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Design and Control of a Novel Omnidirectional Dynamically

Balancing Platform for Remote Inspection of Confined and Cluttered

Environments

Matthew T. Watson1, Daniel T. Gladwin, Tony J. Prescott, and Sebastian O. Conran

Abstract—Remote inspection is a long standing field of interest
for robotics researchers, in which robots are used to undertake
inspection tasks in environments too hazardous or inaccessible
to be directly entered by a human. Recent advances in grid-
scale battery storage have created a new set of unique hazardous
indoor spaces with characteristics unsuitable for the deployment
of existing teleoperated inspection robots. This paper outlines
the problems encountered in these new environments, analyses
existing approaches to robotic platform design, and proposes
a better suited novel platform design, based on a dynamically
balancing arrangement of Mecanum wheels. Its inverse kinematic
and dynamics models are developed, a proof of concept prototype
is constructed, and a constrained predictive controller is derived
from the developed model. Experimental results demonstrate the
efficacy of this new concept.

I. INTRODUCTION

Remote inspection has long been a staple topic of robotics

researchers, with advancements in this field enabling the

undertaking of inspection tasks within environments too haz-

ardous or inaccessible to be directly entered by a human.

This particular robot was inspired by the challenges as-

sociated with the remote inspection of the Willenhall 2MW

Battery Energy Storage Demonstrator in the UK1. This is

a facility designed to provide rapid response grid storage,

using a combination of chemical battery and flywheel energy

storage. The battery component of this facility is composed

of multiple rows of 2.4 meter high racks of lithium cells,

separated by narrow access gantries. This provides perfectly

acceptable access for a human, however as this too hazardous

during live operation it would be desirable to be able to

perform physical cell inspection using a teleoperated platform.

Additionally, being a research facility, these gantries are often

cluttered with additional equipment and tools, further limiting

the navigable floor area. This specification leads us to require a

robotic platform that is capable of achieving a height of 2.4m,

whilst maintaining a minimum navigable width in the region

of 0.2m in order to navigate a cluttered gantry.

Existing terrestrial remote inspection platforms can typically

be grouped into two sets; those that utilise some form of

wheel to provide motion, and those that use legs. Legged

robots perform well on unconstrained rough terrain, can travel
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omnidirectionally, and provided a good approach to dealing

with the cluttered navigation required by this brief, however,

they are mechanically complex, expensive, and are currently

still a technology in its infancy. Wheeled robots on the other

hand are comparatively mechanically simple, inexpensive, and

perform well on flat indoor terrain. Some wheel designs

allow for omnidirectional motion, such as the Mecanum wheel

(Figure 1) and the ball wheel [2]. This simplicity and reliability

makes a wheeled solution superior in this application, with

the omnidirectional wheel designs most suitable due to their

superior manoeuvrability in confined spaces.

Consideration must also be given as to the stability of

a platform. Statically stable platforms avoid toppling during

acceleration or disturbance by possessing a wheel base with

three or more widely spaced contact points, producing a

polygon shaped footprint[7]. As long as a vertical line drawn

through the stationary platform’s center of mass intersects this

polygon, the platform will always return to the stable upright

equilibrium. As the height of the center of mass increases,

a smaller range of angles from the vertical equilibrium can

be attained without moving outside of this polygon, and

similarly reducing the spacing of a platform’s contact points

reduces the range of angles over which it is stable. This

gives a platform a minimum footprint width to height ratio

that must be maintained to ensure a suitable degree of static

stability required to resist expected acceleration and ground

unevenness. Applying this logic to a robot capable of achieving

this specification’s maximum height of 2.4m with sufficient

static stability begins to push the minimum footprint width of

the robot larger than our maximum of 0.2m.

One method of reducing this wheel base whilst maintaining

height is to reduce the number of contact points. Reducing to

two contact points, to produce a wheeled inverted pendulum

[1], reduces the contact polygon to a contact line, with the

minimum platform width limited only by wheel diameter. This

results in an unstable system, so energy must be continuously

expended in order to dynamically balance. However, whilst

this does allow the creation of a tall platform with a thin

footprint, the nonholonomic constraints imposed by the two

wheels typically used on this style of platform prevent the

platform from travelling in a direction perpendicular to its

thinnest dimension. This means the navigation of a gap smaller

than the distance between the platform’s wheels will require a

multi-point manoeuvre, with the number of points increasing

as the robot width approaches that of the gap to be navigated.

