], [7]–[9]. This in turn leads to an overall limitation of

their performance in visual processing tasks. Consequently,

work aimed at solving these shortcomings of existing feature

representation models is still an active area of research.

To provide a visual illustration, in Fig. 1 we consider an

image together with its reversed version, which obviously

convey the same visual concepts. We have conducted an

experiment (without augmented training data) to test the

sensitivity of both CNN features as well as handcrafted

features (histograms of oriented gradients (HOG) [10]) to large

transformations that result in a modified arrangement of the

underlying objects. Both the HOG and CNN representations

of the two images are totally different after their orientations

are deformed. Such a change leads to an inferior performance

on the subsequent visual processing tasks (see Fig. 1). The
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(b) Rotation

Fig. 2: Accuracies for image classification on four classes (red-

line: arrival gate; blue-line: florist shop; pink-line: volleyball

court, green-line: ice skating) from the SUN dataset [7] as a

function of different transformations of the test images: (a)

Reversal; (b) Rotation.

reason is primarily that existing deep features together with the

handcrafted descriptors are generally not orientation-invariant.

As a result the descriptor structures are radically altered by

reversal [1], [5], [7], [9]. Consequently, it is difficult to address

tasks such as feature correspondence once the orientation

(rotation/reversal) of objects is modified. This further leads

to an overall limitation of the performance when classification

is attempted using these descriptors.

As widely demonstrated, convolutional networks provide

an effective architecture to analyze large-scale and high-

dimensional data. In a manner similar to related work [7], we

have evaluated the sensitivity of the CNN model on reversal

transformation for the test image in Fig.2(a) and rotated

version of the test image in Fig.2(b) respectively. It is clear

that the final CNN representations are sensitive to both image

reversal and large rotations. The results further indicate that

the max-pooling operations of the CNN model have a limited

capacity to handle large image rotations. In other words, there

is still considerable scope for improving the demanding task

of designing an effective image representation for learning

discriminative models.

To address the above challenge we explore a novel trans-

formation approach to enhancing the robustness of both deep

features and handcrafted features. A successful feature rep-

resentation method should exhibit two desirable properties,

namely a) robustness, that is the model should be able to

learn features independent of scaling, rotation, shifting, photo-

metric deformations and noise, and b) it should be structure-

preserving, that is the learned representation model should

preserve the discriminative structure extracted from raw data

samples.

In this paper, we propose an orientation-invariant (rota-

tion/reversal) image representation based on polar model-

s for both handcrafted features and deep features. In this

way we can obtain identical representations for an image

and its orientation-deformed version without training using

augmentation data. For handcrafted feature representation, we

have proposed a HOG-type polar feature. Here we transform

gradients into polar form (see Fig. 3) and adopt the polar

descriptor to design a local feature to achieve orientation-

invariant representation. We refer to the proposed feature

as orientation-invariant histograms of oriented gradients (Oi-

HOG). Experiments on real-time classification tasks (e.g.

facial expression recognition (FER)) verify the efficiency and

effectiveness of our proposed Oi-HOG model.

Motivated by the advantages of the polar model-based

handcrafted feature representation (Oi-HOG), in this paper, we

generalize the idea of polar data structures so that they can be

used in conjunction with the state-of-the-art CNN architec-

ture. Specifically, we propose two polar convolution models,

referred to as Full Polar Convolution (FPolarConv) and Local

Polar Convolution (FPolarConv) respectively, to construct

deep-polar architectures for deep image feature extraction.

The proposed framework can be viewed as a polar-data CNN

model (P-CNN). By using polar operations in the input layer,

a new raw data structure based on polar data is generated

that can replace the traditional RGB-channel input. For the

convolutional data of the intermediate convolutional layers,

we adopt FPolarConv (see Fig. 8(a)) and LPolarConv (see

Fig. 8(b)) to transform the full feature sheets and convolution

operations (kernels) into polar ones. We mathematically verify

that the above two operations can preserve the orientation-

invariant structure for CNN features. Compared with existing

deep features [11]–[17], our proposed polar-data CNN (P-

CNN) architecture has two advantages, namely i) unlike

existing DNNs that rely on a very large number of augmented

data to train a robust network with millions of parameters,

the P-CNN excels at image classification on small to medium

sized datasets by preserving orientation-invariant information

for image representation in each layer, and ii) compared with

prior-art deep models, polar input structure presents more

candidate parameters for CNN learning.

In summary, the main aim of this study is to investigate

how polar features affect image representation results. Both

handcrafted and deep models are components of polar feature

representation. The polar network approach is in fact an

extension of studies concerning handcrafted ones. Our study

makes the following contributions:

• We design polar-type architectures to represent image fea-

tures, which structurally encapsulate orientation-invariant

capabilities as well as preserve the discriminative power

of the original features. Moreover, in this study, polar

structure bridges both the handcrafted and deep feature

representations, while inheriting the respective advan-

tages of both representations for visual tasks.

• The P-CNN is the original deep representation model that

adopts a polar architecture. It helps the comprehensive

understanding of image the components utilized in CNN.

The polar operations for convolutional networks proposed

in the work reported in this paper are therefore likely to

lead to further related research.

• Using a polar representation to replace the RGB input

channels, we find that RGB data can be decomposed into

primal information to gain more candidate representation

parameters for learning.

The remainder of this paper is organized as follows. In

Section II, we review the literature on related work, and

discuss the relationship between our proposed model and a

number of alternative methods. Sections IV and V respectively
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illustrate the orientation-invariant transformation on gradient

descriptors for handcrafted features and provide details of

their experimental evaluation. In section VI, we present the

orientation-invariant transformation approaches for the CNN

model. This is followed by an experimental evaluation in

Section VII. Finally, conclusions are presented in Section VIII.

II. RELATED WORKS

Based on both shallow and deep models, a large number of

related works have proposed various robust feature represen-

tation models to improve the performance of visual tasks. In

contrast, this paper presents a general and basic approach for

both handcrafted features and deep features aimed at achieve-

ment addressing orientation invariance (rotation/reversal). In

this section, we will discuss and detail the differences between

the proposed method and the prior-art in handcrafted features

and deep features, respectively.

A. Handcrafted Descriptors

Conventional image descriptors represent salient image re-

gions by using a set of handcrafted filters designed using

prior knowledge. Examples include the Weber’s Law descrip-

tor [18], Gabor features [19], [20], scale invariant feature

transform (SIFT) [21], histogram of oriented gradients (HOG)

[10], local binary patterns (LBP) [22] and speeded up robust

features (SURF) [23].

