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The elliptic potential Korteweg-de Vries lattice system is a multi-component exten-

sion of the lattice potential Korteweg-de Vries equation, whose soliton solutions are

associated with an elliptic Cauchy kernel (i.e., a Cauchy kernel on the torus). In this

paper we generalize the class of solutions by allowing the spectral parameter to be

a full matrix obeying a matrix version of the equation of the elliptic curve, and for

the Cauchy matrix to be a solution of a Sylvester type matrix equation subject to this

matrix elliptic curve equation. The construction involves solving the matrix elliptic

curve equation by using Toeplitz matrix techniques, and analysing the solution of

the Sylvester equation in terms of Jordan normal forms. Furthermore, we consider

the continuum limit system associated with the elliptic potential Korteweg-de Vries

system, and analyse the dynamics of the soliton solutions, which reveals some new

features of the elliptic system in comparison to the non-elliptic case. Published by AIP

Publishing. [http://dx.doi.org/10.1063/1.4977477]

I. INTRODUCTION

The elliptic lattice potential Korteweg-de Vries KdV (elpKdV) system is a two-parameter exten-

sion of the lattice potential KdV equation which arises naturally by generalising the relevant Cauchy

kernel, underlying the solutions structure, to a Cauchy kernel on the torus, i.e., the one where the

spectral parameter takes values on an elliptic curve. This leads to the following multi-component

lattice system:1

(a + b + u − ̂̃u)(a − b + û − ũ)= a2 − b2
+ g( s̃ − ŝ)(̂̃s − s), (1.1a)

(̂̃s − s)(w̃ − ŵ)= [(a + u)̃s − (b + u)̂s ]̂̃s − [(a − ̂̃u )̂s − (b − ̂̃u )̃s ]s, (1.1b)

(̂s − s̃)(̂̃w − w)= [(a − ũ)s + (b + ũ )̂̃s ]̂s − [(a + û)̂̃s + (b − û)s]̃s, (1.1c)

(a + u − w̃
s̃

)(a − ũ +
w

s
)= a2 − R(s̃s ), (1.1d)

(b + u − ŵ
ŝ

)(b − û +
w

s
)= b2 − R(ŝs ). (1.1e)

This is a coupled set of partial difference equations for dependent variables u= un,m, s̃= sn,m, w̃=wn,m

for discrete variables, where the accents denote shifts, e.g. (1.4) and where a, b are parameters associ-

ated with those lattice shifts. A related continuous elliptic system is the elliptic potential Korteweg-de

Vries KdV (epKdV) system

st = 4sxxx + 6sx[R(s2) − A2 − 2Asx

s
− 2sxx

s
], (1.2a)

At = 4Axxx − 6A2Ax + 6AxR(s2) − 6sx

s
(R(s2))x, (1.2b)

with A=−u + w
s

derived in the same paper. Here R(x) is associated with the elliptic curve

a)Author to whom correspondence should be addressed. Electronic mail: djzhang@staff.shu.edu.cn
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y2
=R(x)=

1

x
+ 3e1 + gx, (1.3)

where e1, g ∈C are moduli of the elliptic curve. In Equation (1.1) we use the conventional tilde-hat

notations to express shifts with respect to discrete variables, e.g.,

u � un,m, ũ � un+1,m, û � un,m+1, ̂̃u � un+1,m+1. (1.4)

The direct linearisation approach used in Ref. 1 leads to a description in terms of an infinite order

matrix U, from which closed form equations for the entries of U are derived yielding nonlinear lattice

equations (see Refs. 1–4). A special class of soliton type solutions was presented in terms of elliptic

Cauchy matrices.

In the present paper, we will derive a novel class of solutions of the above two elliptic systems

using a generalization of the Cauchy matrix approach in terms of spectral parameters which are

full matrices, and where the Cauchy kernel is a solution of a Sylvester type matrix equation. The

scalar Cauchy matrix approach was successfully applied in Refs. 5 and 6 to derive integrable lattice

equations and to analyse their underlying structures. Subsequently, the generalized Cauchy matrix

approach, involving solutions of Sylvester type matrix equations, was used to generate a far more

general class of solutions for those same systems.7,8 The latter is the approach we adopt in the current

paper in the case of elliptic systems (1.1) and (1.2).

The Cauchy matrix approach is purely an algebraic procedure which enables us to obtain var-

ious integrable equations, their explicit soliton solutions, and their Lax pairs. In the Cauchy matrix

approach, the Sylvester equation
AX − XB=C (1.5)

can be viewed as a starting point.7,8 The matrix X is a dressed Cauchy matrix (see the factorization
(3.13a)) and is used to introduce τ-function.5–7

In the present paper we start from the following Sylvester equation:

kM +Mk= rc
T − gK

−1
rc

T
K
−1, (1.6)

where r= (r1, r2, . . . , rN )T , c= (c1, c2, . . . , cN )T , and k, K ∈CN ×N obey the matrix relation

k
2
=K + 3e1I + gK

−1, kK = Kk, (1.7)

in which I is the N × N unit matrix. Based on the above Sylvester equation, the dispersion relations
for the elpKdV system are defined by

(aI − k)̃r= (aI + k)r, (bI − k)̂r= (bI + k)r, (1.8)

and for the epKdV system by

rx = kr, rt = 4k
3
r, c

T
x = c

T
k, c

T
t = 4c

T
k

3. (1.9)

In Sec. II, we will focus on system (1.7) as a full matrix equation governed by an elliptic curve
(1.3). In Sec. III, we will concentrate on the Sylvester equation (1.6) and the scalar functions S(i ,j)

defined in (3.23). Explicit solution M of (1.6) will be given, distinguishing between the cases where k

is either diagonal or of Jordan block form, as well as on their combinations. Solutions of the elpKdV

and epKdV systems are consequently obtained, in terms of a generic element S(i ,j) composed in an

infinite order matrix S. The entries S(i ,j) satisfy some recurrence relations which can be viewed as

discrete equations of S(i ,j) defined inZ×Z and which will play a crucial role in deriving the continuous

epKdV system. In Secs. IV and V we then derive the elpKdV system and epKdV system together

with their Lax pairs, respectively. Some analysis of the dynamics of the solutions is presented in

Sec. VI, which illustrates the novel aspects of the solutions. In Sec. VII we discuss continuum limits

of the elpKdV system, and draw some conclusions in Sec. VIII. In Appendix A we list properties of

lower triangular Toeplitz matrices which play important roles in our paper.

II. POINTS ON THE ELLIPTIC CURVE: PARAMETRIZATION AND SELECTION

A. Scalar case

Consider the elliptic curve
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k2
=R

( 1

K

)

=K + 3e1 +
g

K
(2.1)

which is the elliptic curve (1.3). The discrete plane wave factor is defined as

ρi =

(

a + ki

a − ki

)n (b + ki

b − ki

)m

ρ0
i , (2.2)

where ρ0
i

is a phase factor and ki together with K i obeys the elliptic curve (2.1), i.e.,

k2
i =Ki + 3e1 +

g

Ki

, i= 1, 2, . . . , N . (2.3)

In the case of classical soliton solutions (see Refs. 6 and 9), {ki} play the role of wave numbers,

which should be distinct so that they can represent different solitons. Since ki and K i are coupled

through the elliptic curve (2.3) (say, both ki and �ki correspond to the same K i), we consequently

require that they can identify each other, i.e.,

ki , kj⇔Ki ,Kj. (2.4)

Note that for the arbitrary two points (ki,K i) and (kj,K j) on the elliptic curve (2.1) we always have

the relation

(ki + kj)(ki − kj)= (Ki − Kj)
KiKj − g

KiKj

. (2.5)

This means that if we take

(ki + kj)(KiKj − g), 0, (2.6)

then (2.4) is guaranteed. Equation (2.6) is the criteria that we select points from the elliptic curve

(2.1). Consequently, in (2.6) ki , 0.

The elliptic curve (2.1) can be parameterized using Weierstrass’s elliptic function ℘(κ) as follows

(cf. Ref. 1):

K = ℘(κ) − e1, k =
℘′(κ)

2(℘(κ) − e1)
, (2.7a)

e1 = ℘(ω), g= (e1 − e2)(e1 − e3), (2.7b)

where e2 = ℘(ω + ω′), e3 = ℘(ω′), and ω and ω′ are respectively the half periods of ℘(κ).

Under the parametrization (2.7), for the points on the curve (2.1) we have

Ki = ℘(κi) − e1, ki =
℘′(κi)

2(℘(κi) − e1)
. (2.8)

Then the criteria (2.6) can alternatively be described through the following requirements for κi:

κi ∈D′ =D \ {0,ω,ω′,ω + ω′}, (2.9a)

(℘(κi) − e1)(℘(κj) − e1), g, (2.9b)

κi + κj , 0, (2.9c)

for i, j = 1, 2, . . . , N , where D is a fundamental period parallelogram ABCD as described in Fig. 1.

We note that here and henceforth when we talk about κi + κj we always mean that it is the remainder

of the Euclidean division of κi + κj by the periodic lattice, i.e., κi + κj mod(2ω, 2ω′). In fact, 0 is

the pole of ℘(κ) and thus we require κi , 0 to avoid singularities. Besides, ki cannot be zero as a

consequence of ki + kj , 0. In light of Liouville’s theorems (cf. Ref. 10), since ℘′(κ) is a third-order

elliptic function in the period parallelogram D ℘′(κ) only has 3 zeros which are ω,ω′, and ω + ω′.
To avoid breaking the one-to-one correspondence of ki and K i, we require κi < {ω,ω′,ω +ω′}. Thus

we have (2.9a). (2.9b) is from the requirement KiKj , g. For (2.9c), we can prove that under (2.9a)

and (2.9b) the following holds:

κi + κj = 0 ⇔ ki + kj = 0. (2.10)

In fact, since ℘(κ) is even and ℘′(κ) is odd, from the parametrization (2.8), we immediately find that

if κi + κj = 0 then ki + kj = 0. On the other hand, under (2.9b), from the factorization (2.5), if ki + kj

= 0 and (2.9b) holds, there must be K i = K j, which means κi =±κj inD in light of Liouville’s theorems

(cf. Ref. 10). The case κi = κj is impossible because this case yields ki = kj = 0 due to ki + kj = 0 but

ki = 0 requires ℘′(κi)= 0 which is impossible inD′. Thus, κi =−κj is the only choice, i.e., κi + κj = 0.
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FIG. 1. Fundamental period parallelogram D.