Reducing to a single contact point overcomes this limitation,



Fig. 1. Mecanum wheel

Fig. 2. ETH Zurich’s Rezero Ballbot

giving a platform that must dynamically balance in two axes,

but is able to move omnidirectionally. Ball balancing robots

are the main example of this group of platforms, in which a

robot with three or more omnidirectional wheels balances on

top of a ball [4], shown in Figure 2, although hopping robots

have also been demonstrated. The need to balance in two axes

however increases the power required to maintain stability,

gives a platform that must continually exhibit variations in its

position in two directions rather than just one, and limits the

maximum yaw torque to that which can be communicated to

the floor by the friction generated by the small ball contact

area twisting against the ground.

As none of these existing platform designs meet the speci-

fication described above, this paper proposes a novel platform

configuration in Section II, develops its inverse kinematic and

dynamics models in Section III, and uses these to implement

a model predictive controller on a proof of concept prototype

in Section IV. Finally, in Section V experimental results

demonstrate the accuracy of the developed model, showing this

new platform design is capable of meeting this application’s

specification.

II. CONCEPT

The prototype in this paper presents a novel method of

achieving omnidirectional motion in a smaller footprint than

existing platforms, whilst still being able to produce con-

siderable torques about the yaw axis and only needing to

dynamically balance in a single axis.

This was achieved using four Mecanum wheels, arranged

in two sets of two, in which one wheel in each set is the

mirror image of the other taken along the shared rotation axis.

These are attached to four motors, with all four axles sharing

the same rotational axis. We refer to this as the Collinear

Mecanum Drive (CMD).

A literature review found only one previous example of the

CMD concept [5], in which three Mecanum wheels are used,

with the middle wheel offset from the centre of the platform.

This author successfully demonstrated dynamically balanced

omnidirectional motion, however the platform exhibited poor

control, taking sixty seconds to perform a 0.3m lateral trans-

lation, producing a large amount of unwanted longitudinal

motion in the process. Additionally, this three wheeled design

possesses a number of disadvantages compared to the four-

wheeled concept presented in this paper.

Foremost, using three wheels instead of four asymmetrically

distorts the set of forces the platform can produce, resulting in

anisotropic mobility. This is evident in that when moving in

one diagonal direction work is done by two motors coupled to

the ground by two wheels, whereas in the opposite diagonal

only one wheel and one motor are able to contribute to

motion. This also means that when the platform produces a

purely lateral net force, the two identical wheels can only be

operated at half their maximum traction, as the single unique

opposite wheel has to simultaneously counter the unwanted

longitudinal force component of both other wheels. While the

four wheeled concept presented in this paper also possesses a

degree of anisotropic mobility, the set of achievable forces is

symmetrical about the longitudinal axis, simplifying trajectory

planning and control.

Secondly, a fourth wheel adds redundancy against wheel

slip. Two different slip scenarios could occur when traversing

with three wheels; if the unique centre wheel enters a slip state,

there is no other wheel to provide the counterforce required to

produce lateral motion. This will remove the platform’s ability

to traverse, rendering the platform immobile unless inertia

or a longitudinal motion allows grip to be re-established.

Conversely, if one of the two identical wheels were to slip

whilst traversing, while the robot could still produce sideways

motion, it would lose control of its attitude about the vertical

axis. This occurs as when only two wheels are contacting

the ground it is the same motor inputs that produce both

lateral force and yaw torque, resulting in an indeterminate

combination of the two. In practice this will cause the platform

to follow a meandering path instead of a straight line.

There is also no evidence in the literature of either an inverse

kinematic or dynamics model of this type of platform for any

number of wheels, therefore one is developed and presented

here.

III. INVERSE KINEMATICS & DYNAMICS MODEL

In order to derive the inverse kinematics and nonlinear

dynamics model of the proposed platform, the nonholonomic

constraints introduced by the Mecanum wheels must first be

derived.

Consider the proposed CMD platform depicted in Figure

3 on a flat plane, where {E, êx, êy, êz} denotes the fixed

reference frame, {B, b̂x, b̂y, b̂z} represents the body attached

frame obtained by rotating E about êz by φ, such that êz = b̂z ,

with B located on the wheel rotation axis in the center of the

platform, and {P, p̂x, p̂y, p̂z} represents the pendulum attached

frame obtained by rotating B about b̂x by θp, centered at the

pendulum CoM, with associated mass mp and inertia tensor

Ip = diag(
[

Ipx Ipy Ipz
]

). Wheel positions are defined as

a rotation about p̂x by θi. For simplicities sake only one roller

is considered per wheel, and this is assumed to be positioned
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Fig. 3. CMD coordinate systems

directly under the center of the wheel along the êz/b̂z axis,

with the contact point between this and the ground assumed

to also be fixed under the center of the roller, and with the

roller axis of rotation defined as a rotation of b̂x by αi about

b̂z .

