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Quantized Skyrmions from SU(4) weight diagrams
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Starting from solutions of the lightly bound Skyrme model, we construct many new Skyrmion solutions of the
standard Skyrme model with tetrahedral or octahedral symmetry. These solutions are closely related to weight
diagrams of the group SU(4), which enables us to systematically derive some geometric and energetic properties
of the Skyrmions, up to baryon number 85. We discuss the rigid-body quantization of these Skyrmions and
compare the results with properties of a selection of observed nuclei.
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I. INTRODUCTION

The lightly bound Skyrme model, developed by the Leeds
group [1–3], gives new insight into the structure and symme-
tries of Skyrmions for a large range of baryon numbers, B. In
this model, Skyrmion solutions are very well approximated
by clusters of B = 1 Skyrmions located at the points of a
face-centered cubic (FCC) lattice. Four different Skyrmion
orientations occur periodically in the lattice. The Skyrmions
do not significantly merge in the lightly bound model, and the
classical binding energy of each Skyrmion is small compared
to its rest mass. This is an attractive feature, analogous to
the small binding energy of nucleons in nuclei, of order
8 MeV per nucleon, compared to the nucleon rest mass
938 MeV. However, this feature is considerably spoiled by
quantization, where the spin energy of each B = 1 Skyrmion
adds significantly to the total energy. Also, the Lagrangian of
the lightly bound model is quite complicated.

We do not work directly with the lightly bound model but
instead work with the standard Skyrme model, with its sigma
model term, Skyrme term, and pion mass term [4,5]. The
Skyrme field is an SU(2)-valued field

U (x) = σ (x) 1 + iπ (x) · τ , (1)

where 1 is the unit matrix and τ are Pauli matrices. σ (x)
and π(x) are sigma and pion fields satisfying σ 2 + π · π = 1.
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The classical vacuum configuration, and also the boundary
condition at spatial infinity for Skyrmions, is U = 1.

The baryon number and (static) energy of Skyrme field
configurations are integrals involving the “current” Ri =
(∂iU )U−1. The baryon number B is the topological degree
of U ,

B = − 1

24π2

∫
R3

εijkTr(RiRjRk) d3x, (2)

an integer that we assume to be positive. The energy (in Skyrme
units and conveniently normalized) is

E = 1

12π2

∫
R3

{
− 1

2
Tr(RiRi) − 1

16
Tr([Ri,Rj ][Ri,Rj ])

+m2Tr(1 − U )

}
d3x, (3)

where m is the dimensionless pion mass. We have set m = 1
for the numerical calculations in this paper. Skyrmions are
absolute minimisers of E for each baryon number B or, in
a looser sense, local minima of E with energy close to the
absolute minimum.

We have found previously [6,7] that after appropriate
calibration, quantized standard Skyrmions have reasonable
spectra, matching those of various nuclei, including carbon-12
and oxygen-16. However, the clusters in the lightly bound
model are still very helpful as starting configurations to relax
to the true Skyrmions, and we have observed that the true
Skyrmions have largely unchanged shapes and symmetries.
The main difference is that the B = 1 Skyrmions merge
slightly as they bind together, and the gaps between them
acquire a small baryon and energy density. Several examples
are illustrated in this paper.

In Ref. [3] the optimal clusters, with strongest binding, were
found for all baryon numbers up to B = 23, and there is in
principle no problem going to higher B. An exploration of
larger clusters was initiated in Ref. [8], where relationships
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FIG. 1. The Dynkin diagram for SU(4).

to magic nuclei and the shell model were proposed. That
work made clear that an interesting class of clusters are those
corresponding to the three-dimensional weight diagrams of
irreducible representations (irreps) of the Lie group SU(4).
This observation builds on the insight of Wigner into the role of
SU(4) symmetry and its irreps in nuclear physics [9]. Wigner’s
ideas were developed by Cook, Dallacasa, and others [10–13],
who viewed certain weight diagrams of SU(4) as illustrating
the spatial structure of selected nuclei, especially those with
baryon numbers B = 4,16,40,80,140. This idea was rather
speculative but has found some justification in the context
of Skyrmions [8]. An important detail is that if nucleons are
placed at the locations of weights in a weight diagram, then the
total number of nucleons B is the number of weights counted
without multiplicity, i.e., the number of distinct weights. This
differs from the dimension of the irrep, which counts weights
with multiplicity.

The mathematical theory of weight multiplicities is well
developed [14], and it is known how to find the number of
distinct weights of an SU(4) irrep [15]. In Sec. II, we present
the formula for the number of distinct weights c in terms of
the Dynkin indices [P,Q,R] of the irrep. It is a rather more
complicated polynomial than the formula for the dimension
d of the irrep. However, c can be expressed as a simple
combination of dimensions of irreps with Dynkin indices close
to those for the irrep of interest. This is based on the idea that
the weight multiplicities of an irrep can be reduced to unity
by subtracting and adding weights of neighboring irreps. The
result generalizes a formula for SU(3) irreps, where c is simply
the difference of two dimensions.

The weight lattice of SU(4) is a three-dimensional body-
centered cubic (BCC) lattice, and weight diagrams are finite
clusters of points of this lattice. All such clusters are symmetric
under the Weyl group, which is the tetrahedral group T, and
some clusters are symmetric under the octahedral (cubic) group
O. The extra symmetry arises from the outer automorphism
that exchanges the ends of the SU(4) Dynkin diagram. Clusters
have symmetry O if the Dynkin indices are unchanged by this
reflection. The Dynkin diagram, with Dynkin indices attached,
is shown in Fig. 1. A further property of weight clusters is that
they are convex polyhedra and have no interior holes. Their
faces are generically hexagons with alternating side lengths
and rectangles.