These local features are based on handcrafted descriptors

such as texture (filters), histograms, etc., which are usually

robust to some types of image transformation such as ro-

tation or translation. For example, the SIFT descriptor [21]

achieves invariance to rotation and robustness to a moderate

degree of perspective transformation [24], [25]. Motivated by

the SIFT descriptor for computing distinctive invariant local

features, SURF [23] uses the integral image representation to

speed up computation. Local binary patterns (LBP) [22] has

the characteristics of being invariant against any monotonic

transformation of the gray scale [22]. Rotation invariance is

achieved by minimizing the LBP code value using the bit

cyclic shift. The HOG feature [10] was first proposed to

represent objects using the distribution of gradient intensities

and orientations over spatially distributed regions. It has been

widely acknowledged as one of the best features to capture

edge or local shape information of objects. However, many

related works have proved that the HOG is neither rotation-

invariant nor reversal-invariant [8], [26]. Therefore, dealing

with the above issues for HOG appears to be a research

problem of both significance and urgency.

There are many existing histogram-based feature represen-

tations that claim to be invariant. Currently, two of the most

popular and representative ones are 2D HOG [27] and HOG

3D [28], which offers interesting solutions to the problems

caused by rotations. However, these methods also suffer from

bottlenecks. The 2D HOG descriptor was motivated by Jhuang

et al.’s approaches [29] that uses 2D Gabor-filter responses

combined with optical flow. Their dense representations avoid

some of the rotational problems but cannot completely solve

them. Moreover, it brings further time complexity because

2D HOG requires a region of interest (ROI) around the

task region, which is usually obtained by using either a

separate detector or background subtraction followed by blob

detection. Motivated by the SIFT descriptor [21], HOG 3D

constructs a platonic solids system using auxiliary coordinates

to achieve invariant feature representation. It is an interesting

solution, but unfortunately comes at a high cost in terms

of computational time and memory requirements. Although

the task images (faces) are distributed over the 2D polar

coordinates and all task images are congruent in order to

reduce memory requirements, computational speed remains a

bottleneck. Furthermore, HOG 3D is reliant on integral videos

[28], which limits its applications. Therefore, neither of these

approaches can be considered as ideal solutions.

In our method, we subdivide the local patch into annular

spatial bins to achieve spatial binning invariance. Motivated

by Takacs et al.’s rotation-invariant image features [30], we

apply a polar gradient to achieve gradient binning invariance.

A preliminary publication [8] describes a rotation-invariant

descriptor based on the distance metric for content-based

image retrieval. In this paper we provide a more in-depth

development and analysis of our earlier work, while presenting

a number of new improvements in efficiency and the discrim-

inative power of the learning framework needed to adapt the

proposed feature representation for classification tasks.

B. Deep Convolutional Neural Networks

Even though the aforementioned feature representations

have shown impressive success on a variety of visual tasks,

they are either handcrafted or restricted to shallow represen-

tations. Furthermore, they also have three limitations, namely

a) most of the handcrafted design of the features is domain-

specific and can only tackle specific types of transformation

variance, b) the design process leading to these handcrafted

features is time consuming and requires prior knowledge, c)

they all adopt shallow models, which have relatively limited

capacity to represent highly non-linear structures in the un-

derlying data. Deep features can successfully avoid the above

problems, but still suffer from the common issues i.e., lacking

orientation-invariance. In this paper, to demonstrate the more

general usefulness of the proposed polar features. We therefore

expand the method to encompass deep features.

Although some deep net operations, such as max-pooling

within each feature map, can alleviate the effect of small-

scale rotations of patterns, it is difficult to effectively handle

the problem of large orientation deformations. Recently, there

have been several related attempts to address these problems,

including data augmentation and the spatial transform network

(STN). Due to the limited size of the training dataset, data

augmentation is an effective method to expand the training

dataset with transformed versions of the original images,

resulting in new samples as additional training data. It has

been shown that data augmentation by learning all the possible

transformations enforces robustness of a learning model to

variations of the input [12], [15], [31], [32]. Despite the

effectiveness of data augmentation, its main drawback lies in

the fact that it is computationally expensive to learn a large
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Fig. 3: Illustration of local polar coordinate system.

set of possible transformations of augmented data. Moreover,

it significantly increases the number of network parameters

and the risk of network over-fitting. As a representative ex-

ample, the spatial transformer network (STN) [33] introduces

an additional network module that can transform the input

according to a defined class of transform parameters estimated

using a localization sub-CNN. In this way STN contributes a

general framework which can be applied to any existing CNN

architecture for spatial transform. However, the problem of

how to estimate the complex transform parameters by CNN

remains unsolved [34], [35]. Furthermore, in the cases of big

data or complex networks, the data augmentation approach

performs much better than the ST-based approach [36], [37].

III. DEFINITION AND THEOREM

Algorithm 1 Orientation-invariant Transformation Operation

Require:

Raw picture I ∈ R
H×H ;

Ensure:

Orientation-invariant Vector field G = P(I);
1: Turn I into pixel gradient map Î ∈ R

H×H
× R

H×H

2: Set j = 0, k = 0 and set c as centre point of Î;

3: for j : H do

4: for k : H do

5: g = Î[j, k];
6: to yield a local polar coordinate system for the

current point p(j, k) : r = p−c

∥p−c∥ ; t = r×Rπ

2
;

7: G[j, k] = (gT r,gT t); // i.e., the encapsulation of

(Pr(·), Pt(·)).
8: end for

9: end for

10: Output G;

In this section we describe the theoretical basis for our

proposed approaches. We commence by proving the theorem,

which underpins the work reported in this paper.

Definition Given an image I ∈ R
H×H , space sets of polar-

gradient descriptor extracted from the original, reversed, rotat-

ed, and reversal-rotation/rotation-reversal copies are defined as

G = P (I), GM = P (IM ), GR = P (IR), GMR = P (IMR),
respectively. In this paper, we present a general algorithm

(Algorithm 1) to implement the polar transformation operation

for input data, which is denoted as P (·) = (Pr(·), Pt(·)) :
R

n×n
→ R

n×n
× R

n×n.