Considering one wheel independently, let µ̂p represent the

unit vector running through the roller rotation axis, let W
represent the wheel’s centre, and let the roller contact the

ground directly under W at C, where C = W −Rw b̂z , where

Rw represents the wheel radius measured to the roller contact

point.

For no slip to occur, the component of the roller’s velocity

at the contact point along the µ̂p direction must equal 0, so

~vC • µ̂p = 0 (1)

The velocity at C is the velocity of the wheel at W summed

with the velocity due to the sum of wheel and pendulum

rotation θ̇i + θ̇p, so

~vC = ~vW −Rw b̂y(θ̇i + θ̇p) (2)

similarly, ~vW can be defined in terms of the body velocity ~vB ,

giving

~vW = ~vB + φ̇lib̂y (3)

where li represents the offset of W from B along b̂x.

Combining equations (1-3) and splitting ~vB into its com-

ponents ~vB =
[

ẋ ẏ ż
]T

gives the nonholonomic constraint

equation.

ẋ cot(αi) + ẏ + φ̇li −Rw(θ̇i + θ̇p) = 0 (4)

This can be applied to wheels 1 through 4 and rewritten to

define the platform’s inverse kinematic mapping









θ̇1
θ̇2
θ̇3
θ̇4









=
1

Rw









cot(α1) 1 l2 −Rw

cot(α2) 1 l1 −Rw

cot(α3) 1 −l1 −Rw

cot(α4) 1 −l2 −Rw

















ẋ
ẏ

φ̇

θ̇p









(5)

There exist two methods of developing a dynamics model

subject to these nonholonomic constraints; the Euler-Lagrange

equation can be used with Lagrangian multipliers to directly

incorporate the nonholonomic constraints, or the constraints

can be approximately ’holonomised’ using the psuedo-inverse

of the inverse kinematic transformation matrix, allowing the

use of the regular Euler-Lagrange equation. Zimmerman com-

pared both methods and found their result to be identical [8].

For this paper the former approach is taken [3], deriving the

overall system dynamics using the Euler-Lagrange equation in

terms of j generalised coordinates and r Lagrange multipliers,

defined as

d

dt

(

∂L

∂q̇j

)

−
∂L

∂qj
= Qj + λrM(qj) (6)

where qj =
[

x y φ θp θ1 θ2 θ3 θ4
]T

, Qj repre-

sents the generalised forces, and λr represents the Lagrange

multipliers.

The constraint equation matrix M is defined as

M(qj)q̇j = 0 (7)

giving

M(qj) =









cot(α1) 1 l2 −Rw

cot(α2) 1 l1 −Rw

cot(α3) 1 −l1 −Rw

cot(α4) 1 −l2 −Rw

[−RwI4×4]









(8)

L represents the total energy of the system L = K − U ,

where K represents the sum of translational and rotational

kinetic energy, and U the total potential energy.

The rotational kinetic energy of the system is defined as

Krot =
1

2
~ωT
p Ip~ωp +

1

2

4
∑

i=1

~ωT
w,iIw~ωw,i (9)

where

~ωw,i =
[

θ̇i + θ̇p 0 φ̇
]T

~ωp = Rb→p~ωb + θpp̂z (10)

in which Iw and Ip represent the wheel and pendulum inertia

tensors, and Rb→p represents the b → p rotation matrix.

Translational kinetic energy is defined as

Ktrans =
1

2
~vTp mp~vp +

1

2
mw

4
∑

i=1

~vTw,i~vw,i (11)

where

~vp = Rb→p~vb + ~ωp ×−hp̂z ~vw,i = ~vb + ~ωb × lib̂x (12)

Finally, potential energy is defined as



U = mpgh cos(θp) (13)

The generalised coordinates can then be derived individually

as

d

dt

(

∂L

∂ẋ

)

−
∂L

∂x
=

4
∑

i=1

λi cot(αi) (14)

d

dt

(

∂L

∂ẏ

)

−
∂L

∂y
=

4
∑

i=1

λi (15)

d

dt

(

∂L

∂φ̇

)

−
∂L

∂φ
= λ1l2 + λ2l1 − λ3l1 − λ4l2 (16)

d

dt

(

∂L

∂θ̇b

)

−
∂L

∂θp
=

4
∑

i=1

{

−Rwλi − τi + kv θ̇i

}

(17)

d

dt

(

∂L

∂θ̇i

)

−
∂L

∂θi
= τi + λiRw sin(αi) i = [1 . . . 4] (18)

where τi represents a motor drive torque on wheel i.