Weights of an irrep can only differ by elements of the
root lattice, and the root lattice is an FCC sublattice of the
weight lattice, of order four. Weights of an irrep are therefore
characterized by a congruence class called the quadrality
[generalizing SU(3) triality] and lie in the coset of the FCC root
lattice corresponding to the quadrality. So all weight clusters
(possibly after a shift) are clusters of a fixed FCC lattice, as
in the lightly bound Skyrme model. Quadrality 0 coincides
with the root lattice and contains, for example, the weight
diagram of the adjoint representation 15. This diagram has 13

distinct weights, giving a model for an octahedrally symmetric
B = 13 Skyrmion. Quadralities 1 and 3 have equivalent weight
clusters related by the action of the outer automorphism; the
fundamental irreps 4 and 4 are in these classes, for example,
and give isomorphic tetrahedral clusters modeling B = 4
Skyrmions. Physically, these clusters differ in their orientation
in space, but when we quantize Skyrmions we must allow for
all orientations, so there is no distinction between quadralities 1
and 3. Quadrality 2 contains further weight clusters. The small-
est is the octahedral cluster of the irrep 6, whose weights have
unit multiplicity, so this cluster models a B = 6 Skyrmion.

In Sec. II we tabulate systematically the weight clusters for
all irreps up to baryon (cluster) number 85. These have baryon
numbers

B = 1,4,6,10,13,16,19,20,28,31,35,38,40,44,50,52,

55,56,68,79,80,84,85, (4)

and all have tetrahedral symmetry at least. This list includes
several examples that were not discussed in Ref. [8], although
it omits some interesting clusters that were discussed there but
do not occur as weight diagrams. In Sec. III we discuss how
a weight cluster becomes a Skyrmion when B = 1 Skyrmions
are located at the weight points, and their orientations are
appropriately fixed. The cluster needs to be numerically re-
laxed to obtain a Skyrmion of minimal energy. We present the
numerically generated Skyrmions in Figs. 2–4. It was pointed
out in Ref. [3] that some of the small clusters do not give partic-
ularly stable Skyrmions; however, for larger baryon numbers
the clusters have more bonds between nearest neighbors, and
they seem to be more stable, especially if they have truncated
shapes rather than being pure tetrahedra or pure octahedra.

Classical Skyrmions should be thought of as intrinsic
structures of nuclei. They spontaneously break most spatial
and internal symmetries, because they have a definite position
and orientation, and pion field orientation (i.e., isospace orien-
tation), but these symmetries are restored by quantization. In
Sec. IV we consider the rigid-body quantization of all these
Skyrmions. The resulting quantum states are characterized
by their spin, isospin, and parity (and also momentum). The
spin/isospin combinations are constrained by the residual
unbroken symmetry of the classical Skyrmion and also by
the associated Finkelstein-Rubinstein (FR) sign representation
that arises topologically. The general approach to rigid-body
quantization of Skyrmions is well established [16,17], but the
details of the symmetry operations and FR signs are sometimes
different here than in previous discussions. The tetrahedral (or
octahedral) symmetry is realized in different ways depending
on the congruence class. We determine the allowed low-lying
states for each quadrality, finding their spins, isospins, and
parities. The calculations for quadrality 1 (quadrality 3 is the
same, so we generally do not mention it in what follows) are the
same as those presented in Ref. [8]. Here the baryon number
is always a multiple of 4, so the spin and isospin are integers.
The analysis for quadralities 0 and 2 is not too hard, but the
results are mostly novel. Clusters of quadrality 0 have an odd
baryon number, because there is always a single weight at the
origin, and other weights lie in orbits of the tetrahedral group
with an even number of weights. The quantized states therefore
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have half-integer spin and isospin. For quadrality 2, the baryon
number is even but not a multiple of four. For quadralities 0 and
2, the FR sign representation can be either trivial or nontrivial
if there is octahedral symmetry. So there are various cases to
consider. The allowed spin/isospin/parity states for all isospins
up to I = 3 are classified in detail in Sec. V.

In Sec. VI we determine the energy levels of the various
states obtained from the rigid-body quantization. This uses
information about the moments of inertia in space and isospace
of the Skyrmions; because of the high degree of symmetry,
each moment of inertia tensor has few independent entries.
We also compare the predictions for the quantized Skyrmions
with known nuclear states that have been established as lying
in isospin multiplets. Though not all nuclear states can be
explained convincingly, there are some surprising successes. In
particular, certain states of the B = 31 and B = 38 Skyrmions
match data rather well. For these baryon numbers, neither the
Skyrmions nor their quantization have been considered before.

Section VII contains our conclusions.

II. SU(4) WEIGHT CLUSTERS AND THE
CLUSTER NUMBER

The root lattice of SU(4) is an FCC lattice. We fix the
scaling of this, so that the Cartesian coordinates x = (x,y,z) of
the lattice points are even integers, satisfying x + y + z = 0
mod 4. The roots themselves are the 12 vectors (±2, ± 2,0),
(±2,0, ± 2), and (0, ± 2, ± 2). A basis of simple roots αj :
j = 1,2,3 is

α1 = (2,2,0), α2 = (−2,0,2), α3 = (2, − 2,0). (5)

As expected from the SU(4) Dynkin diagram, the angle
between α2 and both α1 and α3 is 2π

3 , whereas α1 and α3

are orthogonal.
The fundamental weights λi : i = 1,2,3 satisfy

λi · αj = 4δij . (6)

Explicitly, we find that

λ1 = (1,1,1), λ2 = (0,0,2), λ3 = (1, − 1,1). (7)

The simple roots can be expressed in terms of these as

α1 = 2λ1 − λ2, α2 = 2λ2 − λ1 − λ3,
(8)

α3 = 2λ3 − λ2.

The weight lattice is the integer span of the fundamental
weights, so the general weight is pλ1 + qλ2 + rλ3, with p, q,
and r integers. It is a BCC lattice, dual to the FCC root lattice.
There are four cosets (congruence classes) of the root lattice in
the weight lattice, and they are labeled by a quadrality 0,1,2, or
3. The quadrality of a weight is p + 2q + 3r mod 4. Note that
the roots all have quadrality 0. Weights of an irrep differ by
elements of the root lattice, so they all have the same quadrality.

Each irrep has a highest weight Pλ1 + Qλ2 + Rλ3, and
[P,Q,R] are known as the Dynkin indices of the irrep. Other
weights of the irrep are obtained by subtracting positive
combinations of α1, α2, and α3, which does not affect the
quadrality, so the quadrality of the irrep is P + 2Q + 3R
mod 4.

The smallest examples of irreps with quadralities 0,1,2,3,
respectively, are the trivial irrep 1 = [0,0,0], the fundamental
irrep 4 = [1,0,0], the irrep 6 = [0,1,0], and the antifunda-
mental irrep 4 = [0,0,1]. The notation shows the dimension
(in bold) and the Dynkin indices. The 6 is a tensor rep-
resentation of SU(4), but it is also the fundamental vector
representation of SO(6), whose Lie algebra is isomorphic to
that of SU(4).