B. Matrix system (1.7)

Let us come to the matrix relation (1.7). Although at first glance (1.7) suggests an interpretation

of this matrix relation as a matrix version of an elliptic curve, it just represents the coordination of a

collection of points on the given elliptic curve (2.1).

To understand this, let us consider a similarity transformation

k1 =TkT
−1, K1 =TKT

−1, (2.11)

where T serves as the transform matrix. Obviously, under the above similarity transformation, (1.7)

is formally invariant

k1
2
=K1 + 3e1I + gK1

−1, k1K1 =K1k1. (2.12)

Thus, in the following we only need to consider the relation

Γ
2
=K + 3e1I + gK

−1, ΓK =KΓ, (2.13)

where Γ is the canonical form of k.

When

Γ=Diag(k1, k2, . . . , kN ), (2.14a)

K is taken as

K =Diag(K1, K2, . . . , KN ), (2.14b)

where (ki,K i) are the points on (2.1), i.e., satisfying (2.3). ki is the eigenvalue set of k. Here we require

that each ki , 0 and k2
i
, k2

j
for i, j. Under such a requirement one can see that the criteria (2.6) are

satisfied in light of the factorization (2.5).

It is interesting to consider the case that Γ is a N th order Jordan block

Γ=

*.......
,

k1 0 0 · · · 0 0

1 k1 0 · · · 0 0

0 1 k1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 k1

+///////
-

, k1 , 0. (2.15)

In this case, k1 is the only eigenvalue of k with algebraic multiplicity N (and geometric multiplicity

1). In terms of the parametrization (2.7) we need κ1 to satisfy

κ1 ∈D \ {0,ω,ω′,ω + ω′}, ℘(κ1),
√

g + e1. (2.16)

To find K that corresponds to the Jordan block (2.15), we will make use of properties of lower

triangular Toeplitz matrices (LTT). For more details about LTT matrices please see Appendix A.

According to Proposition A.1, for the Jordan block (2.15), when ΓK =KΓ there must be K∈ T[N]

where T[N], which is commutative, denotes the set composed of all N th order LTT matrices. By taking

derivatives with respect to k of the elliptic curve (2.1) at the point (k1,K1) where K1 = K(k1) and

K(k) is viewed as an implicit function of k determined by the curve (2.1), we find (for i ≥ j)

1

j!
∂

j

k
k2
=

1

j!
∂

j

k
K(k) + 3e1δj,0 +

g

j!
∂

j

k

1

K(k)
, (at k = k1). (2.17)
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The l.h.s., the first term and third term on the r.h.s., respectively, correspond to the elements of the

LTT matrices generated (see Definition 1 in Appendix A) by f (k) = k2, K(k) and 1/K(k) at k = k1.

This means that for the Jordan block case (2.15) if we take K =T
[N][K(k1)] (for this notation see

Definition 1 in Appendix A) then the relation (2.13) holds.

III. THE SYLVESTER EQUATION AND INFINITE MATRIX STRUCTURE

In this section we will first investigate solutions of the Sylvester equation (1.6) and derive an

explicit expression of the solution M. Then, with the help of some special matrices we will investigate

recurrence relations of scalar function S(i ,j) (defined in (3.23)) and properties of the infinite matrix S

composed of S(i ,j).

A. Solvability of (1.6)

For the solution of the Sylvester equation (1.5), there is the following well known result.11

Proposition 3.1. Denote the eigenvalue sets of A and B by E(A) and E(B), respectively. For the

known A, B, and C, the Sylvester equation (1.5) has a unique solution M if and only ifE(A)∩E(B)=∅.

Based on this proposition, we find the following.

Proposition 3.2. Consider the Sylvester equation (1.6) where the matrices k and K satisfy

E(k) ∩ E(−k)=∅, (3.1a)

E(gK
−1) ∩ E(K)=∅, (3.1b)

and the matrix relation (1.7). Then, the “dual” matrix equation

KM −MK = k rc
T − rc

T
k (3.2)

holds.

Proof. Here we note that condition (3.1a) is necessary to guarantee the solvability of Equation

(1.6) in light of Proposition 3.1. Then, left multiplying k and (1.6) yields

k
2
M + kMk= k(rc

T − gK
−1

rc
T

K
−1). (3.3a)

By simple algebraic substitution, Equation (3.3a) can be written as

k
2
M −Mk

2
=−rc

T
k + krc

T
+ gK

−1
rc

T
K
−1

k − gkK
−1

rc
T

K
−1. (3.3b)

Applying (1.7) in (3.3b), we get

gK
−1(KM −MK − krc

T
+ rc

T
k)K−1

=KM −MK − krc
T
+ rc

T
k, (3.4)

which can be rewritten as a Sylvester equation

gK
−1

W −WK = 0, W =KM −MK − krc
T
+ rc

T
k. (3.5)

Based on Proposition 3.1 and noting that E(gK
−1) ∩ E(K)=∅ in (3.1b), Equation (3.5) has a unique

solution W = 0, which means (3.2) holds. �

Here, we note that condition (3.1) is obvious because it is actually the criteria (2.6) for selecting

points from the elliptic curve (2.1). We also note that we cannot derive (1.6) from (3.2). In fact, we

start from (3.2), replace K using (1.7), and we get

k
2
M −Mk

2 − g(K−1
M −MK

−1)= krc
T − rc

T
k.

In the meantime, from (3.2) we also have

K
−1

M −MK
−1
=−K

−1
krc

T
K
−1
+ K

−1
rc

T
kK
−1.

Manipulating these two equations leads to

kY − Yk= 0, Y = kM +Mk − rc
T
+ gK

−1
rc

T
K
−1.
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Obviously, Y = 0 is a solution to the above equation but it is not unique. This means (1.6) and (3.2)

are not equivalent. (1.6) is more general while (3.2) is a by-product of the former. In the following

discussion it is sufficient that we only consider (1.6).

B. Solution to the Sylvester equation (1.6)

1. Canonical form of (1.6)

Using the similarity transformation (2.11) and denoting

M1 =TMT
−1, r1 =Tr, c

T
1 = c

T
T
−1, (3.6)

it follows from (1.6) that

M1k1 + k1M1 = r1 c
T
1 − gK

−1
1 r1c

T
1 K
−1
1 ,

which takes the same form as (1.6). This means that when we solve the Sylvester equation (1.6) we

only need to consider the following canonical form:

MΓ + ΓM = rc
T − gK

−1
rc

T
K
−1, (3.7a)

together with (2.13), where

r= (r1, r2, . . . , rN )T , c= (c1, c2, . . . , cN )T , (3.7b)

and we suppose that Γ is the canonical form of k.

2. Solutions to the matrix system (2.13)

Here we list the solutions using the notations given in Appendix B.

Proposition 3.3. The matrix system (2.13) satisfies the following three cases of solutions:

(1) Diagonal case:

Γ= Γ
[N]
D

({kj}N1 ), K = Γ
[N]
D

({Kj}N1 ), (3.8)

where

k2
j =Kj + 3e1 + gK−1

j , j = 1, 2, . . . , N . (3.9)

(2) Jordan block case:

Γ= Γ
[N]
J

(k1), K =T
[N][K(k1)]. (3.10)

(3) Generic case:

Γ= Γ
[N]
G

, (3.11a)

K =Diag
(

Γ
[N1]
D

({Kj}N1

1
), T

[N2][K(kN1+1)], . . . , T
[Ns][K(kN1+(s−1)])

)

. (3.11b)

3. Solutions to (3.7a)

Now let us come to the solutions to the Sylvester equation (3.7a).

Case 1. Γ= Γ
[N]
D

({kj}N1 ).

Solution to (3.7a) is given by

M =FG
[N]
D

({kj}N1 )H =
(1 − g/(KiKj)

ki + kj

ricj

)

N×N
, (3.12a)

where

F=Diag(r1, r2, . . . , rN ), H =Diag(c1, c2, . . . , cN ). (3.12b)

Case 2. Γ= Γ
[N]
J

(k1).

This is also referred to as the Jordan block case. In this case, Γ and K take the form of (3.10).

To find solution M of equation (3.7a), we factorize

M =FGH, (3.13a)
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where

F=T
[N]({rj}N1 ), H =H

[N]({cj}N1 ), (3.13b)

and G is a N × N unknown matrix. Note that r and c can be expressed through F and H as

r=F e1, c=H e1, (3.14)

where e1 = e1
[N ] is defined in (B2b). Then, the Equation (3.7a) is rewritten as

FGHΓ + ΓFGH =F e1 e
T
1 H − gK

−1
F e1 e

T
1 HK

−1. (3.15)

Further, from proposition A.4, one has

FGΓ
T

H + FΓGH =F e1 e
T
1 H − gFK

−1
e1 e

T
1 K
−1T

H, (3.16)

and then

GΓ
T
+ ΓG= e1 e

T
1 − gK

−1
e1 e

T
1 K
−1T

. (3.17)

To solve (3.17), we set

G= (G1, G2, . . . , GN ) (3.18)

with column vectors {Gj}. (3.17) is expanded to the following equation set:

(k1I + Γ)G1 = e1 −
g

K1

A1, (3.19a)

(k1I + Γ)Gj+1 + Gj =−
g

j!
(∂

j

k1

1

K1

)A1, (j = 1, 2, . . . , N − 1), (3.19b)

where K1 = K(k1) and

A1 = (a1, a2, . . . , aN )T , aj =
1

(j − 1)!
∂

j−1

k1

1

K1

, (j = 1, 2, . . . , N). (3.19c)

The above equation set is solved by

Gj =
∂

j−1
a g[N](a)|a=2k1

(j − 1)!
+ g

j
∑

i=1

(−1)i

(j − i)!
(∂

j−i

k1

1

K1

)Γ
[N]
J

(2k1)
−i

A1, (j = 1, 2, · · · , N). (3.20)

The matrix G is symmetric.