Eliminating the four Lagrangian multipliers by substituting

(18) into (14-17), expanding differentials, and eliminating θ̇i
by substitution with (4) yields four ODEs representing the

dynamics of the system in terms of ζ = (x, y, φ, θp), which

can be arranged into the nonlinear input-affine form

Mζ̈ + F (ζ, ζ̇) = Hτi (19)

where

M =











mp+4mw+ Iwx

Rw
2

4∑

i=1

cot(αi)
2 Iwx

Rw
2

4∑

i=1

cot(αi) N 0

Iwx

Rw
2

4∑

i=1

cot(αi)
4Iwx

Rw
2
+mp+4mw 0 0

N 0 P 0
0 hp mp cos θp 0 0











N = hpmp sin(θp) +
Iwx

Rw
2 [l1(cot(α2)− cot(α3))

+l2(cot(α1)− cot(α4))]

P = 4Iwz + 2

(

mw +
Iwx

Rw
2

)

(

l1
2 + l2

2
)

+ Ipz cos
2(θp)

+ sin2(θp)(Ipy + hp
2mp)

F (ζ, ζ̇) =





03×1
1
2 φ̇

2 sin(2θp)
[

(Ip,z − Ip,y)− h2
pmp

]

. . .

−ghpmp sin(θp)− φ̇ẋhpmp cos(θp)





H =









cot(α1)/Rw
cot(α2)/Rw

cot(α3)/Rw
cot(α4)/Rw

1/Rw
1/Rw

1/Rw
1/Rw

l2/Rw
l1/Rw

−l1/Rw
−l2/Rw

−2 −2 −2 −2









Examining F (ζ̇) shows that all of the system’s nonlin-

earity originates in the θp state, and around the stationary

upright equilibrium the majority of this originates in the

−ghpmp sin(θp) term.

Fig. 4. Proof-of-concept prototype

This model can be linearised about the stationary upright

position to give a linear state space model of the form

A =


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04×4 I4×4









0 . . . 0
0 . . . 0
0 . . . A6,4
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








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04×4
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h h h h
m n −n −m
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

















C = I8×8 D = 0

Remark 1: For αi = ±
[

π/4 −π/4 −π/4 π/4
]T

it is

found that B5,i = ±
[

r −r −r r
]T

, whereas for αi =

±
[

π/4 −π/4 π/4 −π/4
]T

it is found that B5,1 = −B5,4,

B5,2 = −B5,3, and |B5,1| < |B5,2|. This suggests that the

optimal platform features a wheel configuration in which the

two middle-most wheels share the same handedness, as this

yields an equal contribution to ẍ from each wheel, whereas an

asymmetric αi vector results in extra emphasis being placed

on the inner two wheels.

Examining the rank of the controllability matrix of the

linearised model indicates all states of the linearised model

are controllable, and the observability matrix indicates there

are no unobservable states.

The model parameters were populated mostly by direct mea-

surement, with grey-box least-squares fitting used to estimate

the remaining unmeasurable parameters. Wheel inertia Iwx

was estimated by suspending a wheel freely and injecting a

square wave torque input, producing a zero mean triangular

angular velocity profile suitable for fitting with the ideal

model of a rotating mass. The height of the pendulum’s

center of mass hp was estimated by inverting the platform

and suspending it by its wheels, allowing the fitting of the

impulse disturbance response of θp to the nonlinear model of

a pendulum with a friction term −kv θ̇p.



IV. PROOF OF CONCEPT & CONTROL DESIGN

A proof of concept prototype was developed to demonstrate

the real-world feasibility of this type of platform, and to

validate the model developed above. This was constructed

around four Maxon brushless motors, controlled by a National

Instruments myRIO. Sensing was performed using four incre-

mental encoders, three gyroscopes, and three accelerometers.

This data is fused using a 9 state Extended Kalman Filter,

allowing the estimation of the two unmeasured velocity and

three gyroscope bias states.