The Dynkin diagram of SU(4) has a reflection symmetry,
exchanging the ends. This corresponds to an outer automor-
phism of the algebra, namely complex conjugation. It follows
that the irreps with Dynkin indices [P,Q,R] and [R,Q,P ]
are conjugate and have the same dimension. Their weight
diagrams are related by the reflection that exchanges λ1 and
λ3. Since weight diagrams have further reflection symmetries,
these conjugate weight diagrams just differ by a rotation. For
example, the weight diagrams of the 4 and 4 are differently
oriented regular tetrahedra. As we interpret weight diagrams
as Skyrmion clusters, all orientations have equal importance, so
we can identify the weight diagrams of [P,Q,R] and [R,Q,P ].
The irreps with P = R are self-conjugate.

The weight diagram of any SU(4) irrep is invariant under the
Weyl group, the group generated by reflections in the planes
orthogonal to the roots. For SU(4), the Weyl group is the
tetrahedral group T. This is the full symmetry group of the
tetrahedron, with 24 elements, and is a subgroup of O(3).
Abstractly it is the permutation group S4, which permutes
the vertices of a regular tetrahedron. For the self-conjugate
irreps there is a further symmetry, a rotation by π

2 , and the
weight diagrams of these irreps are invariant under O, the full
octahedral subgroup of O(3), with 48 elements.

These symmetries are important for us—they are the body-
fixed symmetry groups of the Skyrmion clusters and have a
crucial influence on the allowed combinations of spin, isospin,
and parity of quantum states.

Skyrmions are free to move, so the position of the center of a
Skyrmion does not have to coincide with the origin of Cartesian
coordinates. Weight diagrams of quadrality 0 are subsets of
the FCC root lattice. On the other hand, weight diagrams of
nonzero quadrality are subsets of shifted FCC root lattices.
For example, weights of the quadrality 1 irrep 4 form a regular
tetrahedron with center of mass at the origin, but only after a
shift do they form a cluster in the FCC root lattice with one point
at the origin, for example, as the set of points (0,0,0), (2,2,0),
(2,0,2), and (0,2,2). The first description, as a weight cluster,
is more convenient here, where we use some representation
theory, and quadrality is significant, but the second description
is how the cluster appears in Ref. [3].

For us, the most important characteristic of a weight
diagram is the number of distinct weights it has. We call this the
cluster number c of the irrep, and it is the same as the baryon
number B of the corresponding Skyrmion. For the weight
diagram with Dynkin indices [P,Q,R], the cluster number is
[15]

c(P,Q,R) = 2
3Q3 + 2Q2 + 7

3Q+1+(
2Q2 + 4Q + 11

6

)
× (P+R) + (Q + 1)(P+R)2 + (4Q + 1)PR

+ 1
6 (P + R)3 + (P + R)PR. (9)
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This formula can be verified by a truncation argument. Any
weight diagram can be obtained by starting with a complete,
pure tetrahedral weight diagram, then truncating four equal,
smaller tetrahedra from each vertex, and, finally, truncating
the six remaining edges symmetrically. To get the weight
diagram of [P,Q,R], with P � R, one needs to start with
the pure tetrahedral diagram of the irrep with Dynkin indices
[P + 2Q + 3R,0,0], which has P + 2Q + 3R + 1 weights
along an edge (and edge length P + 2Q + 3R). The first
truncation removes tetrahedra with Q + 2R weights along an
edge, and the second truncation removes R rectangular layers.
The resulting diagram has rectangular faces with edge lengths
P and R, hexagonal faces with alternating edge lengths P and
Q, and hexagonal faces with alternating edge lengths Q and
R. Some faces degenerate to lines, triangles, or points if one
or two of P , Q, and R are zero.

The polynomial c(P,Q,R) is cubic and rather complicated.
It can be expressed more simply as a linear combination of the
dimension of the irrep d(P,Q,R) and the dimensions of a few
irreps with nearby Dynkin indices [15].

Let us recall how this works for SU(3). The SU(3) irrep
with Dynkin indices [P,Q] has a hexagonal weight diagram,
with side lengths P and Q. This diagram is obtained from an
equilateral triangle of side length P + 2Q by truncating three
triangles of side length Q − 1. As the nth triangular number is
1
2n(n + 1), the cluster number c(P,Q), the number of distinct
weights, is

c(P,Q) = 1
2 (P 2 + Q2 + 4PQ + 3P + 3Q + 2), (10)

symmetric under exchange of P and Q.
The diagram has weights lying on a nested set of hexagons,

with the inner hexagons degenerating to triangles if P �= Q.
The weight multiplicity is 1 on the outside and increases by 1
at each step inwards until one reaches a triangle, after which it
remains constant. The cluster number c(P,Q) is therefore the
difference between the dimensions of the irreps with Dynkin

indices [P,Q] and [P − 1,Q − 1],

c(P,Q) = d(P,Q) − d(P − 1,Q − 1), (11)

because the distinct weights of the irrep with Dynkin indices
[P − 1,Q − 1] coincide with those for the irrep with Dynkin
indices [P,Q], except for their absence on the outer hexagon,
and the multiplicities are all less by 1. Note that the shift vector
from the highest weight of the irrep [P,Q] to the highest weight
of the irrep [P − 1,Q − 1] is the negative of the positive root
α1 + α2, where α1 and α2 are SU(3) simple roots.

Using the formula for the dimension of an SU(3) irrep [18]

d(P,Q) = 1
2 (P + 1)(Q + 1)(P + Q + 2) (12)

in (11), we easily verify (10). Note that c(P,Q) and d(P,Q)
are naïvely only defined for non-negative integers P and Q.
But formula (11) is true even if P or Q is zero, making P − 1
or Q − 1 equal to −1. In either case, d(P − 1,Q − 1) = 0
and c(P,Q) = d(P,Q). This is correct because if P or Q is
zero, then the weight diagram is triangular and all weights have
multiplicity 1. Note also that the irreps whose dimensions are
combined in (11) have the same triality, as P + 2Q = (P −
1) + 2(Q − 1) mod 3.