Theorem 1 Given a G = (gT r,gT t) ∈ G, and the cor-

responding reversed, rotated, and reversal-rotation/rotation-

reversal counterparts are denoted as GM ∈ GM , given GR ∈

GR and given GMR ∈ GMR, respectively; then G = GM =
GR = GMR, namely P (I) = P (IM ) = P (IR) = P (IMR).
Proof In theory, we need to verify three situations, including

the reversed, the rotated and the reversal-rotation/rotation-

reversal. Succinctly, we adopt the most complex one as the

representative, i.e., we verify the reversal-rotation/rotation-

reversal one as the representative.

Now, we assume that the patch has been reversed and rotated

against its center by a given angle θ, as shown in Fig. 3. This

yields a new local coordinate system and gradient: g′
θ =

MRθg, r′θ = MRθr, t′θ = MRθt. In addition, M is a

diagonal matrix with diagonal elements 1 or −1 and Rθ is

a rotation matrix. Obviously, M and Rθ both are orthogonal

matrix. The coordinates of the gradient in the local frame are

invariant to reversal as well as rotation, which is verified by:

g′T
θ r′θ

= (MRθg)
TMRθr

= gTRT
θ M

TMRθr

= gT r

⇒(g′T
θ r′θ,g

′T
θ t′θ) = (gT r,gT t).

(1)

Obviously, the invariant availability under the rotated and

reversed conditions, would be respectively verified in the same

way.

Since the point p(x, y) as well as the angle θ are arbitrary,

and all the gradients are transformed in the same way, i.e.,

they are a one-to-one mapping. Thus, the set of gradients at

any given point around the feature patch is invariant to reversal

as well as rotation. Therefore, both G = GM = GR = GMR

and G = GM = GR = GMR can be established.

IV. ORIENTATION-INVARIANT HOG

We illustrate the procedure for calculating HOG descriptors

using Fig. 3. In Fig. 3, given a point p on the circle, the

task is to compute the polar gradient magnitude of point

p (x, y). Polar data can either be represented in Cartesian basis

η = [α, β]T ∈ R
2 or in a radial basis [n, ϕ] by using norm

n and angle ϕ of η. The radial representation can be used

conveniently for Fourier analysis. However, in so doing, we

require more complex transformational approaches. In fact,

most current commonly available computers are sufficiently

powerful to undertake most of the calculations required for

HOG. Therefore, we adopt a Cartesian representation in this

study. We decompose the corresponding gradient vector g into

its local coordinate system as (gT r,gT t), by projecting g

into the r and t orientations as shown in Fig. 3. Since the

component vectors of g in r and t orientations can be quickly

obtained by r = p−c

∥p−c∥ , t = r×Rπ

2
, where c is the gradient

vector of the central point and, Rθ is the rotation matrix by

angle θ. In addition, we can obtain the gradient g easily using

the gradient filter. We use the method outlined in Algorithm

2 to extract the Oi-HOG descriptors.
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(a) Annular spatial cells (b) Polar gradient

template

Fig. 4: Illustration of annular spatial cells and a polar gradient

template image over the annular spatial patch (100 × 100

patch with 5 cells).

Alternatively, since some computational platforms have

vector-processing resources, the matrix can sometimes be

computed easily. We can therefore also represent these bases

by adopting the angle of ϕ of vector p − c to calculate the

polar gradient η as follows,

η =

[
rT

tT

]
g, (2)

where r = (cosϕ, sinϕ), t = (−cosϕ, sinϕ) and ϕ denotes

the angle of vector p− c.

In this paper, we use Algorithm 1 to pre-calculate a batch

of polar templates (Fig. 4(b)), which contain the full set of 1-

norm Descartes vector elements. The maximum patch size of

these templates consists of 100 × 100 different cells. We set

the patch sizes to range from 50 × 50 pixels to 100 × 100 units

by sliding the patch over the template with five pixels forward

to ensure an adequate template-level difference. In addition,

we allow different aspect ratios for each template patch (i.e.

the ratio of width to height). In so doing, we can efficiently

calculate polar gradients on local patches by computing the dot

product between the entries of the template and the input, and

then producing a 2-dimensional activation polar map for that

template. In the training stage, this approach will cut out much

of the repetition involved. The learning framework can thus

quickly decide the best number of partitions required using

the template pool to construct the classifier.

V. EXPERIMENTS FOR OI-HOG

In this section, we detail our experimental setup and e-

valuation results. We have implemented all the training and

detection programs in C++ on a Win 10 (64-bit) OS on a PC

with a Core i7-6700K 4.01-GHz CPU and 32 GB of RAM.

A. Dataset and Experimental Implementation

We now report the results of using our representation

for facial expression recognition. To thoroughly evaluate the

out-of-plane head orientation cases, we have evaluated the

proposed method on two reference facial expression databases,

i.e. MMI, and AFEW, which are respectively a lab-based

Algorithm 2 Oi-HOG feature

Require:

a data set Γ over the feature local patch;

Ensure:

Oi-HOG feature F(Γ);
1: Initialization: Set feature descriptor set F = ∅ and i=0;

2: Orientation-invariant transformation: GΓ = P(Γ);
3: Subdivide the local patch into annular spatial cells, as

shown in Fig. 4(a);

4: for all elements of GΓ do

5: Normalize the polar gradient using L2 normalization

followed by clipping;

6: Calculate the gradient magnitudes and orientations of

the polar gradients using Eq. 3:

MGRT (x, y) =
√

(gT r)2 + (gT t)2,

θ(x, y) = arctan
gT t

gT r
;

(3)

7: Determine the polar gradient magnitude of each pixel

from the annular spatial cells and sort them into nine

bins, according to their polar gradient orientations;

8: end for

9: for all spatial cells do

10: for i : size(bins) do

11: if Angles θ of current gradients belong to the angle

range of i-th bin then

12: Add max (GΓ) to F; // max (·) denotes the op-

eration function of getting the maximum element

from an input set.

13: end if

14: i=i+1;

15: end for

16: end for

17: Output F;

database collected under controlled conditions and a database

acquired in the wild under uncontrolled conditions.

MMI DB The MMI DB [38] is a public database that includes

more than 30 subjects, in which the female-male ratio is

roughly 11:15. The subjects have ages ranging from 19 to

62 years, and they are of European, Asian or South American

origins. This database is considered to be more challenging

than CK+ [39], because there are many side-view images and

some subjects have worn accessories such as glasses. We use

the MMI database to evaluate out-of-plane head rotation under

controlled conditions. In our experiments, we used all 205

image sequences of the six expressions in the MMI dataset.