Case 3. Γ= Γ
[N]
G

.

In this case, we still suppose the factorization (3.13a), where

F=Diag
(

Γ
[N1]
D

({rj}N1

1
), T

[N2]({rj}N1+N2

N1+1
), . . . , T

[Ns]({rj}N1+N2+...+Ns

N1+N2+...+Ns−1+1
)
)

, (3.21a)

H =Diag
(

Γ
[N1]
D

({cj}N1

1
), H

[N2]({cj}N1+N2

N1+1
), . . . , H

[Ns]({cj}N1+N2+...+Ns

N1+N2+...+Ns−1+1
)
)

, (3.21b)

G is a symmetric matrix with block structure

G=G
T
= (Gi,j)s×s

(3.21c)

and each Gi,j is a Ni × Nj matrix. Clearly,

G1,1 =G
[N]
D

({kj}N1 ), (3.22a)

G1,j = (G11, G12, . . . , G1Nj
), (1< j ≤ s), (3.22b)

Gi,j = (Gi1, Gi2, . . . , GiNj
), (1< i ≤ j ≤ s), (3.22c)

with

G1l = (−1)l−1
[
I − g

l
∑

i=1

(−1)l−i

(l − i)!

(

∂l−i
k

1

K(k)

) ���
k=kN1+1

(Γ
[N1]
D

({Kj}N1

1
))
−1]
Γ

[N1]
D

({αj})e[N1],

Gil =

∂l−1
βij

g[Ni](βij)

(l − 1)!

+ g

l
∑

m=1

(−1)m

(l − m)!

(

∂l−m
k

1

K(k)

) ���
k=kN1+(j−1)

(Γ
[Ni]
J

(βij))
−m

T
[Ni](

1

K(k)
)
���
k=kN1+(i−1)

e
[Ni]

1
,
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for 1< i ≤ j ≤ s, where αj =
1

kj+kN1+(j−1)
, βij = kN1+(i−1) + kN1+(j−1), and k and K(k) satisfy the elliptic

curve (2.1), i.e., k2 = K2(k) + 3e1 + g/K(k).

C. Infinite matrix S

In the Cauchy matrix approach a generic element S(i ,j) plays a crucial role. Such entries S(i ,j)

compose an infinite order matrix S and they satisfy some recurrence relations which are used in

deriving nonlinear equations as well as expressing solutions of the obtained equations.

Referring to the Sylvester equation (1.6) and the matrix relation (1.7) and using the elements

{M, k, K, r, c} in (1.6) and (1.7), we introduce an ∞ × ∞ matrix S= (S(i,j))∞×∞, i, j ∈ Z, where the

elements S(i ,j) are defined as (cf. Ref. 1)

S(2i,2j)
= c

T
K

j(I +M)−1
K

i
r, (3.23a)

S(2i+1,2j)
= c

T
K

j(I +M)−1
kK

i
r, (3.23b)

S(2i,2j+1)
= c

T
K

j
k(I +M)−1

K
i
r, (3.23c)

S(2i+1,2j+1)
= c

T
K

j
k(I +M)−1

kK
i
r. (3.23d)

1. Recurrence relations of S(i,j)

For these elements (3.23) we present the following relations.

Proposition 3.4. For the scalar functions S(i,j) defined in (3.23) with {M, K, k, r, c} satisfying the

Sylvester equation (1.6) and the matrix relation (1.7), we have the following relations:

S(i,j+2s)
= S(i+2s,j) −

s−1
∑

l=0

(S(2s−2l−1,j)S(i,2l) − S(2s−2l−2,j)S(i,2l+1)), (3.24a)

S(i,j−2s)
= S(i−2s,j)

+

s
∑

l=1

(S(−2s+2l−1,j)S(i,−2l) − S(2l−2s−2,j)S(i,−2l+1)), (3.24b)

where s= 1, 2, · · · . In particular, when s = 1, one has

S(i,j+2)
= S(i+2,j) − S(1,j)S(i,0)

+ S(0,j)S(i,1), (3.25a)

S(i,j−2)
= S(i−2,j)

+ S(−1,j)S(i,−2) − S(−2,j)S(i,−1). (3.25b)

Proof. First, from the Sylvester equation (1.6) we have the following relation:

k
s
M − (−1)s

Mk
s
=

s−1
∑

j=0

(−1)j
k

s−j−1(rc
T − gK

−1
rc

T
K
−1)kj, (s= 1, 2, . . .). (3.26)

In fact, the Sylvester equation (1.6) itself is the case when s = 1 of (3.26), while (3.3b) is the case

when s = 2. Making use of mathematical inductive approach we can reach (3.26). Similarly, from

(3.2) one has a parallel result

K
s
M −MK

s
=

s−1
∑

j=0

K
s−j−1(krc

T − rc
T

k)K j, (3.27a)

or

MK
−s − K

−s
M =

s
∑

j=1

K
−(s−j+1)(krc

T − rc
T

k)K−j, (s= 1, 2, . . .). (3.27b)

Now let us prove the relation (3.24a). We introduce the auxiliary vectors

u
(2i)
= (I +M)−1

K
i
r, u

(2i+1)
= (I +M)−1

kK
i
r, i ∈ Z. (3.28)

From this we immediately have

K
s
u

(2i)
+ K

s
Mu

(2i)
=K

s+i
r, (3.29a)

K
s
u

(2i+1)
+ K

s
Mu

(2i+1)
= kK

s+i
r. (3.29b)
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Replacing K
s
M using the relation (3.27a), one finds

(I +M)Ks
u

(2i)
=K

s+i
r −

s−1
∑

l=0

K
s−l−1(krc

T − rc
T

k)K l
u

(2i), (3.30a)

(I +M)Ks
u

(2i+1)
= kK

s+i
r −

s−1
∑

l=0

K
s−l−1(krc

T − rc
T

k)K l
u

(2i+1). (3.30b)

These relations, left-multiplied by c
T

K
j(I +M)−1, yield

S(2i,2j+2s)
= S(2i+2s,2j) −

s−1
∑

l=0

(S(2s−2l−1,2j)S(2i,2l) − S(2s−2l−2,2j)S(2i,2l+1)),

S(2i+1,2j+2s)
= S(2i+2s+1,2j) −

s−1
∑

l=0

(S(2s−2l−1,2j)S(2i+1,2l) − S(2s−2l−2,2j)S(2i+1,2l+1)),

and left-multiplied by c
T

K
j
k(I +M)−1, yield

S(2i,2j+2s+1)
= S(2i+2s,2j+1) −

s−1
∑

l=0

(S(2s−2l−1,2j+1)S(2i,2l) − S(2s−2l−2,2j+1)S(2i,2l+1)),

S(2i+1,2j+2s+1)
= S(2i+2s+1,2j+1) −

s−1
∑

l=0

(S(2s−2l−1,2j+1)S(2i+1,2l) − S(2s−2l−2,2j+1)S(2i+1,2l+1)).

The above four equations are merged into the relation (3.24a).

The relation (3.24b) can be proved in a similar procedure, in which we use the following

counterpart of (3.30):

(I +M)K−s
u

(2i)
=K

−s+i
r +

s
∑

l=1

K
−(s−l+1)(krc

T − rc
T

k)K−l
u

(2i), (3.31a)

(I +M)K−s
u

(2i+1)
= kK

−s+i
r +

s
∑

l=1

K
−(s−l+1)(krc

T − rc
T

k)K−l
u

(2i+1), (3.31b)

with s= 1, 2, . . .. We note that (3.25) are corresponding to the algebraic relations (2.13) in

Ref. 1. �

2. Invariance and symmetry property of S(i,j)

In Secs. II B and III B A we have shown that the matrix relation (1.7) and the Sylvester equation

(1.6) preserve invariance formally in terms of the similarity transformation (2.11) and notations

(3.6). In following we will see that S(i ,j) defined in (3.23) are the same as those defined with

{c1, r1, k1, K1, M1}. Besides, S(i ,j) satisfy symmetry property S(i ,j) = S(j ,i).

Proposition 3.5. The matrix S (or the element S(i,j)) preserves invariance under the similarity

transformation (2.11) and notations (3.6).

Proof. Using (2.11) and (3.6) one can rewrite (3.23) and find

S(2i,2j)
= c

T
1 K

j

1
(I +M1)−1

K
i
1r1, (3.32a)

S(2i+1,2j)
= c

T
1 K

j

1
(I +M1)−1

k1K
i
1r1, (3.32b)

S(2i,2j+1)
= c

T
1 K

j

1
k1(I +M1)−1

K
i
1r1, (3.32c)

S(2i+1,2j+1)
= c

T
1 K

j

1
k1(I +M1)−1

k1K
i
1r1, (3.32d)

which means S(i ,j) preserve invariance formally. �

In addition, we have the following symmetry property.
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Proposition 3.6. Suppose that M, K, k, r, c satisfy the Sylvester equation (1.6) together with the

matrix system (1.7) in which E(k) ∩ E(−k)=∅ and E(gK
−1) ∩ E(K)=∅. Then the scalar elements

S(i,j) defined by (3.23) satisfy the symmetry property

S(i,j)
= S(j,i), (3.33)

i.e., the infinite matrix S is symmetric.