For an SU(4) irrep the dimension is [18]

d(P,Q,R) = 1
12 (P + 1)(Q + 1)(R + 1)(P + Q + 2)

× (Q + R + 2)(P + Q + R + 3), (13)

a polynomial of degree 6 in (P,Q,R), symmetric under
exchange of P and R. The dimension of an irrep with Dynkin
indices shifted from [P,Q,R] by fixed amounts is another
polynomial of degree 6. By combining these polynomials for a
suitable, finite set of shifts we obtain the cubic polynomial
c(P,Q,R). The combination preserves the exchange sym-
metry, and each shift preserves the quadrality P + 2Q + 3R
mod 4.

The correct combination is [15]

c(P,Q,R) = d(P,Q,R) − d(P − 1,Q − 1,R + 1) − d(P + 1,Q − 1,R − 1) − d(P − 1,Q,R − 1) + d(P,Q − 2,R)

+ d(P − 2,Q − 1,R) + d(P,Q − 1,R − 2) − d(P − 1,Q − 2,R − 1). (14)

The seven shift vectors here are the negatives of the combina-
tions of simple roots

α1 + α2, α2 + α3, α1 + α2 + α3,

α1 + 2α2 + α3, 2α1 + 2α2 + α3, (15)

α1 + 2α2 + 2α3, 2α1 + 3α2 + 2α3.

The first three of these are the nonsimple positive roots γ 1,
γ 2, and γ 3, and the remaining combinations are their sums
γ 1 + γ 2, γ 1 + γ 3, γ 2 + γ 3, and γ 1 + γ 2 + γ 3.

In the relation (14) the coefficients are 1 or −1, depending
on whether the shift involves an even or odd number of the γ i .
Some of these terms can fail to be true dimensions of irreps
if P, Q, or R have value 0, so that P − 2, Q − 2, or R − 2
have value −2. The corresponding dimension d may then be
negative, but it still makes an essential contribution. If P − 2,
Q − 2, or R − 2 have value −1, then d = 0.

An example is the cluster number for Dynkin indices
[0,Q,0]. The weight diagram is a pure octahedron. The relation
(14) simplifies to

c(0,Q,0) = d(0,Q,0) + d(0,Q − 2,0) + d(−2,Q − 1,0)

+ d(0,Q − 1, − 2), (16)

where

d(0,Q,0) = 1
12 (Q + 1)(Q + 2)2(Q + 3),

d(0,Q − 2,0) = 1
12 (Q − 1)Q2(Q + 1),

d(−2,Q − 1,0) = d(0,Q − 1, − 2)

= − 1
12 (Q − 1)Q2(Q + 1). (17)

Therefore

c(0,Q,0) = 1
3 (Q + 1)(2Q2 + 4Q + 3), (18)

with values 6, 19, 44, and 85 for Q = 1, 2, 3, and 4.
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TABLE I. Weight clusters with quadrality 0.

[P,Q,R] c(P,Q,R) d(P,Q,R) Symmetry Nshort Nlong Ebond/B

[0,0,0] 1 1 O+ 0 0 0.0
[1,0,1] 13 15 O− 36 12 2.03
[0,2,0] 19 20 O+ 60 18 2.4
[2,1,0] 31 45 T 108 30 2.71
[4,0,0] 35 35 T 120 30 2.74
[2,0,2] 55 84 O− 216 90 2.62
[1,2,1] 79 175 O− 336 126 2.98
[0,4,0] 85 105 O+ 360 132 2.99

Another example is the truncated octahedron with Dynkin
indices [1,1,1]. Here the cluster number is 38, whereas the
dimension is 64. This Skyrmion cluster appears to be particu-
larly stable for its size, because the vertex of the cluster located
at the highest weight has six nearest neighbors, which are
reached from the vertex by subtracting each of the six positive
roots, whereas for other clusters (e.g., a pure tetrahedron) the
highest weight vertex has fewer nearest neighbors. All B = 1
Skyrmions in the B = 38 cluster therefore have six or more
nearest neighbors, making it energetically unfavorable to pull
one away. The conical angle at the vertex is also larger (less
pointed) than for other types of vertex, and in compensation
there are more vertices, namely 24 of them, in order to satisfy
the polyhedral version of the Gauss-Bonnet theorem.

Note that the clusters with quadrality 0 all have c odd,
whereas those of quadralities 1 and 2 have c even. This is
because almost all orbits of the tetrahedral Weyl group acting
on the weight lattice have an even number of points (24, 12,
6, or 4), and any cluster is a disjoint union of orbits. The
exceptional odd orbit is the point at the origin, which occurs
in all weight diagrams of quadrality 0 but not in those of
quadralities 1 or 2. Orbits with six points only occur in the
clusters of quadralities 0 and 2. The clusters of quadrality
1 therefore have c a multiple of 4, and at their core is the
tetrahedron of the fundamental irrep. Consistent with this, none
of the quadrality 1 clusters can have symmetry O. This is a
consequence of P and R necessarily being different, because
if P = R, then the quadrality is 2Q mod 4, which is even.

We conclude this section by tabulating the weight clusters
of SU(4) irreps up to cluster number 85. Weight clusters with
quadralities 0, 1, and 2 can be found in Tables I, II, and III. For
quadralities 0 and 2 we assume that P � R. If P > R, then
there is a second cluster with P < R and the same quadrality,
but this is just a copy of the first rotated by π

2 and is not
tabulated. For quadrality 1 we do not restrict to P � R. In
this case, exchanging P and R results in an equivalent cluster
with quadrality 3, rotated by π

2 .
The tables give the Dynkin indices [P,Q,R], the cluster

(baryon) number c(P,Q,R) (clusters with the same cluster
number are distinguished by subscripts including the quadral-
ity), the dimension d(P,Q,R), and the symmetry of the cluster
(either the tetrahedral group T or octahedral group O). When
the symmetry group of a cluster is O there are two possibilities
for the Finkelstein-Rubinstein sign representation. What this
means and how the signs are calculated are explained in
Sec. IV. The two cases are denoted O+ and O−. The last

TABLE II. Weight clusters with quadrality 1.