The linearised plant is found to have eigenvalues with

positive real components, meaning the plant is open loop

unstable. Designing model predictive controllers for open

loop unstable systems is known to lead to difficulties in

defining a numerically well conditioned prediction model [6],

as a highly divergent step response combined with a large

prediction horizon can result in a large difference in magnitude

between the upper and lower rows of the prediction matrices,

which when manipulated can lead to loss of precision due

to the limitations of embedded floating-point arithmetic. This

phenomena was observed in practice when attempting to apply

MPC methods directly to the open loop plant, so the linearised

plant is first compensated by a discrete infinite horizon linear-

quadratic regulator with gain K, derived for state variable

weights Q = diag
([

0.2 1 1 0 . . . 0
])

and manipulated vari-

able weights R = I4×4. This approach to the prediction of

unstable plants is referred to as the closed-loop paradigm [6].

The new model eigenvalues were found to possess purely

negative real components, indicating exponential stability.

A dual-mode model predictive controller was designed

based on this compensated model in order to apply constraints

to the optimal LQR controlled system, with the MPC output ck
used to deviate the unconstrained optimal output uk in order to

maintain input and state constraint satisfaction. Additionally,

the plant model was redefined in terms of deviations x̂k and

ûk from the steady state values xss and uss, given by x̂k =
xk−xss, ûk = uk−uss. These steady state values are defined

by solving the simultaneous equations xss = Axss+Buss and

yss = rk+1 = Cxss.

This allows the definition of the control law

uk+i = −K(x̂k+i − xss) + uss + ck+i i ≤ nc (20)

uk+i = −K(x̂k+i − xss) + uss i > nc (21)

where nc represents the horizon over which perturbations are

included, and in which xss and uss are recalculated for every

change in setpoint. The same Q and R matrices were used to

define the cost function

J =
∞
∑

i=1

x̂T
k+1+iQx̂k+1+i + ûT

k+iRûk+i (22)

which through substitution and Lyapunov analysis can be rede-

fined in terms of the perturbation term ck in a form suitable for

numerical solution by a quadratic program solver. Constraints

were applied to τi and θp, projected to the infinite horizon

using standard MCAS approaches [6] to give a constraint
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Fig. 5. x, y, & φ step responses

polytope of the form Fxxk + Fc c
→k

+ Frrk+1 ≤ d. The QP

problem can now be defined as

min
c
→k

J = c
→

T

k
S c
→k

s.t. Fxxk + Fc c
→k

+ Frrk+1 ≤ d (23)

where c
→k

=
[

ck ck+1 . . . ck+nc

]T
. The underlying closed

loop nature of this controller does mean that constraints must

be applied to the reference rk+1 in order to maintain feasibility

of the QP, so a ramp limit is applied to the x and y setpoints in

order avoid demanding an infeasible setpoint. No disturbance

model is included at this time, however this could be included

in future work at the cost of additional state dimensions.

V. RESULTS

Performance was assessed by examining the ability of the

platform to follow simple open-loop trajectories. Figure 5

shows the response of the x, y, and φ states to a number of step

reference inputs. The y axis demonstrates good performance,

with no overshoot, no offset, and good velocity constraint

tracking. The x axis again shows good velocity constraint

tracking and no overshoot, but exhibits a steady state error.

The φ state shows a rapid rise time, minimal overshoot, and

no steady state error.

Figure 6 shows the trajectory taken when following a

square path with 1m sides whilst maintaining a constant yaw,

with Figure 7 showing the individual θp, φ, ẋ, & ẏ state

trajectories over time for this path. This experiment again

showed good performance in the y axis, but a steady state error
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in the x axis. The φ and θp states show minimal unwanted

coupling with movements in the x and y directions, again

indicating good performance. Figure 8 shows the trajectory

when following a figure-of-8 path of 10s duration for four

consecutive laps with a constant φ, with the individual x and

y state trajectories shown in Figure 9. These results show

the platform has successfully demonstrated well controlled

dynamically balanced omnidirectional motion, with minimal

undesirable cross coupling between the x and θp, φ states. A

steady state error is visible on the x state in all experiments

due to the presence of friction in the Mecanum wheel bearings

and the lack of controller integral action. This would be

best addressed by the inclusion of this friction force into the
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Fig. 9. Figure of 8 individual state trajectories

dynamics model, however an integrating disturbance observer

would also suffice.

VI. CONCLUSION

This paper has proposed a novel form of omnidirectional

balancing platform, derived its inverse kinematic and dynamic

models, and demonstrated the accuracy of this model by

using it as the basis for a model-based predictive controller

implemented on a proof-of-concept prototype. Experimental

results show the prototype is capable of performing all of the

motions required for it to fulfil the specification outlined in

Section I.
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