Proof. Based on the invariance of S(i ,j) presented in proposition 3.5, we only need to consider the

proof when k is in its canonical form, i.e., k= Γ
[N]
D

({kj}N1 ), k= Γ
[N]
J

(k1), and k= Γ
[N]
G

. Corresponding

to these three cases, M is given respectively in the three cases in Sec. III B 2. As an example let us

consider the case k= Γ
[N]
J

(k1)∈ T [N]. We note that from Sec. II B K∈ T [N] as well. Let us look at the

scalar function S(2i ,2j+1) defined in (3.23c). We have

S(2i,2j+1)
= (S(2i,2j+1))

T

= r
T (K i)

T
(I +M

T )
−1

(K j
k)

T
c. (3.34)

Making use of the fact that M =FGH, r=Fe
[N]

1
, c=He

[N]

1
, G=G

T , F∈ T [N], H∈ T̄ [N]
, and

Proposition A.3, we find from (3.34) that

S(2i,2j+1)
= (e

[N]

1
)
T

F
T (K i)

T
(I +HGF

T )
−1

(K j
k)

T
He

[N]

1

= (e
[N]

1
)
T

(K i)
T

F
T (I +HGF

T )
−1

HK
j
ke

[N]

1

= (e
[N]

1
)
T

(K i)
T

[H−1(FT )
−1
+ G]

−1

K
j
ke

[N]

1

= (e
[N]

1
)
T

(K i)
T

(F−1
H
−1
+ G)

−1
K

j
ke

[N]

1

= (e
[N]

1
)
T

(K i)
T

H(I + FGH)−1
FK

j
ke

[N]

1

= (e
[N]

1
)
T

HK
i(I + FGH)−1

K
j
kFe

[N]

1

= c
T

K
i(I + FGH)−1

K
j
kr

= S(2j+1,2i).

In a similar way we can prove S(i ,j) = S(j ,i) for arbitrary i, j. For the cases of k= Γ
[N]
D

({kj}N1 ) and

k= Γ
[N]
G

, we can also prove the symmetric property and for the later case we need to use Proposition

A.4. �

Hereafter we always require that {M, K, k, r, c} satisfy the assumption of Proposition 3.6, under

which we proceed with further discussions.

IV. THE ELLIPTIC LATTICE POTENTIAL KdV SYSTEM

In this section we derive the elpKdV system together with its Lax pair using the Cauchy matrix

approach. In this approach S(i ,j) play elementary roles. Since the elpKdV system can be viewed as

an elliptic extension of the lattice potential KdV equation, we use the same dispersion relation and

with the help of the Sylvester equation we can first derive a set of recurrence relations of S(i ,j). Then

the elpKdV system can be derived as closed forms.

A. Discrete dispersion relation and recurrence relations

Now let us impose discrete dispersion relation on r as follows:

(aI − k)̃r= (aI + k)r, (bI − k)̂r= (bI + k)r, a, b <E(±k), (4.1)

while we take c to be a constant vector.

By applying a similar procedure as done in Ref. 8 to the Sylvester equation (1.6), matrix system

(1.7), and the dispersion relation (4.1), one can derive the following shift relations of M:
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(aI − k)M̃ = (aI + k)M, (4.2a)

(bI − k)M̂ = (bI + k)M, (4.2b)

and

M̃(aI + k) − (aI + k)M = r̃c
T − gK

−1
r̃c

T
K
−1, (4.3a)

(aI − k)M̃ −M(aI − k)= rc
T − gK

−1
rc

T
K
−1, (4.3b)

M̂(bI + k) − (bI + k)M = r̂c
T − gK

−1
r̂c

T
K
−1, (4.3c)

(bI − k)M̂ −M(bI − k)= rc
T − gK

−1
rc

T
K
−1. (4.3d)

These relations lead to the following results.

Proposition 4.1. Under the assumption of Proposition 3.6 and the dispersion relation (4.1), the

scalar functions S(i,j) defined by (3.23) satisfy the following recurrence relations:

aS̃(2i,2j) − S̃(2i,2j+1)
= aS(2i,2j)

+ S(2i+1,2j) − S̃(2i,0)S(0,2j)
+ gS̃(2i,−2)S(−2,2j), (4.4a)

aS(2i,2j)
+ S(2i,2j+1)

= aS̃(2i,2j) − S̃(2i+1,2j)
+ S(2i,0)S̃(0,2j) − gS(2i,−2)S̃(−2,2j), (4.4b)

bŜ(2i,2j) − Ŝ(2i,2j+1)
= bS(2i,2j)

+ S(2i+1,2j) − Ŝ(2i,0)S(0,2j)
+ gŜ(2i,−2)S(−2,2j), (4.4c)

bS(2i,2j)
+ S(2i,2j+1)

= bŜ(2i,2j) − Ŝ(2i+1,2j)
+ S(2i,0)Ŝ(0,2j) − gS(2i,−2)Ŝ(−2,2j), (4.4d)

aS̃(2i+1,2j) − S̃(2i+1,2j+1)
= aS(2i+1,2j)

+ S(2i+2,2j) − S̃(2i+1,0)S(0,2j)

+ gS(2i−2,2j)
+ gS̃(2i+1,−2)S(−2,2j)

+ 3e1S(2i,2j), (4.4e)

aS(2i+1,2j)
+ S(2i+1,2j+1)

= aS̃(2i+1,2j) − S̃(2i+2,2j)
+ S(2i+1,0)S̃(0,2j)

− gS̃(2i−2,2j) − gS̃(2i+1,−2)S(−2,2j) − 3e1S̃(2i,2j), (4.4f)

bŜ(2i+1,2j) − Ŝ(2i+1,2j+1)
= bS(2i+1,2j)

+ S(2i+2,2j) − Ŝ(2i+1,0)S(0,2j)

+ gS(2i−2,2j)
+ gŜ(2i+1,−2)S(−2,2j)

+ 3e1S(2i,2j), (4.4g)

bS(2i+1,2j)
+ S(2i+1,2j+1)

= bŜ(2i+1,2j) − Ŝ(2i+2,2j)
+ S(2i+1,0)Ŝ(0,2j)

− gŜ(2i−2,2j) − gŜ(2i+1,−2)S(−2,2j) − 3e1Ŝ(2i,2j). (4.4h)

The proof of this proposition is similar to the one for theorem 2 in Ref. 8. Here we skip the

details. We also note that these relations correspond to the discrete matrix Riccati type of relations

(2.12) in Ref. 1.

B. Elliptic lattice equations

To obtain elliptic lattice equations, we introduce scalar functions (cf. Ref. 1)

u= S(0,0), s= S(−2,0), h= S(−2,−2), v = 1 − S(−1,0), w = 1 + S(−2,1). (4.5)

It then follows from (4.4) that

a(u − ũ)=−(̃S(0,1)
+ S(0,1)) − gs̃s + ũu, (4.6a)

a(h − h̃)=−(̃S(−1,−2)
+ S(−1,−2)) − ghh̃ + s̃s, (4.6b)

a(s − s̃)= g̃hs + w̃ − v − ũs, (4.6c)

a(s − s̃)= gh̃s + w − ṽ − ũs, (4.6d)

a(v − ṽ)= S̃(−1,1)
+ 3e1s + uṽ + gvh + gs(S(−2,−1)

+ S̃(−2,−1)), (4.6e)

a(v − ṽ)= S(−1,1)
+ 3e1̃s + ũv + g̃v h̃ + g̃s(S(−2,−1)

+ S̃(−2,−1)), (4.6f)

a(w − w̃)= S̃(−1,1)
+ 3e1s + uw + ghw̃ − s(S(0,1)

+ S̃(0,1)), (4.6g)

a(w − w̃)= S(−1,1)
+ 3e1̃s + ũw̃ + g̃hw − s̃(S(0,1)

+ S(0,1)), (4.6h)
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where we have made use of the symmetric property S(i ,j) = S(j ,i) and the relation (3.25b) with

(i, j) = (0,�2), i.e.,

S(0,−4)
= S(−2,−2)

+ S(−1,−2)S(0,−2) − S(−2,−2)S(0,−1)
= hv + sS(−2,−1).

One more relation obtainable from (3.25b) is

sS(−1,1)
= 1 − vw, (4.6i)

by taking (i, j) = (0, 1). The shift relations with respect to {b, ·̂ } can be obtained by interchanging the

relations {a, ·̃ } with {b, ·̂ } in (4.6).

With these relations in hand, we can combine them, eliminate S(0,1), S(�1,�2), h and v in order to

obtain the closed form of elliptic lattice equations of the variables u, s, and w, (cf. Ref. 1)

(a + b + u − ̂̃u)(a − b + û − ũ)= a2 − b2
+ g(̃s − ŝ)(̂̃s − s), (4.7a)

(̂̃s − s)(w̃ − ŵ)= [(a + u)̃s − (b + u)̂s ]̂̃s − [(a − ̂̃u)̂s − (b − ̂̃u)̃s ]s, (4.7b)

(̂s − s̃)(̂̃w − w)= [(a − ũ)s + (b + ũ)̂̃s ] ŝ − [(a + û)̂̃s + (b − û)s] s̃, (4.7c)

(a + u − w̃
s̃

)(a − ũ +
w

s
)= a2 − R(s̃s), (4.7d)

(b + u − ŵ
ŝ

)(b − û +
w

s
)= b2 − R(ŝs), (4.7e)

where

y2
=R(x)=

1

x
+ 3e1 + gx. (4.8)

Clearly, the system (4.7) is an elliptic generalization of the lpKdV equation. If g = 0, (4.7a) decouples

and becomes the standard lattice potential KdV equation.