[P,Q,R] c(P,Q,R) d(P,Q,R) Symmetry Nshort Nlong Ebond/B

[1,0,0] 4 4 T 6 0 1.5
[0,1,1] 16 20 T 48 12 2.4
[0,0,3] 20 20 T 60 12 2.52
[2,0,1] 28 36 T 96 36 2.4
[1,2,0] 40 60 T 150 48 2.79
[3,1,0] 52 84 T 198 60 2.88
[5,0,0] 56 56 T 210 60 2.89
[1,1,2] 681 140 T 282 108 2.88
[1,0,4] 801a 120 T 330 132 2.81
[0,3,1] 801b 140 T 336 120 3.0

four columns give the number of nearest-neighbor bonds (short
bonds) Nshort, the number of next-to-nearest-neighbor bonds
(long bonds) Nlong, and a (dimensionless) estimate of the
binding energy per baryon Ebond/B, where

Ebond = Nshort − 0.8 Nlong. (19)

In the lightly bound model, Nshort − 0.5 Nlong gives a good
estimate for the binding energy of a cluster [19]. Ebond

works better in the standard Skyrme model except for some
exceptional Skyrmions that have particularly visible clustering
into B = 4 cubes and B = 3 tetrahedra, notably the B = 4 and
B = 28 Skyrmions. The binding energy is significantly greater
in these cases.

The formula for the number of nearest neighbor (short)
bonds is

Nshort(P,Q,R) = 4Q3 + 6Q2 + 2Q + (12Q2 + 12Q + 2)

× (P + R) + (6Q + 3)(P + R)2

+ 24QPR + (P + R)3 + 6(P + R)PR.

(20)

We found this by a truncation argument. In the infinite FCC
lattice, each point has 12 nearest neighbors, so there are 6
short bonds per baryon. In a finite cluster, the interior points
still have 12 nearest neighbors, but the exterior points have
fewer. By correcting for the bonds lost from faces, edges, and
vertices, we obtain (20). Similarly, in the infinite FCC lattice,
each point has 6 next-to-nearest neighbors, so there are three
long bonds per baryon. In a finite cluster, we find the number

TABLE III. Weight clusters with quadrality 2.

[P,Q,R] c(P,Q,R) d(P,Q,R) Symmetry Nshort Nlong Ebond/B

[0,1,0] 6 6 O− 12 3 1.6
[2,0,0] 10 10 T 24 3 2.16
[1,1,1] 38 64 O− 144 51 2.72
[0,3,0] 44 50 O+ 168 57 2.78
[3,0,1] 50 70 T 192 75 2.64
[2,2,0] 682 126 T 276 93 2.96
[4,1,0] 802 140 T 324 105 3.0
[6,0,0] 84 84 T 336 105 3.0
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FIG. 2. The relaxed quadrality 0 Skyrmions.

of long bonds is

Nlong(P,Q,R) = 2Q3 + Q + (
6Q2 − 1

2

)
(P + R)

+ 3Q(P + R)2 + (12Q + 3)PR

+ 1
2 (P + R)3 + 3(P + R)PR. (21)

III. WEIGHT CLUSTERS AS SKYRMIONS

To convert a weight cluster into a stable Skyrmion, nearest-
neighbor B = 1 Skyrmions should have a relative orientation
that minimizes the energy of the pair, so there is maximal
attraction. It is known how to assign orientations in an infinite
FCC lattice, so that there is maximal attraction between each
Skyrmion and all its 12 nearest neighbors. Four orientations
are needed, arranged periodically. These are specified by four
SO(3) matrices, but it is convenient to replace them by the
four quaternions 1,i,j,k. (This involves a sign choice that
is unimportant here but becomes more significant when we
consider quantization.) Skyrmions which lie at points of the
form (0,0,0) mod 4 have orientation 1, and points (0,2,2),
(2,0,2), and (2,2,0) mod 4 have, respectively, orientations i,
j , and k.

These orientations are copied onto any weight cluster of
quadrality 0, which is a subcluster of the FCC lattice. For the
other quadralities, the cluster has to be translated, so that the
weights lie on the same FCC lattice. Then the orientations
can be copied directly. (We do not specify the translation
precisely here; different choices correspond to different overall
orientations, but in the quantization we have to consider all of
these anyway.)

For example, the cluster with c = 13 and quadrality 0
becomes a B = 13 Skyrmion consisting of a B = 1 Skyrmion
at the center with orientation 1, surrounded by four B = 1
Skyrmions with orientation i, four with orientation j , and four

with orientation k. The c = 4 cluster has one B = 1 Skyrmion
of each orientation. In Ref. [3], the most strongly bound clusters
up to baryon number 23 were listed (only a few of these
have T or O symmetry), and in each case the distribution of
orientations was given. It appears that the energy is usually
lowest for clusters where the orientations are balanced (occur
in equal or near-to-equal numbers). For quadrality 1 clusters
with T symmetry, there is always exact balance, because each
orbit of the group T with 24, 12, or 4 points is balanced in
itself.

The clusters of B = 1 Skyrmions located at points of the
FCC lattice are not true solutions of the standard Skyrme
model, although they are close to being solutions of the lightly
bound model. We have found true solutions by relaxing the
cluster configurations, using numerical gradient flow; they are
qualitatively similar to the clusters but with some merging of
the B = 1 constituents. The numerically generated Skyrmions
are presented in Figures 2, 3, and 4. Their volumes increase
approximately linearly with B, but the figures are rescaled so
the Skyrmions all appear to have a similar size. The symmetry
of clusters is preserved by the relaxation and in one case is
enhanced. The B = 4 tetrahedral cluster relaxes to the well-
known, cubic B = 4 Skyrmion with O symmetry, modeling
the intrinsic structure of an α particle. Approximately cubic
B = 4 clusters are visible in several larger B clusters, e.g., in
those with B = 20 and B = 56.

The properties of these numerically generated Skyrmions
are presented in Table IV alongside the estimate of the binding
energy per baryon discussed in Sec. II. We also list the moments
of inertia of each Skyrmion. We follow Ref. [17] by denoting
the inertia tensors associated with angular motion, isoangular
motion, and their mixing as V , U , and W , respectively. The
symmetry of each configuration restricts the form of the inertia
tensors. For quadralities 0 and 2, each tensor is proportional to
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FIG. 3. The relaxed quadrality 1 Skyrmions.

the unit matrix so that

Vij = vδij , Wij = wδij and Uij = uδij . (22)

Quadrality 1 Skyrmions have an additional independent com-
ponent in the diagonalized U matrix, but w = 0. We orient
the Skyrmions so that U11 = U22 and U33 is independent.
The difference between the two cases is due to the way the
symmetry acts on the Skyrmion, which is discussed in Sec. IV.