According to the person-independent levels, these images were

categorized into sub-sets, which were made into videos for

test.

AFEW DB The AFEW DB [40], is a much more challenging

database. All of the AFEW image sets were collected from

movies depicting so-called “in-the -wild scenarios” . In ex-

periments, the videos are separated into images for training

and validation. We have trained our models on the training
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TABLE I: Training speed by adopting different features.
Method Oi-HOG HOG SURF SIFT Haar

Time cost (min) 304 369 87 640 836

Fig. 5: Top-3 local patches picked by training procedure in the

green-red-blue order on AFEW database.

sets and the evaluation results are reported on recognizing its

validation set.

We used all of the training samples in the AFEW training

set and collected training samples according to the person-

independent 10-fold cross-validation rule. We normalized all

of the training samples to 100 × 100-pixel facial patches. To

enhance the generalization ability of the learning process, we

performed a variety of transformations (illumination and scale)

on the training samples, ultimately increasing the original

number of samples by a factor of 64. We did not normalize

the testing sample sequences. In the training stages, we used

the training data for the current processing expression as our

positive sample data and the remainder as our negative data.

B. Results Comparison

To learn the Oi-HOG features, we use a multithreading

cascade algorithm, which appears in our previous publication

[41] and the training procedure also follows the setting re-

ported in our previous publication. The novel classification

framework in the study reported in this paper is referred to as

multithreading cascade of orientation-invariant histograms for

oriented gradients (McOiHOG). Adopting the pre-calculated

polar templates, the convergence rate for feature learning was

improved by 73 minutes. To make fair comparison, we used

the same learning framework and the same data (multithread-

ing cascade [41]) for learning Oi-HOG, HOG, SURF, SIFT,

and Haar features. The results are shown in Table I. The

proposed method took 304 minutes to converge. The learning

procedure only needed to evaluate 1.5 Oi-HOG per window

for all categories.

After training, we observed that the top three local patches

selected for FER were in the two eye and mouth regions. This

situation is similar to Haar-based classifiers [42], as shown in

the examples processed by the proposed framework in Fig. 5.

In this study, we have used the ground-truth labels provided

for the expression categories given in the original databases.

We based all of our recognition experiments on videos and

evaluated their accuracies frame by frame.

To explore their feature orientation invariance, we have eval-

uated and compared several existing state-of-the-art learning

TABLE II: Average precision using different classifiers.

Database
Precision of classifiers (%)

BinBoost [43] JC [44] SC [45] MC [41]

MMI 62.6 55.9 50.2 72.4

AFEW 43.9 40.6 26.8 56.8

TABLE III: Average precision using different features.

Database
Precision of feature (%)

SIFT SURF Haar HOG Oi-HOG

MMI 65.4 46.0 42.2 58.8 72.4

AFEW 41.5 35.8 17.3 32.4 56.8

models, adopting Oi-HOG as features. The results are listed

in Table II, where the best one (MC) was used to construct

the proposed feature learning framework for comparison with

the state-of-the-art in Tables V and VI. The top performers

are BinBoost [43], joint cascade (JC) [44], soft cascade (SC)

[45] and multithreading cascade (MC) [41].

To demonstrate the effectiveness of Oi-HOG, we further

evaluated the selected learning framework for some popu-

lar existing local features, but without augmentation of the

training data. Experimental results are shown in Table III.

Under the same experimental conditions, we found that the

Oi-HOG features outperform the alternatives. Moreover, the

recognition accuracies of the proposed method in each facial

expression category are relatively stable. However, for the

alternative features, such as SURF, only the accuracies of the

surprise and happiness images are acceptable, while for the

other categories they were close zero. The SIFT results were

slightly better than SURF, but its application is limited by its

speed. These results show that the recognition results for the

proposed method are more reliable than many existing local

features. Moreover, the stability of the proposed method is

better than many of the prior-art handcrafted features. We also

considered using an off-line training process that does not have

an impact on the real-time testing. Thus, when balanced with

the accuracy, it is worth making some low-cost concessions in

the implementation.

For comparison, we have also selected a number of state-of-

the-art methods from this field, including those that have been

proposed for improving spatiotemporal descriptors. These in-

clude LBP-TOP [46], HOE [47], and HOG 3D [28]. CLM [48]

is a typical approach used to process facial action units. These

methods are very popular for FER, whereas 3DCNN-DAP

[49] and STM-ExpLet [50] are the most recently developed

methods. We have also compared the classification frameworks

for those methods that focus on enhancing the robustness of

the classification approach. These include ITBN [51], 3D LUT

[42] and LSH-CORF [52].

To ensure a fair comparison, we used the same databases

and evaluated them via standardized items. Table V and VI

compare our method (McOiHOG) with these state-of-the-

art methods, most of which were conducted by using their

released code and with their parameters tuned to give best

performance in our experiments. However, we could not obtain

the source codes of some methods including STM-ExpLet

[50] and 3DCNN-DAP [49]), so we simply cite the results
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TABLE IV: Comparisons of the proposed method with the state-of-the-art on PASCAL VOC 2007 dataset.
Accuracy of different object-category items (%)
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Ave.
UCI [53] 28.8 56.2 3.2 14.2 29.4 38.7 48.7 12.4 16.0 17.7 24.0 11.7 45.0 39.4 35.5 15.2 16.1 20.1 34.2 35.4 27.1
DPM [54] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
LEO [55] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6
DSO [56] 32.5 60.1 11.1 16.0 31.0 50.9 59.0 26.1 21.2 26.5 25.4 16.4 61.7 48.3 42.2 16.1 28.2 30.1 44.6 46.3 34.7
CA [57] 34.5 61.1 11.5 19.0 22.2 46.5 58.9 24.7 21.7 25.1 27.1 13.0 59.7 51.6 44.0 19.2 24.4 33.1 48.4 49.7 34.8
HoPS [58] 37.0 60.7 11.2 18.6 27.8 54.5 59.1 26.9 20.5 25.8 29.0 15.3 59.9 49.8 43.0 13.4 23.2 38.4 48.8 45.1 35.4
Ours 39.2 66.9 19.6 18.0 28.1 58.4 64.7 30.6 21.2 24.6 35.8 21.7 59.5 55.2 51.6 15.1 25.6 35.3 49.5 51.9 38.6

TABLE V: Recognition results on MMI.