Furthermore, solutions to the elpKdV system (4.7) can be expressed in the explicit structure

u= S(0,0)
= c

T (I +M)−1
r, (4.9a)

s= S(−2,0)
= c

T (I +M)−1
K
−1

r, (4.9b)

h= S(−2,−2)
= c

T
K
−1(I +M)−1

K
−1

r, (4.9c)

v = 1 − S(−1,0)
= 1 − c

T (I +M)−1
kK
−1

r, (4.9d)

w = 1 + S(−2,1)
= 1 + c

T
k(I +M)−1

K
−1

r. (4.9e)

We only need to solve for r in (4.1) with k taking the three cases in (B1). Explicit forms of r are given

in Appendix C.

C. Lax pair for the elpKdV system (4.9)

Rewriting (3.28) results in

K
i
r= (I +M)u(2i), (4.10a)

kK
i
r= (I +M)u(2i+1), i ∈ Z, (4.10b)

then we perform a tilde shift to (4.10a) and multiply the result by (aI − k) to give

K
i(aI + k)r= (I +M)(aI − k)̃u

(2i)
+ (rc

T − gK
−1

rc
T

K
−1 )̃u

(2i)
, (4.11)

where we also make use of the relation kK =Kk, the dispersion relation (4.1), the shift relation (4.2a),

and the Sylvester equation (1.6). (4.11) is further transformed to

(aI − k)̃u
(2i)
= au

(2i)
+ u

(2i+1) − S̃(2i,0)
u

(0)
+ gS̃(2i,−2)

u
(−2). (4.12)

Taking i = 0 leads to

(aI − k)̃u
(0)
= (a − ũ)u(0)

+ u
(1)
+ g̃sK

−1(wu
(0) − su

(1)), (4.13)

which is obtained by replacing u
(−2) with

u
(−2)
=K

−1(wu
(0) − su

(1)). (4.14)



033504-13 Sun, Zhang, and Nijhoff J. Math. Phys. 58, 033504 (2017)

In a similar way, from (4.10b) we have

(aI − k)̃u
(1)
= (K + gw̃wK

−1)u(0)
+ (3e1 + g̃ss + a(u − ũ) − ũu)u(0)

+ (a + u − gw̃sK
−1)u(1), (4.15)

where

u
(2)
=Ku

(0) − S
(0,1)

u
(0)
+ uu

(1). (4.16)

Clearly, under the similarity transformation (2.11), Equations (4.13) and (4.15) are formally

invariant if we define u
(0)

1
=Tu

(0), u
1
1
=Tu

1. This means that we can directly consider that k is in its

canonical form and K is consequently defined by (1.7). Thus, the first row of k will be (k, 0, 0, . . . , 0),

while the first rows of K and K
−1 have to be (K , 0, 0, . . . , 0) and (1/K , 0, 0, . . . , 0) respectively, where

(k, K) obeys the elliptic curve (2.1).

Let us denote the first element of u
(0) by (u(0))1 and the first element of u

1 by (u1)1, and introduce

the vector

φ=

(

(u(0))1

(u(1))1

)

. (4.17)

Then, from (4.13) and (4.15) and with a replaced by b and ˜ by ̂ we obtain the following discrete

linear system:

(a − k)φ̃=L(K)φ, (4.18a)

(b − k)φ̂=M(K)φ, (4.18b)

where

L(K)=
*.
,

a − ũ +
g

K
s̃w 1 − g

K
s̃s

K + 3e + g̃ss + a(u − ũ) − ũu +
g

K
w̃w a + u − g

K
w̃s

+/
- (4.19)

which is the same as in Ref. 1, and M(K) is the (b, )̂ counterpart of L(K). The point (k, K) obeys the

elliptic curve (2.1) and here they play the roles of spectral parameters. The compatibility condition

L̂M = M̃L (4.20)

yields the whole elpKdV system (4.7) with the exception of the Equation (4.7c).

V. THE ELLIPTIC POTENTIAL KdV SYSTEM

In this section we derive a continuous elliptic potential KdV system. The procedure is similar to

the one for the KdV system in Ref. 7. This is a continuous version of the Cauchy matrix approach,

where the recurrence relations of S(i ,j) (see (2.3) in Ref. 7 and (3.25) in this paper) play key roles.

A. Evolution of M

We assume that M, r, c are functions of (x, t) while k is still a non-trivial constant matrix. The

dispersion relation is now defined through the evolution of r and c as follows:

rx = kr, cx = k
T

c, (5.1a)

rt = 4k
3
r, ct = 4(kT )

3
c. (5.1b)

Taking the derivative of the Sylvester equation (1.6) with respect to x and making use of (5.1a) we

have

kMx +Mxk= rx c
T
+ rc

T
x − gK

−1
rxc

T
K
−1 − gK

−1
rc

T
x K
−1

= krc
T
+ rc

T
k − gK

−1
krc

T
K
−1 − gK

−1
rc

T
kK
−1,

i.e.,

k(Mx − rc
T
+ gK

−1
rc

T
K
−1) + (Mx − rc

T
+ gK

−1
rc

T
K
−1)k= 0,

where we have made use of the relation kK =Kk. Using Proposition 3.1, this yields

Mx = rc
T − gK

−1
rc

T
K
−1, (5.2)
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i.e.,

Mx = kM +Mk, (5.3)

if we use the Sylvester equation (1.6). In a similar way, for the time evolution of M, we have

Mt = 4(k3
M +Mk

3). (5.4)

B. Evolution of S(i ,j )

With the evolution formulas (5.1)–(5.4), we can derive the evolution of S(i ,j). We make use of

the auxiliary vectors u
(i) defined in (3.28), i.e.,

(I +M)u(2i)
=K

i
r, (5.5a)

(I +M)u(2i+1)
= kK

i
r. (5.5b)

By using the auxiliary vectors u
(i), S(i ,j) are expressed as

S(2i,2j)
= c

T
K

j
u

(2i), (5.6a)

S(2i+1,2j)
= c

T
K

j
u

(2i+1), (5.6b)

S(2i,2j+1)
= c

T
K

j
ku

(2i), (5.6c)

S(2i+1,2j+1)
= c

T
K

j
ku

(2i+1). (5.6d)

Taking x-derivative on (5.5a) we have

Mxu
(2i)
+ (I +M)u

(2i)
x =K

i
rx =K

i
kr, (5.7)

and further, by substitution of (5.2), we have

(I +M)u
(2i)
x =K

i
kr − (rc

T − gK
−1

rc
T

K
−1)u(2i), (5.8)

which indicates the evolution of u
(2i) in x-direction

u
(2i)
x =u

(2i+1) − S(2i,0)
u

(0)
+ gS(2i,−2)

u
(−2). (5.9a)

Similarly we can derive the evolution of u
(2i+1) in x-direction,

u
(2i+1)
x =u

(2i+2) − S(2i+1,0)
u

(0)
+ gS(2i+1,−2)

u
(−2)
+ 3e1u

(2i)
+ gu

(2i−2), (5.9b)

and consequently the evolution of u
(i) in t-direction

u
(2i)
t = 4[gu

(−2)(S(2i,0)
+ 3e1S(2i,−2)

+ gS(2i,−4)) + gS(2i,−2)(u(0)
+ 3e1u

(−2)
+ gu

(−4))

−u
(0)(S(2i,2)

+ 3e1S(2i,0)
+ gS(2i,−2)) + S(2i,1)

u
(1) − gu

(−1)S(2i,−1)
+ u

(2i+3)

+ 3e1u
(2i+1)

+ gu
(2i−1) − S(2i,0)(u(2)

+ 3e1u
(0)
+ gu

(−2))], (5.10a)

u
(2i+1)
t = 4[gu

(−2)(S(2i+1,0)
+ 3e1S(2i+1,−2)

+ gS(2i+1,−4)) − gu
(−1)S(2i+1,−1)

+ u
(2i+4)

−u
(0)(S(2i+1,2)

+ 3e1S(2i+1,0)
+ gS(2i+1,−2)) + (9e2

1 + 2g)u(2i)
+ g2

u
(2i−4)

+ 6e1gu
(2i−2)

+ 6e1u
(2i+2) − S(2i+1,0)(u(2)

+ 3e1u
(0)
+ gu

(−2))

+ S(2i+1,1)
u

(1)
+ gS(2i+1,−2)(u(0)

+ 3e1u
(−2)
+ gu

(−4))]. (5.10b)

These evolutions of u
(i) can be transformed into the evolution of S(i ,j),

S
(2i,2j)
x = S(2i+1,2j)

+ S(2i,2j+1) − S(2i,0)S(0,2j)
+ gS(2i,−2)S(−2,2j), (5.11a)

S
(2i,2j+1)
x = S(2i,2j+2)

+ 3e1S(2i,2j)
+ gS(2i,2j−2) − S(2i,0)S(0,2j+1)

+ S(2i+1,2j+1)

+ gS(2i,−2)S(−2,2j+1), (5.11b)

S
(2i+1,2j+1)
x = S(2i+1,2j+2)

+ 3e1S(2i+1,2j)
+ gS(2i+1,2j−2) − S(2i+1,0)S(0,2j+1)

+ S(2i+2,2j+1)

+ gS(2i+1,−2)S(−2,2j+1)
+ 3e1S(2i,2j+1)

+ gS(2i−2,2j+1), (5.11c)
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and

S
(2i,2j)
t = 4[gS(−2,2j)(S(2i,0)

+ 3e1S(2i,−2)
+ gS(2i,−4)) + gS(2i,−2)(S(0,2j)

+ 3e1S(−2,2j)

+ gS(−4,2j)) − S(0,2j)(S(2i,2)
+ 3e1S(2i,0)

+ gS(2i,−2)) + S(2i,1)S(1,2j)

− gS(−1,2j)S(2i,−1)
+ S(2i+3,2j)