The binding energy per baryon, E1 − EB/B, is plotted
against baryon number in Fig. 5. Solutions with high binding
energy are most likely to be relevant for nuclear physics.
Generally, these have quadrality 1 and are balanced—having
equal numbers of the different B = 1 orientations in the initial
cluster. Skyrmions which are unbalanced, such as those with
B = 55 and B = 682, have low binding energy. The balanced
configurations are more likely to show merging. For example,
the tightly bound B = 56 solution has the structure of 10
B = 4 Skyrmions, bound together by the remaining B = 1
Skyrmions. The B = 28 Skyrmion has a very large binding
and exhibits the most obvious merging. It looks like four B = 4
Skyrmions and four B = 3 Skyrmions, with each set arranged
tetrahedrally, and locked together. There are some exceptions
to this rule. The B = 38 and B = 52 Skyrmions do not merge
significantly but have high binding energy. The Skyrmions with

small binding, for example, most of the quadrality 0 clusters,
usually do not merge significantly. For instance, one can clearly
see the individual components of the B = 85 solution. This has
a binding energy of 0.146 per baryon which is particularly
low for its size, even less than the much smaller B = 28
Skyrmion.

IV. RIGID-BODY QUANTIZATION

The basic approach to quantization of a Skyrmion of any
baryon number is the quantization of the overall orientational
degrees of freedom in both space and isospace. This rigid-body
quantization is a generalization of the treatment of the B = 1
Skyrmion by Adkins, Nappi, and Witten [16] and has been
applied to many examples of Skyrmions, from B = 2 upwards
[17,20]. Shape-deforming degrees of freedom have also been
considered more recently [7,21], but we will not consider them
here. We will find the combinations of spin, isospin, and parity
that are allowed for the quantum states. A parity assignment
emerges automatically whenever a Skyrmion has at least one
reflection symmetry, and all our clusters have this.

Our clusters have either T or O symmetry, acting in the
body-fixed frame of the Skyrmion. The even part of the
symmetry group [the rotations in the tetrahedral or octahedral
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FIG. 4. The relaxed quadrality 2 Skyrmions.

subgroups of SO(3)] places restrictions on the body-fixed spin
and isospin quantum numbers, and the odd part controls the
parity. If a given combination of total spin J and total isospin
I is allowed, then their projections J3 and I3 on space-fixed
axes are not constrained, and can take all their standard values
(2J + 1 values of J3 and 2I + 1 values of I3), so we suppress
these labels when describing allowed states, and only keep the
labels J,L3 and I,K3 where L3 and K3 are the projections of
spin and isospin with respect to the third body-fixed axes. K3

is a quantity peculiar to Skyrmions, where isospin arises from
the quantization of the orientation in isospace. (Our notation is
that usually used in the context of Skyrmion quantization and
also in particle physics. In nuclear physics, spin and isospin
are usually denoted by I and T .)

The symmetry groups T and O act on clusters by a
combination of O(3) transformations (even or odd orthogonal
transformations) in space and in isospace. For each spatial
transformation R there is a corresponding isospatial transfor-
mation M(R), and the combined action leaves the classical
Skyrmion invariant. The map R → M(R) is a representation of

FIG. 5. The binding energy per baryon, in Skyrme units, for the
numerically generated Skyrmions. We do not plot the result for the
B = 1 solution, which has zero classical binding energy.

the symmetry group; this ensures the correct product structure
for the combined actions. If R is even/odd, then M(R) is also
even/odd. This is because a combination of even and odd O(3)
transformations would reverse the sign of the baryon number
B, and our clusters all have positive B.

The representation R → M(R) is the same for all the
clusters with the same quadrality, and it can be determined by
the symmetry group action close to the center of a cluster. For
quadrality 0 there is a single B = 1 Skyrmion at the center. The
symmetry group, T or O, therefore acts in the same way as does
the full symmetry group O(3) on a single B = 1 Skyrmion, but
restricted to the T or O subgroup. For the B = 1 Skyrmion, the
action of O(3) is with M(R) = R.

For quadrality 1 the symmetry is T and the central region
contains a tetrahedral B = 4 cluster. The way the tetrahedral
group acts is well known from previous studies of the B = 16
tetrahedrally symmetric Skyrmion. The mapping R → M(R)
for the even part of T is one of the nontrivial one-dimensional
representations, i.e., the π rotations are accompanied by
trivial isorotations, and 2π

3 rotations are accompanied by 2π
3

isorotations in a particular plane in isospace. This is why there
are two isorotational moments of inertia, U11 and U33. The
B = 4 cluster, by itself, relaxes to a Skyrmion solution with
enhanced octahedral symmetry, but this is not the case for
larger tetrahedral clusters like B = 16. So we shall ignore the
enhanced symmetry, and the additional restrictions it places on
allowed states.

For quadrality 2 the symmetry is either T or O, but there is
always a B = 6 octahedron at the center. The fields produced
by this central cluster have the same symmetry realization
as for quadrality 0, with M(R) = R. A way to understand
this is to note that the FCC lattice of Skyrmions relaxes to
a half-Skyrmion crystal with enhanced symmetry if the pion
mass m is zero. One may interpret the B = 6 octahedron as
approximately having a half-Skyrmion at its center, with the
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same symmetry properties as the B = 1 Skyrmion at the center
of a quadrality 0 cluster.

Knowing the way that the symmetry group T or O is realized
for a cluster is not quite enough for writing down the rigid-body
quantization constraints. One needs to know in addition the FR
sign representation [22]. For each even symmetry operation
there is an FR sign ±1. Collectively, these define a further
representation of the even part of the symmetry group. The
FR signs arise topologically and ensure that individual B = 1
Skyrmions are being quantized as fermions. Fundamentally,
the FR sign is +1 or −1 depending on whether the loop
generated by the symmetry operation is contractible in the
configuration space of Skyrme fields. Here one extends a
discrete symmetry to a closed loop by creating a path among
rotations and isorotations connecting the initial cluster to the
(identical) rotated cluster. However, determining directly the
contractibility or noncontractibility of a loop is not trivial,
and certain algorithms have been developed to get around
this.