Method
Accuracy on MMI (%)

An Di Fe Ha Sa Su Ave.

HOE [47] 46.4 58.3 33.2 62.6 60.8 65.1 55.5
LBP-TOP [46] 58.1 56.3 53.6 78.6 46.9 50.0 57.2
HOG 3D [28] 61.3 53.1 39.3 78.6 43.8 55.0 55.2

ITBN [51] 46.9 54.8 57.1 71.4 65.6 62.5 59.7
LSH [52] 59.6 71.4 62.3 68.9 70.3 75.1 61.8
3D LUT [42] 43.3 55.3 56.8 71.4 28.2 77.5 47.2

3DCNN-DAP [49] 64.5 62.5 50.0 85.7 53.1 57.5 62.2
STM [50] – – – – – – 65.4

Ours 70.2 60.4 76.5 81.2 62.1 84.2 72.4

TABLE VI: Recognition results on AFEW.

Method
Accuracy on AFEW(%)

An Di Fe Ha Sa Su Ave.

HOE [47] 11.2 16.5 9.0 33.5 15.3 28.3 19.0
LBP-TOP [46] 11.7 19.6 17.9 42.3 23.8 33.6 24.8
HOG 3D [28] – – – – – – 26.9
LSH [52] 23.1 12.8 38.6 9.7 21.1 10.9 19.4
3D LUT [42] 45.7 0 0 62.0 13.2 48.6 28.2

STM [50] – – – – – – 31.7

Baseline [40] 50.0 25.0 15.2 57.1 16.4 21.7 33.2

Ours 56.2 36.3 48.5 74.6 36.0 89.1 56.8

reported in related studies of these methods. The average

precision values (Ave.) of our framework (Ri-HOG cascade)

were 72.4% and 56.8% when using MMI and AFEW. These

levels represent the performances on MMI and AFEW datasets

have been improved by the proposed framework, compared to

the results obtained using the state-of-the-art methods.

To further evaluate the discriminative power of the proposed

method, we also have executed experiments using PASCAL

VOC 2007 dataset [59], which includes 9,963 images of 20

different object categories, containing 5,011 training images

and 4,952 testing images. PASCAL VOC 2007 dataset is one

of the most popular datasets in object detection/ recognition

tasks and many evaluation experiments of state-of-the-art

methods were evaluated on it. But please note that it is so

difficult to improve the results on this dataset. The latest top

results are only slightly different.

Experimental results in Table. IV were carried out on com-

parisons of our approach and state-of-the-art methods (UCI

[53], DPM [54], LEO [55], DSO [56], CA [57], HoPS [58]).

Our method obtained the average accuracy of 38.6%, which is

highly competitive to these comparison methods (UCI: 27.1%

[53], DPM: 33.7% [54], LEO: 29.6% [55], DSO: 34.7% [56],

CA: 34.8% [57], HoPS: 35.4% [58]). Therefore, the proposed

framework achieved the state-of-the-art performance.
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(a) Polar transformation for input images

1

Original Image Polar Images
(Single Channel)

Conv. Datasheet
(For CNN Input)

(b) Polar convolution for input images

Fig. 6: Polar transformation for convolutional operations of

input layer: (a) Polar transformation for input images; (b)

Polar convolution for input images.

In summary for the Oi-HOG, we present a novel variant of

HOG, which has a simple feature extraction system and robust

feature descriptors for rotation and reversal-invariant local

feature representation. We have tested our proposed method

with respect to visual tasks and validated its use on widely

used and representative public databases. Our overall results

show that this framework outperforms other state-of-the-art

methods.

VI. THE ORIENTATION-INVARIANT REPRESENTATION FOR

CNN MODELS

Motivated by the advantages of deep architecture and the

success of polar model based orientation-invariant feature

representations, we explore how to use polar structures on

the convolutional layers and how this affects the performance

of convolutional networks. Hence, we generalize the idea of

polar data structure to state-of-the-art CNN models in sections

VI and VII. In section VI, we propose polar convolution

operations for CNN models, so that the neuron responses on

prior-art CNN layers can be transformed into polar processing
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units. We aim to improve the orientation-invariant abilities

for CNN models by embedding these polar operations in the

convolutional architecture. We report the results of qualitative

evaluation of the effect of incorporating polar structure into

the CNN in VII.

It has been pointed out in [5], [7], [9] that the CNN

model is sensitive to reversal. Meanwhile, Gong et al. [7]

have proved that large-amplitude rotation could also lead

to significant performance degradation in CNN models. To

address these issues, one route to improving the recognition

accuracy is by using data augmentation approaches [12], [60]

in both the training and testing stages. However, the extended

samples can not fully cover the complete space of variability

spanned by both reversals and rotations situations and the

choice of parameters. Meanwhile, preprocessing the data and

learning from extended samples also require significant time

and computational resources. As demonstrated in subsection

III, since orientation-invariant capabilities are inherent in our

polar descriptors, investigating similar architectures built upon

the CNN model may lead to a successful solution to the

aforementioned problems.

A. Polar Convolution Operation

We start with the polar transformation for each training

sample. Before input into the CNN model, RGB channels of

each sample are transformed into polar data using the local

coordinate system that is detailed in Algorithm 1. After they

are decomposed into the r and t orientations as shown in Fig.

6(a), the training samples can generate a set of images with

a single channel of polar color data (six-type polar color data

in total, see Fig.7). These polar color data are used as the

CNN input after convolutional calculation with the original

sample, in a similar manner as performed by the prior-art CNN

model (R, G, B channels) doing. These are used as the CNN

input after the convolutional computations with the original

sample, in a similar manner to the prior-art CNN model (as

shown in in Fig. 6(b). In addition, the polar transformation

(color/convolutional) and data reading/writing instructions are

executed in parallel in the same loop, and as a result the time

complexity will not be increased.

B. The FPolarConv and LPolarConv

To generate an orientation-invariant CNN architecture, we

propose two alternatives for the intermediate layers. The first

is a full polar convolution (FPolarConv), while the second is a

local polar convolution (LPolarConv). These two possibilities

are illustrated in Figs. 8(a) and (b), respectively. As shown in

Fig. 8(a), the FPolarConv is embedded into layers for global

transformation to achieve an orientation-invariant representa-

tion. In contrast, the LPolarConv (Fig. 8(b)) is embedded

into the local convolution operations (kernels) in each layer

to produce orientation-invariant responses. In this way the

prior-art CNN model can generate orientation-invariant con-

volutional features through adopting either the FPolarConv

or LPolarConv.