+ 3e1S(2i+1,2j)
+ gS(2i−1,2j) − S(2i,0)(S(2,2j)

+ 3e1S(0,2j)
+ gS(−2,2j)) + S(2i,2j+3)

+ 3e1S(2i,2j+1)
+ gS(2i,2j−1)], (5.12a)

S
(2i,2j+1)
t = 4[gS(−2,2j+1)(S(2i,0)

+ 3e1S(2i,−2)
+ gS(2i,−4)) + gS(2i,−2)(S(0,2j+1)

+ 3e1S(−2,2j+1)
+ gS(−4,2j+1)) − S(0,2j+1)(S(2i,2)

+ 3e1S(2i,0)
+ gS(2i,−2))

+ S(2i,1)S(1,2j+1) − gS(−1,2j+1)S(2i,−1)
+ S(2i+3,2j+1)

+ 3e1S(2i+1,2j+1)

+ gS(2i−1,2j+1) − S(2i,0)(S(2,2j+1)
+ 3e1S(0,2j+1)

+ gS(−2,2j+1)) + S(2i,2j+4)

+ 6e1S(2i,2j+2)
+ (9e2

1 + 2g)S(2i,2j)
+ 6e1gS(2i,2j−2)

+ g2S(2i,2j−4)], (5.12b)

S
(2i+1,2j+1)
t = 4[gS(−2,2j+1)(S(2i+1,0)

+ 3e1S(2i+1,−2)
+ gS(2i+1,−4)) + gS(2i+1,−2)(S(0,2j+1)

+ 3e1S(−2,2j+1)
+ gS(−4,2j+1)) − S(0,2j+1)(S(2i+1,2)

+ 3e1S(2i+1,0)
+ gS(2i+1,−2))

+ S(2i+1,1)S(1,2j+1) − gS(−1,2j+1)S(2i+1,−1)
+ S(2i+4,2j+1)

+ 6e1S(2i+2,2j+1)

+ 6e1S(2i+1,2j+2)
+ (9e2

1 + 2g)S(2i+1,2j)
+ 6e1gS(2i+1,2j−2)

+ g2S(2i+1,2j−4)

− S(2i+1,0)(S(2,2j+1)
+ 3e1S(0,2j+1)

+ gS(−2,2j+1)) + S(2i+1,2j+4)

+ (9e2
1 + 2g)S(2i,2j+1)

+ 6e1gS(2i−2,2j+1)
+ g2S(2i−4,2j+1)]. (5.12c)

It is unnecessary to write S
(2i+1,2j)
x and S

(2i+1,2j)
t due to the symmetry property S(i ,j) = S(j ,i). One can

repeatedly use (5.11) and easily get higher-order x-derivatives of S(i ,j) by means of Mathematica,

amongst other computer applications.

These derivatives of S(i ,j) bring the following epKdV system:1

ut = uxxx + 6u2
x − 6gs2

x , (5.13a)

st = sxxx + 6uxsx − 6gsxhx, (5.13b)

ht = hxxx + 6s2
x − 6gh2

x , (5.13c)

vt = vxxx + 6vxux + 6gsxS
(−1,−2)
x , (5.13d)

wt = wxxx + 6sxS
(0,1)
x − 6gwxhx, (5.13e)

where u, 3, s, w, h are as defined in (4.5) or (4.9), and from (5.11a) we have

S(−1,−2)
=

1

2
(hx + s2 − gh2), (5.14a)

S(0,1)
=

1

2
(ux + u2 − gs2). (5.14b)

To achieve the derivation of (5.13), one needs to perform long and tedious iterations in which

the recurrence relations (3.25) are successively used. Taking the first equation (5.13a) as an example,

we substitute the expressions of ut , uxxx, ux, sx and obtain

1

6
(ut − uxxx − 6u2

x + 6gs2
x )

= g2S(0,−2)[S(0,−4) − S(−1,−2)S(0,−2)
+ S(−2,−2)(−1 + S(0,−1))]

+ g[−S(0,−2)(−S(0,0)(1 + S(1,−2)) + S(2,−2)
+ S(0,−2)S(1,0))

− S(1,−2)
+ S(0,−1)(1 + S(1,−2)) − S(1,−1)S(0,−2)]

− S(1,0)2
+ S(0,0)S(1,1) − S(2,1)

+ S(3,0).

This equation vanishes in light of the recurrence relations (3.25) with (i, j) = (0,�2) and (0, 1).

Equations (5.13b)–(5.13e) can rigorously be derived in a similar manner.
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In Ref. 1, the relation

A=−u +
w

s
(5.15)

is introduced, through which the epKdV system (5.13) yielded the following coupled equation, (i.e.

(1.2)):

st = 4sxxx + 6sx[R(s2) − A2 − 2Asx

s
− 2sxx

s
], (5.16a)

At = 4Axxx − 6A2Ax + 6AxR(s2) − 6sx

s
(R(s2))x, (5.16b)

with the elliptic curve R(x) given in (1.3). Since this coupled system admits a continuous Lax pair1

(also see Sec. V C) we conclude that it is integrable.

C. Lax pair

Let us consider (5.9) with i = 0,

u
(0)
x =u

(1) − uu
(0)
+ gsu

(−2), (5.17a)

u
(1)
x =u

(2) − S(1,0)
u

(0)
+ gwu

(−2)
+ 3e1u

(0). (5.17b)

After replacing u
(−2), u

2, and S1,0 with (4.14), (4.16), and (5.14b) respectively, we have

u
(0)
x =u

(1) − uu
(0)
+ gsK

−1(wu
(0) − su

(1)), (5.18a)

u
(1)
x = (K + gw2

K
−1)u(0)

+ (3e1 − ux − u2
+ gs2)u(0)

+ (uI − gswK
−1)u(1). (5.18b)

Similarly to the discrete case, we consider k to be in its canonical form and then from the first rows

of (5.18a) and (5.18b) we find the linear form

φx =
*
,

−u +
g

K
sw 1 − g

K
s2

K + 3e + gs2 − u2 − ux +
g

K
w2 u − g

K
ws

+
- φ, (5.19a)

where φ is defined in (4.17). In a similar way from (5.10) we can find the time evolution of φ, which

is formulated as

φt =−
(

S
(0,1)
x ux

S
(1,1)
x S

(0,1)
x

)

φ − g

K

(

(1 − vw)
sx

s
+ vxw vsx − svx

(1 − vw)
wx

s
− w( 1−vw

s
)
x
−(1 − vw)

sx

s
− vxw

)

φ, (5.19b)

where

S
(1,1)
x =

1

2
S

(0,1)
xx + uS

(0,1)
x − gswx, (5.20)

and S(0,1) is given by (5.14b).

(5.19) can be viewed as a Lax pair of the system (5.13), which can also be derived from the direct

linearization approach.1 The compatibility property gives equations (5.13a), (5.13b), and (5.13e).

VI. DYNAMICS OF SOLUTIONS

In the section, we investigate dynamics of two-soliton solutions for epKdV system (5.13) by

taking the solution u as an example. One will find that what we illustrate in the following is the

derivative of u with respect to x since the system (5.13) is a potential system.

Soliton solutions of u are given by (4.9) with (3.12), (C1), and (C5). For one-soliton solution, u

is written as

u1ss =
2k1e2(k1x+4k1

3t)

2k1 + (1 − g/K1
2)e2(k1x+4k1

3t)
. (6.1)

Here we note that it is possible to get real solitons if we have real-valued ℘(κ1). This can be done by

taking real invariants g2 and g3 and real or pure imaginary κ1 (cf. Ref. 10). Hereafter, we set U = ux

and the expression for U is
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FIG. 2. The one-soliton solution given by (6.2) for e1 = 1, e2 = 1.5 (which consequently determine the invariants g2 = 19,

g3 = �15 and then the Weierstrass elliptic ℘-function) and κ1 =−1.1 (which indicates the values of k1,K1,e1,g by (2.7)). (a)

Shape and motion. (b) Soliton wave at t = 0.

U1ss =
8k1

3K1
4e2(k1x+4k1

3t)

[2k1K1
2
+ (−g + K1

2)e2(k1x+4k1
3t)]

2
, (6.2)

which is depicted in Fig. 2. From Fig. 2, we can see that this soliton is identified by the amplitude

and the top trace (i.e., the straight line on (x, t)-plane on which U1ss takes maximum value) clearly,

and after some calculations we get the amplitude

Amp=
k1

2K1
2

−g + K1
2

, (6.3)

and the top trace

x(t)=−4k1
2t +

1

2k1

ln
��� 2k1K1

2

−g + K1
2

���. (6.4)

Obviously, the soliton of U is a single-direction wave with the velocity �4k1
2 and the amplitude can

be negative when −g + K1
2 < 0.