The even part of the tetrahedral group T has no nontrivial
one-dimensional representation involving just +1 and −1. The
FR signs for the symmetry group T must therefore all be
+1. For the even part of the octahedral group O, there is the
trivial irrep A1, where all signs are +1, but also the nontrivial
1-dimensional irrep A2, where the rotations by π

2 around
octahedral vertices and also rotations by π around octahedral
edge centers are represented by −1. There are therefore two
possibilities for the FR sign representation for the group O,
which we denote by O+ and O−, respectively.

For octahedrally symmetric clusters of quadralities 0 and 2,
both FR sign representations can occur, and we next use the
algorithm presented in Ref. [3] for finding which one does.
The clusters are either pure octahedra or truncated octahedra,
where all six vertices are cut off to leave square faces, and it
is sufficient to calculate the FR sign associated to a π

2 rotation
around one of these vertices. To do this, consider the cluster
sliced into planar layers orthogonal to the rotation axis. There
is one central layer, and pairs of similar layers above and
below this, with square symmetry. On each layer just two
orientations of the B = 1 Skyrmions occur, alternating in a
chessboard pattern. The π

2 rotation has two types of orbit on
cluster points—either a single point or a set of four points that
are cyclically permuted.

Under the π
2 rotation permuting the points of the cluster,

the changes in orientations that arise (assuming the B = 1
Skyrmions just rotate around with the points) can be com-
pensated for by an overall isospin rotation. This is realized
by conjugating all the orientation quaternions by a single
(fixed) quaternion. This restores the SO(3) orientations, but
each orientation quaternion may flip sign. The algorithm of
Ref. [3] is that the total FR sign is the product of the sign of
the permutation and all the orientational sign flips.

We can arrange the cluster’s initial orientation so that for
the single-point orbits on the rotation axis, the rotation and
the conjugation have a trivial effect. The orbits on the layers
above and below the central layer have the same distribution
of orientations, so their combined sign flip contribution is +1.
For each four-point orbit in the central layer, the orientations
occur in pairs, so the sign flips occur in pairs, again contributing

+1. Only the contribution of the permutation of points remains.
Now, a π

2 rotation is a cyclic permutation of a four-point orbit—
an odd permutation, contributing −1. Therefore, the FR sign
is (−1)N , where N is the number of four-point orbits in the
central layer. If this sign is positive, the FR sign representation
of the symmetry group O is the trivial irrep A1, and if it is
negative, then the representation is the nontrivial irrep A2. The
number of four-point orbits is easily found, knowing the cluster
shape. For the octahedral clusters with B = 1,19,44, and 85 it
is even; for the octahedral cluster with B = 6 and the truncated
octahedra with B = 13, 38, 55, and 79 it is odd.

Some of these FR representations can be checked in other
ways. For B = 1, the FR representation is A1 because the
symmetry group is enhanced to a continuous group. For the
B = 6 cluster, the FR representation is A2 because this cluster
may be constructed approximately using a double rational map
ansatz [23], combining O-symmetric rational maps of degrees
1 and 5. Krusch’s calculation [24] shows that the FR sign
associated with a π

2 rotation is +1 for the degree 1 map and −1
for the degree 5 map. The overall sign is the product, −1. For
the cluster with B = 13 there is a single relevant rational map
of degree 13, for which the FR sign of a π

2 rotation is −1. For
the B = 19 octahedron, one may combine the rational maps
of degrees 1, 5, and 13. The two outer rational maps have FR
signs −1, and the inner one +1, so the total sign is +1.

V. SPIN/ISOSPIN/PARITY OF QUANTIZED STATES

A. Quadrality 0 clusters

For quadrality 0 clusters, the baryon number is odd, so
states must have half-integer spin and isospin. If there is only
T symmetry, then the constraints on quantum states can be
written as

eiπL3eiπK3 |�〉 = |�〉, (23)

e
i 2π

3
√

3
(L1+L2+L3)

e
i 2π

3
√

3
(K1+K2+K3)|�〉 = |�〉. (24)

The first constraint imposes symmetry under a π rotation, and
the second under a 2π

3 rotation. Together these symmetries
generate the even part of T. As M(R) = R, the rotation and
isorotation operators have the same form. The FR signs on the
right-hand side are all +1. The rotation and isorotation genera-
tors L and K (which mutually commute) can be combined into
grand spin generators M = L + K. The symmetry conditions
(23) and (24) imply that |�〉 is a singlet under the tetrahedral
subgroup of SO(3) grand spin.

Recall that for a B = 1 Skyrmion, the states are invariant
under the full SO(3) of grand spin. This implies that the isospin
I and the spin J have to be the same, and the state |�〉 is
the usual singlet of grand spin constructed by combining two
equal angular momenta. Here slightly less is true. The grand
spin can be M = 0 but it can also be M = 3 or M = 4, as
these SO(3) grand spin multiplets contain singlets under the
tetrahedral subgroup. For M = 0 the spin and isospin are the
same, so the allowed combinations are I = 1

2 with J = 1
2 , I =

3
2 with J = 3

2 , and so on. For M = 3, allowed combinations
are I = 1

2 with either J = 5
2 or J = 7

2 , and I = 3
2 with various

J from 3
2 upwards, and also I = 5

2 with various J from 1
2
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upwards. For M = 4 a new combination is I = 1
2 with J = 9

2 ,
and there are many others.

In the Skyrme model, the parity operation is the combination
of inversions in space and isospace. Clusters with only T
symmetry do not have inversion symmetry, but the Skyrmion
has at least one reflection symmetry (a combination of a
reflection in space and a reflection in isospace), so the parity
operation can be reexpressed as a combination of rotations by
π in space and isospace in the planes of these reflections. As
there is a B = 1 Skyrmion at the origin with orientation 1, the
relevant reflection planes are the same in space and isospace.
Thus the parity operator is a combined π rotation in space and
isospace around an axis passing through opposite edge centers
of a cube containing the tetrahedron. This is an element of
the group O, outside its subgroup T. The parity eigenvalue
therefore depends on the state. It is +1 for states with grand
spin 0 or 4, which have the larger invariance under the group
O, and −1 for states with grand spin 3.