We denote the input convolutional datasheets in the interme-

diate layer and the size of the sheets/ convolutional kernels in

(r)

(t)

(r)

(t)

-0.8π 

0

-0.6π 

-0.4π 

-0.2π 

0.8π 
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!"#$%&#'(

Fig. 7: Illustration of generated six-type convolutional images

(single polar channel datasheets) for the CNN input. IR,

IG, IB correspond to red, green and yellow channel of I ,

respectively.

the layer as f and H , respectively. We also use label subscripts

to distinguish the layers, and the layer number is indexed by

l (l > 1) (see Fig 8).

FPolarConv After the feature vector is extracted from

the input datasheet fFP (l − 1) with conventional operations

(kernels), we can obtain a set of Hl × Hl, the intermediate

conventional outputs, which are transformed into polar data

with the local coordinate system (similar to Fig 3(b)) by a one-

to-one mapping, as shown in Fig 8(a). The output function of

the l-th FPolarConv layer is:

fFP (l) = P (C(fFP (l − 1),Kl,n)), (4)

where C(·,K) indicates the conventional calculation with

kernel K and P (·) denotes the polar transformation operation,

which is detailed in Algorithm 1. Here n = 1, · · ·Nl is the

index number for the conventional kernel on the l-th layer.

When the output of a given layer was reversed and rotated

against its center of coordinates by a given angle θ, from

Theorem 1, we can verify the output orientation invariance

as follows,

f̂FP (l) =P (C(MRθfFP (l − 1),Kl,n)),

=P (MRθC(fFP (l − 1),Kl,n)),

=P (C(fFP (l − 1),Kl,n)),

=fFP (l).

(5)

In this paper, we adopt the deep features extracted from the

first fully connected layer. Since the FPolarConv is embedded

in the output for each layer, the CNN model, we can therefore

produce orientation-invariant features.

LPolarConv In a manner different from the FPolarConv,

LPolarConv transforms the elements in the local patch of

conventional operations (obtained via kernels) into polar ones

so as to generate polar kernels. These kernels are used to

extract feature vectors from l−1-th layer, as shown in Fig 8(b).

Consequently, the output-function in the l-th LPolarConv

layer is:
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Input

Conv.
(Intermediate)

FPolarConv 

@Conv. Layers)

Each Element 

Conv. Kernel

(a) Full Polar Convolution Operation

Input

(

@Local patch)

Each Ele.

Conv. Kernel

Polar
(Intermediate)

LPolarConv 

(b) Local Polar Convolution Operation

Fig. 8: Two orientation-invariant solutions for CNN: (a) Full

Polar Convolution (FPolarConv) Operation; (b) Local Polar

Convolution (FPolarConv) Operation.

fLP (l) = C(fLP (l − 1), P (Kl,n)). (6)

In the CNN model, each layer consists of a set of learnable

kernels which have a small receptive field. This extends

through the full depth of the input volume. The network

learns kernel filters that can activate when it responds to some

specific type of feature at some specific spatial position in the

input. Each kernel is convolved across the width and height

of the input volume, computing the dot product between the

entries of the filter and the input-producing a two-dimensional

activation map for that kernel. Consequently, the output of a

given element (neuron response) ηLP in the l-th LPolarConv

layer can be expressed as follows:

ηLP =(

HKl∑

i=1

HKl∑

j=1

gT
i,jki,jri,j ,

HKl∑

i=1

HKl∑

j=1

gT
i,jki,jti,j)

=(

HKl∑

i=1

HKl∑

j=1

ki,jg
T
i,jri,j ,

HKl∑

i=1

HKl∑

j=1

ki,jg
T
i,jti,j),

(7)

where k ∈ Kl,n and g denotes the 1-norm Descartes vector,

which is used to polarize the element at local point (i, j) of

convolution kernel patch. Supposing the output feature in the

l-th layer is orientation-invariant, its given neuron response

ηLP can be calculated by

ηFP = (g′T r′,g′T t′). (8)

As a conventional kernel with the determined size will gener-

ate the same neuron responses for an image, but a conventional

kernel with different sizes will generate different neuron

responses, we need to prove that Eq. 8 holds with a given

conventional kernel covering all kernel sizes. To do these we

use mathematical induction as follows:

a)When HKl
= 1, ηLP = (k1,1g

T
1,1r1,1, k1,1g

T
1,1t1,1).

Obviously, the given neuron response ηLP can be rewritten

in the same form as Eq. 8.

b)When HKl
= m − 1, ηFP = (g′T

m−1r
′,g′T

m−1t
′) is

established, namely, g′T
m−1r

′ =
∑m−1

i=1

∑m−1
j=1 ki,jg

T
i,jri,j ,

g′T
m−1t

′ =
∑m−1

i=1

∑m−1
j=1 ki,jg

T
i,jti,j and t′ = r′ ×Rπ

2
.

c)When HKl
= m, i.e., padding the width of kernel

K(m−1)×(m−1) by one unit, ηFP would be calculated as

follows:

ηLP =(
m∑

i=1

m∑

j=1

ki,jg
T
i,jri,j ,

m∑

i=1

m∑

j=1

ki,jg
T
i,jti,j)

=(g′T
m−1r

′ + ki,jg
T
m,mrm,m,g′T

m−1t
′ + km,mgT

m,mtm,m).
(9)

Considering t′ = r′ × Rπ

2
and setting g′′T r′′ = g′T

m−1r
′ +

km,mgT
m,mrm,m, we can simply derive Eqs.10 and 11 by

g′T
m−1t

′ + ki,jg
T
m,mtm,m

=g′T
m−1r

′Rπ

2
+ km,mgT

m,mrm,mRπ

2

=(g′T
m−1r

′ + km,mgT
m,mrm,m)Rπ

2

=g′′T r′′Rπ

2

=g′′T t′′,

(10)

i.e., ηLP can be rewritten as:

ηLP = (g′′T r′′,g′′T t′′). (11)

In CNN training, each of the conventional calculations are

executed by each kernel and the convolutional layer is the

core building block of a CNN. Hence, according to Theorem

1, the generated polar data set on the output datasheet (feature

vector set) in LPolarConv is invariant to orientation.