Next, let us look at the 2-soliton solution. The 2-soliton solution for U is written as

U =

(

f

g

)

x

, (6.5a)

where

f = 2(k1 + k2)[2k1k2K1
2K2

2(k1 + k2)(e2ξ1
+ e2ξ2 ) + (K1

2K2
2(k1 − k2)2 − g(k1

2K1
2

+ k2
2K2

2) − k1k2(K1
2 − 4K1K2 + K2

2))e2(ξ1+ξ2)], (6.5b)

g=−2k2K2
2(k1 + k2)2(g − K1

2)e2ξ1 − 2k1K1
2(k1 + k2)2(g − K2

2)e2ξ2

+ 4k1k2K1
2K2

2(k1 + k2)2
+ [(g2

+ K1
2)(k1 − k2)2 − g((k1 + k2)2(K1 + K2)2

+ 2k1k2(K1
2 − 4K1K2 + K2

2))]e2(ξ1+ξ2), ξi = kix + 4k3
i t + ξ

(0)

i
, i= 1, 2, (6.5c)

and U is depicted in Fig. 3. One can see that the amplitudes of the two solitons are changed after

interaction. This can be demonstrated by analyzing asymptotic behaviors of the two-soliton solution

by a similar procedure as in Ref. 12. For convenience we call the two solitons k1-soliton and k2-soliton,

respectively. Then we rewrite the two-soliton solution (6.5) in terms of the following coordinates:

(

X1 = x + 4k1
2t, t

)

, (6.6)

which gives

U =

(

F1

G1

)

x

, (6.7a)
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FIG. 3. Two-soliton interactions given by (6.5) for e1 = 1, e2 = 1.5, κ1 =−1.1, κ2 =−1 and ξ
(0)

1
= ξ

(0)

2
= 0. (a) Shape and

motion. (b) Amplitude-change interaction of two solitons, in which the shape at t = �4 is denoted by blue dashed line and the

shape at t = 4 is denoted by the red solid line.

where

F1 = 2(k1 + k2)[2k1k2K1
2K2

2(k1 + k2)(e2k1X1
+ e2k2(X1−4k1

2t+4k2
2t)) + (K1

2K2
2(k1 − k2)2

− g((k1K1 − k2K2)2
+ k1k2(K1 − K2)2))e2(k1+k2)X1−8k2(k1

2−k2
2)t], (6.7b)

G1 = −2k2K2
2(g − K1

2)(k1 + k2)2e2k1X1 − 2k1K2
1 (k1 + k2)2(g − K2

2 )e2k2(−4k2
1
t+4k2

2
t+X1)

+ 4k1k2K1
2K2

2(k1 + k2)2
+ [(g2

+ K2
1 K2

2)(k1 − k2)2

− g(k1 + k2)2(K1
2
+ K2

2) − 8gk1k2K1K2]e−8k1
2k2t+8k2

3t+2k1X1+2k2X1 , (6.7c)

where we have taken ξ
(0)

1
= ξ

(0)

2
= 0 without loss of generality. Noting that if we suppose |k1 | > |k2 |

and keep X1 to be constant together with t going to infinity, we find that there is only k1-soliton left

along the line X1 = constant and also find how the k1-soliton is asymptotically identified by its top

trace and amplitude, for both t→±∞.

Let us present the detailed results. When k2 > 0, t→+∞ or k2 < 0, t→−∞, i.e., sgn[k2]·t→+∞,

the solution (6.7) becomes

U =

(

2k1e2(k1X1+4k1
3t)

2k1 + e2(k1X1+4k1
3t)(1 − g/K1

2)

)

X1

=

8k1
3K1

4e8k1
3t+2k1X1

[2k1K1
2
+ (−g + K1

2)e2(k1X1+4k1
3t)]

2
, (6.8a)

and when sgn[k2] · t→−∞ (6.7) becomes

U =
F2

G2

, (6.9a)

F2 = 8k1
3K1

2(k1 + k2)2[g(k1K1 + k2(K1 − 2K2)) + K1(−k1 + k2)K2
2]

2
e2k1X1, (6.9b)

G2 = [−2K1K1
2(K1 + K2)2(g − K2

2) + [(g2
+ K1

2K2
2)(K1 − K2)2

− g((K1
2
+ K2

2)(K1
2
+ K2

2) + 2K1K2(K1
2 − 4K1K2 + K2

2))]e2K1X1 ]2. (6.9c)

One can also rewrite the two-soliton solution (6.5) in terms of the coordinates

(

X2 = x + 4k1
2t, t

)

, (6.10)

and do a similar asymptotic analysis for the k2-soliton. We summarise the above analysis and reach

the following theorem about how the two-soliton waves interact with each other.
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Theorem 1. The asymptotic behaviour is described as follows. Suppose that |k1 | > |k2 | in (6.7).

Then, when sgn[k2] · t→+∞, the k1-soliton asymptotically follows

top trace : x(t)=−4k1
2t +

1

2k1

ln
��� 2k1K1

2

−g + K1
2

���, (6.11a)

amplitude : Amp=
k2

1
K1

2

−g + K1
2

, (6.11b)

and when sgn[k2] · t→−∞, it asymptotically follows

top trace : x(t)=−4k1
2t +

1

2k1

ln
���2k1K1

2(k1 + k2)2(g − K2
2)

Q + 2k1k2(K1
2
+ K2

2)

���, (6.12a)

amplitude : Amp=−
k1

2[gK1(k1 + k2) − 2gk2K2 + K1K2
2

(k2 − k1)]
2

(g − K2
2

)Q
. (6.12b)

When sgn[k1] · t→−∞, the k2-soliton asymptotically follows

top trace : x(t)=−4k2
2t +

1

2k2

ln
��� 2k2K2

2

−g + K2
2

���, (6.13a)

amplitude : Amp=
k2

2K2
2

−g + K2
2

, (6.13b)

and when sgn[k1] · t→+∞, it asymptotically follows

top trace : x(t)=−4k1
2t +

1

2k1

ln
���2k2K1

2(k1 + k2)2(g − K1
2)

Q + 2k1k2(K1
2
+ K2

2)

���, (6.14a)

amplitude : Amp=−k2
2[gK2(k1 + k2) − 2gk1K1 + K1

2K2(k2 − k1)]
2

(g − K2
1

)Q
, (6.14b)

with Q = g2(k1 � k2)2
� g[(K1

2 + K2
2) (k1 + k2)2

� 8k1k2K1K2] + K1
2K2

2(k1 � k2)2. The phase shift

for the kj(j = 1,2)-soliton after interaction is − 1
2kj

ln| (k1+k2)2(g−K1
2)(g−K2

2)

Q+2k1k2(K1
2
+K2

2)
|.

VII. STRAIGHT CONTINUUM LIMITS

The skew continuum limit of the elpKdV system (4.7) was considered in Ref. 1 where the authors

studied initial value problems of the system. Such a limit is performed by introducing the skew-change

of variables (n, m) 7→ (N= n + m, m).

Let us consider the straight continuum limit, where we first take

m→∞, b→∞, while
m

b
= τ − τ0 ∼O(1), (7.1)

with τ0 being a constant. We define

u= un,m =: un(τ), s= sn,m =: sn(τ), w = wn,m =: wn(τ). (7.2)

Then, applying the Taylor expansions into (4.7) at τ, the leading term (in terms of 1/b) of each

equation yields the following semi-discrete equations:

∂τ(ũ + u)= 2a(ũ − u) − (ũ − u)2
+ g( s̃ − s)2, (7.3a)

∂τ(s̃s)= (̃s − s)(ãs + as − w̃ + w) + ũs2
+ ũs2 − s̃s(u + ũ), (7.3b)

(a + u − w̃
s̃

)(a − ũ +
w

s
)= a2 − R(s̃s ), (7.3c)

∂τ(u +
w

s
) + (u − w

s
)
2

=R(s2), (7.3d)

in which both (4.7b) and (4.7c) yield (7.3b) in the continuum limit. Here we note that this semi-

discrete system can be viewed as an elliptic Bäcklund transformation of the epKdV system (5.13).
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One natural question is whether the elpKdV system (1.1) can be rederived from this elliptic Bäcklund

transformation as a superposition formula. This will be considered elsewhere. Here we also point out

that the non-elliptic limit (7.3a) can perhaps be viewed as an elliptic version of the dressing chain

given by Veselov and Shabat in Ref. 13.

For the full limit of (7.3), first we take

n→∞, a→∞, while
n

a
= ξ ∼O(a2) (7.4)

and then introduce continuous variables x and t,

x = τ + ξ, t =
ξ

12a2
, (7.5)

with ξ as an auxiliary variable. Then, in the coordinates (x,t) both (7.3c) and (7.3d) yield
(

u +
w

s

)

x
+

(

u − w
s

)2

=R(s2), (7.6)

(7.3a) yields (5.13a) and (7.3b) gives (5.13b). For this to be possible, we need to make use of the

relation sxx = 2(gshx �usx + wx), which is obtained as a continuous limit of the summation of (I4.6c)

and (4.6d).

If we employ the transformation A=−u + w
s

in the Equations (7.3b) and (7.3c), it turns out that

∂τ(s̃s)= (̃s − s)(ãs + as − Ã̃s + As) + ũs2
+ ũs2 − s̃s(u + ũ), (7.7a)

(a + u − Ã − ũ)(a − ũ + A + u)= a2 − R(s̃s). (7.7b)

The continuum limit of (7.7) gives the coupled system (5.16), where we use the relation ux =
1
2
(R(s2)−

A2 − Ax), which is simply (7.6) written in terms of A and u, derived from (7.3d).

VIII. CONCLUSIONS

In this paper a new class of solutions of the elliptic KdV systems (both the discrete (1.1) and

the continuous (1.2)) has been uncovered. We made use of Sylvester-type equation with elliptic

ingredient. Solutions can be classified by the canonical form of k, which are much richer than pure

solitons. A typical feature of two soliton solutions is the amplitude change after interaction.

A Cauchy matrix dressed by dispersion relations usually satisfies a Sylvester equation. Starting

from the Sylvester equation and dispersion relations, we find that not only integrable equations can

be derived but also their solutions and Lax pairs can be constructed. The Cauchy matrix approach is

particularly powerful in the study of discrete integrable systems (see Refs. 6 and 8), as well as con-

tinuous systems.7 Dressed Cauchy matrices also play key roles in the so-called operator method,14–19

trace method,20 etc.