Deep features are extracted by a pre-trained CNN model in

the application (test) stage. Hence, the deep features extracted

from a test image can be considered as a set of neuron

responses of a pre-trained model. Both the FPolarConv and

LPolarConv approaches can generate orientation-invariant

responses. Theoretically, we may conclude that the deep

features extracted by the CNN model based on FPolarConv

or LPolarConv will be invariant to reversal and rotation. The

practical performance obtained with these two architectures,

will be evaluated and compared experimentally in the next

section.

VII. EXPERIMENTS FOR P-CNN

In this section we detail the experimental setup and evalu-

ation results for the new CNN models developed using polar

representations. In order to compare with the latest and most

relevant reversal-invariant representation model based on the

CNN [5], we applied the proposed method to (fine-grained)
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TABLE VII: The results on Aircraft dataset.
Method Mean Accuracy (%)

Xie et al. [5] (BoF) 78.92
Vedaldi et al. [65] 54.80
Sanchez et al. [66] 73.26
Gosselin et al. [67] 80.74
Maji et al. [61] 48.69

AlexNet (no-Augm) [12] 44.68
Ri-Deep [5] (AVG, AlexNET (no-Augm)) 52.74
Ri-Deep [5] (MAX, AlexNET (no-Augm)) 53.06

AlexNet [12] 49.34
VGG-16 [15] 67.18
VGG-19 [15] 68.21
Ri-Deep [5] (AVG, VGG-19) 69.31
Ri-Deep [5] (MAX, VGG-16) 69.44

P-CNN (FPolarConv, AlexNet) 54.42
P-CNN (LPolarConv, AlexNet) 54.60
P-CNN (FPolarConv, VGG-16) 72.66
P-CNN (LPolarConv, VGG-16) 69.31
P-CNN (FPolarConv, VGG-19) 71.20
P-CNN (LPolarConv, VGG-19) 68.42

image classification following their reported procedures. For

the results reported in this section, we have implemented all

the training and detection programs on powerful GPU cards

with 12 GB of RAM. We report the experimental results on

the FGVC-Aircraft dataset (Aircraft) [61], the Oxford-IIIT

Pet dataset (Pet) [62], and the Caltech-UCSD Birds-200-2011

dataset (Bird) [63].

A. Experimental Dataset and Implementation

The Aircraft dataset contains 10,200 images of aircraft with

100 images for each of 102 different aircraft model variants.

The Pet dataset includes 7,349 images, covering 37 different

breeds of cats and dogs. The Bird dataset has 11,788 images,

containing 200 categories of birds. These referenced databases

are widely used for evaluating classification models on fine-

grained object recognition.

The basic experimental protocol follows that used for the

evaluation of the latest proposed reversal-invariant represen-

tation model [5]. In all of our experiments, we use FPolar-

Conv and LPolarConv to transform the data structure into

polar layers for evaluation. The resulting polar CNN models

are implemented based on the state-of-the-art CNN modes

AlexNet [12], VGG-16 and VGG-19 nets [15], which are

provided in the MatConvNet toolbox [64]. For comparison, we

use the pre-trained models of AlexNet, VGG-16 and VGG-19,

which are downloaded from the library of MatConvNet(pre-

trained models) [64] trained by adding augmented data. For

pre-training the proposed polar CNN models, we do not use

any augmentation data.

B. Experimental Results of Image Classification

In this study, the input image is resized to the resolution of

256 × 256, which is the same as the original procedure for

testing stage [12]. Then the resized image is used for polar

transformations. However, we do not use sub images that are

cropped from different positions for calculating the average

response. For VGG-16 and VGG-19, the input image is resized

to 512 × 512 following the original strategy so that it can

TABLE VIII: The results on Pet dataset.
Method Mean Accuracy (%)

Xie et al. [5] (BoF) 63.49

Gosselin et al. [67] 49.82
Murray et al. [68] 56.80
Angelova et al. [69] 54.30
Sanchez et al. [66] 59.63
Wang et al. [70] 57.77

AlexNet (no-Augm) [12] 76.95
Ri-Deep [5] (AVG, AlexNET (no-Augm)) 79.60
Ri-Deep [5] (MAX, AlexNET (no-Augm)) 79.40

AlexNet [12] 80.85
VGG-16 [15] 93.09
VGG-19 [15] 93.10
Ri-Deep [5] (AVG, VGG-16) 93.31
Ri-Deep [5] (MAX, VGG-16) 93.25

P-CNN (FPolarConv, AlexNet) 81.93
P-CNN (LPolarConv, AlexNet) 82.60
P-CNN (FPolarConv, VGG-16) 93.21
P-CNN (LPolarConv, VGG-16) 93.55
P-CNN (FPolarConv, VGG-19) 93.29
P-CNN (LPolarConv, VGG-19) 93.81

TABLE IX: The results on Bird dataset.
Method Mean Accuracy (%)

Xie et al. [5] (BoF) 50.81
Gosselin et al. [67] 45.71
Sanchez et al. [66] 47.63
Zhang et al. [71] 50.98

Girshick et al. [72] 51.05
Murray et al. [68] 33.30

AlexNet (no-Augm) [12] 43.50
Ri-Deep [5] (AVG, AlexNET (no-Augm)) 47.98
Ri-Deep [5] (MAX, AlexNET (no-Augm)) 47.82

AlexNet [12] 50.20
VGG-16 [15] 71.62
VGG-19 [15] 71.70
Ri-Deep [5] (AVG, VGG-16) 72.66
Ri-Deep [5] (MAX, VGG-19) 72.59

P-CNN (FPolarConv, AlexNet) 52.36
P-CNN (LPolarConv, AlexNet) 57.06
P-CNN (FPolarConv, VGG-16) 72.77
P-CNN (LPolarConv, VGG-16) 75.20
P-CNN (FPolarConv, VGG-19) 73.74
P-CNN (LPolarConv, VGG-19) 76.93

provide enough and reliable responses for deep down-sampling

(declining layer by layer) and achieve better performance.

After the neuron responses are calculated, we extracted deep

features from each layer by mean-pooling and max-pooling

for FPolarConv and LPolarConv, respectively. Finally, we

obtained the features extracted from the first fully connected

layer activated by the rectified linear units (ReLu) [12]. The

extracted feature vectors are normalized with l2 normalization

and fed into support vector machines (SVMs) for learning.