There are two ways elliptic curves can play a role in integrable systems: either as elliptic type

solutions (i.e., solutions expressible in terms of elliptic functions) or as elliptic deformation of the

equations themselves. In either way, the study of the elliptic case is often richer than the rational

and trigonometric/hyperbolic case, and reveals many new features of the models in question, thus

leading to new insights into the true nature of those integrable systems.21–28 In this paper, we have

shown that the Cauchy matrix approach works for the study of some elliptic integrable systems, i.e.,

some equations in these systems are formulated with an elliptic curve. Starting with the Sylvester

equation (1.6), we derived the discrete as well as continuous elliptic KdV systems. Apart from finding

and illustrating the solutions, we also obtained Lax representations. With regard to the solutions, the

discrete plane wave factor (C2) and continuous one (C5b) are defined with the wave number ki which

together with K i obeys the elliptic curve (1.3). For the Lax pairs (4.18) and (5.19), (k,K) plays the

role of spectral parameters which also obeys the elliptic curve.
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APPENDIX A: LOWER TRIANGULAR TOEPLITZ MATRICES

Here we collect some properties of Lower triangular Toeplitz (LTT) matrices.

A N th order LTT matrix is a matrix of the following form:

T
[N]({aj}N1 )=

*.......
,

a1 0 0 · · · 0 0

a2 a1 0 · · · 0 0

a3 a2 a1 · · · 0 0
...

... · · ·
...

...
...

aN aN−1 aN−2 · · · a2 a1

+///////
-N ×N

. (A1)

Let

T
[N]
= {T[N]({aj}N1 )}, (A2)

then we have AB=BA, ∀A, B ∈ T [N], i.e., T
[N] is a commutative set with respect to matrix

multiplication. Particularly, the subset

T
[N]

1
= {F∈ T [N] | det(F), 0} (A3)

is an abelian group.

Obviously, the Jordan block matrix

Γ
[N]
J

(a)=

*.......
,

a 0 0 · · · 0 0

1 a 0 · · · 0 0

0 1 a · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 a

+///////
-

(A4)

is a LTT matrix, and one can verify the following.

Proposition A.1. If A ∈CN×N and Γ
[N]
J

(a)A=A Γ
[N]
J

(a), then there must be A ∈ T [N].

If aj ∈C, then the LTT matrix (A1) can be generated by certain functions. Suppose that f (k) is an

analytic function. Using Taylor coefficients

aj =
1

( j − 1)!
∂

j−1

k
f (k)|k=k0

, j = 1, 2, . . . , N (A5)

we can generate a LTT matrix.

Definition 1. The matrix (A1) with (A5) is called a LTT matrix generated by f (k) at k = k0,

denoted by T
[N][ f (k0)], and f (k) is called the generating function.

In light of this definition, the Jordan block (A4) is generated by f (k) = k at k = a, and the unit matrix I

is generated by f (k)≡ 1. On the other hand, for any LTT matrix (A1) with aj ∈C, it can be generated

by the polynomial

α(k)=

N
∑

j=1

aj(k − k0)j−1 (A6)

with {aj} as coefficients. Next, by [ f (k)]k0
[N ] we denote a set of functions (equivalence class) in

which all the functions have the same (N � 1)th order Taylor polynomial at k = k0 as f (k) has. Say,

f (k)∼ g(k) if they have the same (N � 1)th order Taylor polynomial at k = k0. Thus, the LTT matrix

(A1) can be generated by any f (k) ∈ [α(k)]
[N]

k0
. With such correspondence, we have the following.

Proposition A.2. If A=T
[N][f (k0)] and B=T

[N][g(k0)], then

C =AB=T
[N][f (k0)g(k0)], (A7)

i.e., AB is a LTT matrix generated by f(k)g(k) at k0. As a result, we have

s
∏

j=1

T
[N][fj(k0)]=T

[N][

s
∏

j=1

fj(k0)]
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and

(T [N][f (k0)])
−1
=T

[N][1/f (k0)]

if f (k0), 0.

Proof. We only need to prove (A7). Suppose

A= (aij)N×N
, B= (bij)N×N

, C = (cij)N×N
.

Then we have (with k = k0)

aij =


1

(i−j)!
∂

i−j

k
f (k), i ≥ j

0, i < j
, bij =


1

(i−j)!
∂

i−j

k
g(k), i ≥ j

0, i < j
,

and (with k = k0)

cij =

N
∑

s=1

aisbsj

=

N
∑

s=1

1

(i − s)!
∂i−s

k f (k) · 1

(s − j)!
∂

s−j

k
g(k)

=

N
∑

l=i−j

1

(i − j − l)! l!
∂

i−j−l

k
f (k) · ∂l

kg(k) (i ≥ j)

=

1

(i − j)!

N
∑

l=i−j

∂
i−j

k
(f (k)g(k)), (i ≥ j),

and cij = 0 when i < j. Thus, (A7) is proved. �

In addition to the LTT matrices, we define the following skew triangular Hankel matrix:

H
[N]({bj}N1 )=

*.......
,

b1 · · · bN−2 bN−1 bN

b2 · · · bN−1 bN 0

b3 · · · bN 0 0
...

...
...

...
...

bN · · · 0 0 0

+///////
-N ×N

. (A8)

The following property holds.7

Proposition A.3. Let

T̄
[N]
= {H[N]({bj}N1 )}. (A9)

Then we have

(1) H =H
T , ∀H ∈ T̄ [N]

.

(2) HA= (HA)T
=A

T
H, ∀A ∈ T [N], ∀H ∈ T̄ [N]

.

It can be extended to the following generic case.

Proposition A.4. Let

G
[N]
= {Diag(Γ

[N]
D

({a1,j}N1

1
), T

[N]({a2,j}N2

1
), T

[N]({a3,j}N3

1
), · · · , T

[N]({as,j}Ns

1
))}, (A10a)

Ḡ
[N]
= {Diag(Γ

[N]
D

({b1,j}N1

1
), H

[N]({b2,j}N2

1
), H

[N]({b3,j}N3

1
), · · · , H

[N]({bs,j}Ns

1
))}, (A10b)

where 0 ≤Nj ≤N for j = 0, 1, . . . , N and
∑s

j=1
Nj =N. Then we have

(1) AB=BA, ∀A, B ∈ G[N].

(2) H =H
T , ∀H ∈ Ḡ[N]

.

(3) HA= (HA)T
=A

T
H, ∀A ∈ G[N], ∀H ∈ Ḡ[N]

.
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APPENDIX B: LIST OF NOTATIONS

Here we list some notations used in the paper.

Γ
[N]
D

({kj}N1 )=Diag(k1, k2, · · · , kN ), (k2
i , k2

j , ki , 0), (B1a)

Γ
[N]
J

(k1)=

*.......
,

k1 0 0 · · · 0 0

1 k1 0 · · · 0 0

0 1 k1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 k1

+///////
-

, (B1b)

Γ
[N]
G
=Diag

(

Γ
[N1]
D

({kj}N1

1
), Γ

[N2]
J

(kN1+1), Γ
[N3]

J
(kN1+2), . . . , Γ

[Ns]

J
(kN1+(s−1))

)

, (B1c)

where
∑s

j=1
Nj =N . The subscripts D, J , and G correspond to the cases of Γ being diagonal, being of

Jordan block and generic canonical form, respectively. Besides,

N-th order vector : e
[N]
= (1, 1, 1, . . . , 1)T , (B2a)

N-th order vector : e
[N]

1
= (1, 0, 0, . . . , 0)T , (B2b)

N-th order vector : g[N](a)=
(1

a
,
−1

a2
,

1

a3
, . . . ,

(−1)N−1

aN

)

T

, (B2c)

N × N matrix : G
[N]
D

({kj}N1 )= (Gi,j)N×N
, Gi,j =

1 − g/(KiKj)

ki + kj

. (B2d)

APPENDIX C: EXPLICIT FORMS OF r AND c

Here we list out the explicit forms of r and c satisfying (4.1) and (5.1), respectively.

1. Solution to (4.1)

(1) When Γ= Γ
[N]
D

({kj}N1 ), we have

r= r
[N]
D

({kj}N1 )= (r1, r2, . . . , rN )T , with ri = ρi, (C1)

where

ρi =

(a + ki

a − ki

)

n
(b + ki

b − ki

)

m

ρ0
i , (C2)

and ρ0
i

is a constant.

(2) When Γ= Γ
[N]
J

(k1), we have

r= r
[N]
J

(k1)= (r1, r2, . . . , rN )T , with ri =

∂i−1
k1
ρ1

(i − 1)!
, (C3)

where ρ1 is defined in (C2).

(3) When Γ= Γ
[N]
G

, we have

r=

*..........
,

r
[N1]
D

({kj}N1

1
)

r
[N2]
J

(kN1+1)

r
[N3]

J
(kN1+2)

...

r
[Ns]

J
(kN1+(s−1))

+//////////
-

, (C4)

where r
[N1]
D

({kj}N1

1
) and r

[Ni]
J

(kj) are defined as in (C1) and (C3), respectively.
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2. Solution to (5.1)

(1) When Γ= Γ
[N]
D

({kj}N1 ) we have r= r
[N]
D

({kj}N1 ), which is given in the form of (C1) and

c= c
[N]
D

({kj}N1 )= (c1, c2, . . . , cN )T , with ci = ri, (C5a)

but here

ρi = eξi , ξi = kix + 4k3
i t + ξ

(0)

i
, with constant ξ

(0)

i
. (C5b)

(2) When Γ= Γ
[N]
J

(k1), we have r= r
[N]
J

(k1), which is given in the form of (C3) and

c= c
[N]
J

(k1)= (c1, c2, . . . , cN )T , with ci = rN−i+1, (C6)

where ρ1 is defined in (C5b).

(3) When Γ= Γ
[N]
G

we have r, which is given in the form of (C4) and

c=

*..........
,

c
[N1]
D

({kj}N1

1
)

c
[N2]
J

(kN1+1)

c
[N3]

J
(kN1+2)

...

c
[Ns]

J
(kN1+(s−1))

+//////////
-

, (C7)

where c
[N1]
D

({kj}N1

1
) and c

[Ni]
J

(kj) are defined as in (C5a) and (C6), respectively.
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