The results are summarized in Tables VII, VIII, and IX for

Aircraft, Pet, and Bird datasets, respectively. These tables are

divided into three blocks which report a) the prior-art Bag-

of-features-based (BoF-based) image representation models,

b) state-of-the-art deep-feature models and c) the proposed

models, respectively.

Through analyzing the results, we find that the deep features

outperform BoF-based models in almost all tasks except the

Aircraft dataset. The reason is that the pre-trained CNN

models are trained by using the ILSVR2012 dataset [73] which



11

Aircraf Pet Bird

Database

43

53

63

73

83
A

cc
ur

ac
y 

(%
)

AlexNet (no-Augm)
AlexNet (Augm)

(a) The AlexNet

Aircraf Pet Bird

Database

43

53

63

73

83

A
cc

ur
ac

y 
(%

)

Ri-Deep(AVG, AlexNET (no-Augm))
Ri-Deep(MAX, AlexNET (no-Augm))
Ri-Deep(AVG, AlexNET (Augm.))
Ri-Deep(MAX, AlexNET (Augm.))

(b) Ri-Deep

Aircraf Pet Bird

Database

43

53

63

73

83

A
cc

ur
ac

y 
(%

)

P-CNN (FPolarConv, AlexNet(no-Augm))
P-CNN (LPolarConv, AlexNet(no-Augm))
P-CNN (FPolarConv, AlexNet(Augm))
P-CNN (LPolarConv, AlexNet(Augm))

(C) The P-CNN

Fig. 9: Investigation about how augmentation data affect each CNN model in the accuracy: (a) The original AlexNet: the

recognition rate is improved by augmented data; (b) The reversal-invariant AlexNet transformed by the Ri-Deep: the recognition

rate is slightly improved by augmented data; (b) The orientation-invariant AlexNet transformed by the proposed P-CNN: the

recognition rate is almost not improved according to augmented data

does not include the aircraft images. Hence the model pre-

trained on the ILSVR2012 fails to generate the best response

for the aircraft features. This in turn limits the discriminative

power of the deep features extracted from the aircraft images.

In contrast, for the Pet and Bird databases, i.e., the ILSVR2012

dataset covers many examples of pet images and a certain

number of bird images. As a result the accuracy obtained on

the Pet database > on the Bird database > that on the Aircraft

database.

To compare with the prior-art CNN model, we list the

results for AlexNet, VGG-16, and VGG-19 obtained using

the pre-trained models. To check how the augmentation data

affect the accuracies obtained in the CNN models, we also

show the results obtained with the pre-trained model without

augmented data for AlexNet (AlexNet (no-Augm)), which

are provided in Xie et al.’s publication [5]. For training

the proposed polar models, we also use the ILSVRC2012

dataset. This is a subset of the ImageNet database covering

1000 object categories. Results [top 1 error, top 5 error] (

without augmented data) of FPolarConv and LPolarConv

are respectively [41.31%, 18.68%] and [41.26%, 18.61%].

These are slightly reduced with respect to the standard error

results provided by MatConvNet (with augmented data) [64]

by [0.49%, 0.52%] and [0.54%, 0.59%]. Since ILSVRC2012

is a large dataset and the original results are obtained by

using augmented data, these improvements are not so small.

We can see that the proposed P-CNN models outperform the

prior-art deep models. Moreover, the state-of-the-art invariant-

transformation method for CNN (Ri-Deep) [5] more or less

gives improvements in all cases by using the extended data

(reversal) shown in Fig 9. One of the most important reasons

for achieving the improved performance is that the reversed

augmentation data creates many large-amplitude samples for

training. In contrast, the performances of the proposed models

are rarely improved by augmented data. This confirms the

effectiveness of the proposed methods and proves that the

orientation-invariant capabilities of P-CNN are better than both

Ri-Deep together with its original model.

We also find that the performance for the LPolarConv model

is better than that for the FPolarConv model, particularly in

the cases of the Bird and Pet data. Analysis of the images

in the Bird and Pet databases, reveal that there are many

local image reversals. In other words, there are many images

containing body-parts (e.g., head or tail) that are reversed

or rotated versions. The explanation is that the polar local

operations (kernels) can flexibly and successfully generate

invariant responses for any small sub-parts. Therefore, the

accuracy of LPolarConv in the Bird database is better than

that obtained with FPolarConv. However, the aircraft seldom

has reversed or rotated parts. So the results obtained with

both models are nearly the same. These results also give us

some insight into the reasons that explain why local features

are more robust than global features in many applications of

handcrafted descriptors.

In summary, we adopt the P-CNN approach to transform

CNN model into polar one so as to produce orientation-

invariant features. We propose two polar convolutional op-

erations, namely FPolarConv and LPolarConv. These two

operations can both be implemented with the state-of-the-art

CNN frameworks (AlexNet, VGG-16, VGG-19), which show

significant advantages in image feature representation in our

evaluation experiments. The experimental results prove that

our proposed solutions are able to improve performances of

CNN models.

VIII. CONCLUSIONS

In this paper, we propose polar-transformation as a solution

to improve orientation-invariant image representations. The

technical contents are divided into two parts for a) handcrafted

descriptors and b) deep features.

As for handcrafted descriptors, we use gradient descriptors

for orientation-invariant transformation, which are used to

extract HOG-type features (Oi-HOG) for recognition tasks.

The expression results show that Oi-HOG succeeded in out-

of-plane head orientation cases. For deep features, we adopt

the AlexNet, VGG-16 and VGG-19 for orientation-invariant

transformation. We apply the approach to transforming RGB

images into polar images to form a CNN input layer. Further-

more, we use the FPolarConv and LPolarConv polar convo-

lutions to construct polar-data structures in the convolutional
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layers. Here is seems that the performance of LPolarConv is

slightly better than FPolarConv. Experimental results clearly

demonstrate the superiority of our framework when compared

with current state-of-the-art methods. From studies of convo-

lutional networks of increasing depth we also confirm tha a

significant improvement in the classification performance can

be achieved by increasing the number of layers or constructing

parallel networks. In this study, demonstrate that the data

structure on the CNN layers is key to improving the image

classification performance. Meanwhile, the raw input data have

advantages for deep learning and we usually adopt RGB as

input data for training. However, in this study, we found that

there are some data (e.g., polar data) that are better than RGB

to gain more candidate representation parameters for deep

learning. These would be important to those with closely-

related research interests.
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