For clusters of quadrality 0 with symmetry O, the symmetry
constraints (23) and (24) are replaced by

ei π
2 L3ei π

2 K3 |�〉 = ±|�〉, (25)

e
i 2π

3
√

3
(L1+L2+L3)

e
i 2π

3
√

3
(K1+K2+K3)|�〉 = |�〉, (26)

where the right-hand side of (25) includes the FR sign for
a π

2 rotation. Squaring the operator in (25) reproduces the
constraint (23), so the tetrahedral subgroup constrains states in
the same way as before. If the FR sign is +1, then the allowed
states are those with grand spin 0 or 4, because for these there
is an octahedral singlet. If the FR sign is −1, then the grand
spin must be 3, because here the tetrahedral singlet transforms
to its negative under a π

2 rotation. Clusters of quadrality 0 and
symmetry O are invariant under a combined inversion, like the
B = 1 Skyrmion. The quantum states therefore all have parity
eigenvalue +1.

When the FR sign is +1, the allowed states for I = 1
2 are

therefore JP = 1
2

+
, 7

2
+

, or 9
2

+
; for I = 3

2 they are JP = 3
2

+

and above; for I = 5
2 they are also JP = 3

2
+

and above; and
for I = 7

2 all half-integer spins are allowed. When the FR sign

is −1, then the allowed states for I = 1
2 are JP = 5

2
+

or 7
2

+
;

for I = 3
2 they are J = 3

2
+

and above; and for I = 5
2 they are

J = 1
2

+
and above.

Examples with quadrality 0 and symmetry O, ignoring B =
1, are the pure octahedra with B = 19 and B = 85 having FR
sign +1, and the truncated octahedra with B = 13,55, and 79
having FR sign −1.

B. Quadrality 2 clusters

The analysis of the quantum states of quadrality 2 clusters
is rather similar. Both symmetry groups T and O can occur,
and they act in the same way as for the quadrality 0 clusters.
There are three cases, as before: T, O with all FR signs +1,
and O with some FR signs −1. The allowed grand spins and
the parity assignments are as before. The difference is that the
baryon number B is always even, so that the spin and isospin
must be integers.

For clusters with only T symmetry, there are states with
isospin 0 and spin/parity JP = 0+, 3−, and 4+, corresponding
to grand spins 0, 3, and 4. For isospin 1, the lowest spin/parities
are JP = 1+,2− corresponding to grand spins 0 and 3. For
isospin 2 there are more states, with the lowest being JP =
1−,2+ corresponding to grand spins 3 and 0. Finally for isospin
3 the lowest spin/parity state is 0−, with grand spin 3.

If the cluster has O symmetry and all FR signs +1, then the
allowed states are those with grand spins 0 or 4. In particular,
the lowest spin/parities for isospins 0,1,2,3 are, respectively,
JP = 0+,1+,2+,1+. For a cluster with O symmetry and some
FR signs −1, the grand spin must be 3, so the lowest allowed
states for isospins 0,1,2,3 are JP = 3+,2+,1+,0+. This last
sequence should occur for the B = 38 cluster, for example,
and we will discuss this further below.

C. Quadrality 1 clusters

The remaining clusters are those with quadrality 1. These
all have T symmetry, realized through the nontrivial one-
dimensional representation R → M(R), and the FR signs
are all +1. The baryon number is always even, as it is a
multiple of 4. The analysis of the allowed quantum states is
not quite straightforward but has been investigated before, in
the context of the quantization of the B = 16 Skyrmion and
other Skyrmions with the same symmetry and baryon number
a multiple of 4 [25]. There are quite a lot of states with low
isospin and spins up to J = 4. We will not repeat the analysis. It
was initially done using properties of Wigner functions but was
simplified in Ref. [26] by considering the action of the group T
on polynomials in the Cartesian coordinates x,y,z. The lowest
spin/parity states for isospins I = 0,1,2 are JP = 0+, 0−, 0+,
and for I = 3 there are allowed 0+ and 0− states. For isospin 0,
the map R → M(R) plays no role, so the states are in the same,
standard tetrahedral rotational band as for quadrality 2, with
JP = 0+,3−,4+,6±,7−,8+,9±,10±, where we have included
some of the higher spin states.

In summary, we have outlined the allowed states obtained
by rigid-body quantization for clusters with either T or O
symmetry. There are seven cases. For both quadralities 0 and
2, there are three cases: T, O+, and O−, where the notation
shows the symmetry group and the FR sign for a π

2 rotation. B
is odd for quadrality 0 and even for quadrality 2. For quadrality
1 the symmetry group is always T, and B is even.

VI. ENERGIES OF QUANTIZED STATES

Following the notation of Ref. [17], the kinetic energy of a
quantum state is given by

T = 1
2 〈�|HTW−1H |�〉, (27)

where HT = (K1,K2,K3,L1,L2,L3) is the vector of body-
fixed isospin and spin operators and

W =
(

U −W

−WT V

)
(28)

is the overall moment of inertia tensor. The formula (27) is
generally rather complicated but it simplifies considerably for
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the Skyrmions we consider. This is due to their symmetries
which, as we have seen, lead to simple, diagonal inertia tensors.

For quadralities 0 and 2, the energy (27) of a state with spin
J and isospin I becomes

T = 1

2

1

uv − w2
[(u − w)J (J + 1) + (v − w)I (I + 1)

+wM(M + 1)], (29)

where u, v, and w were defined in Eq. (22), and M is the
grand spin. Note that w is generally rather small compared to
u and v, so the energy is close to that of uncoupled spherical
tops. Quadrality 1 Skyrmions are slightly more complicated as
their isospin tensor has two independent diagonal entries, but
w = 0. We find that

T = 1

2

[
1

v
J (J + 1) + 1

U11
I (I + 1)

+
(

1

U33
− 1

U11

)
K2

3

]
, (30)

where K3 is the (eigenvalue of the) third component of the
body-fixed isospin. Recall that K3 is not directly observable,
unlike the “space-fixed” I3, which, together with B, determines
the proton and neutron numbers.

For large B the moments of inertia grow like

u ∼ B and v ∼ B5/3, (31)

providing a separation of scales. The isospin contribution to the
energy is much larger than the spin contribution. Hence some
concepts often used in the Skyrme model, such as rotational
bands, are not as simple here. For small B, energy levels are
usually first ordered by their isospin I , then by J , with the
states lying on an approximate rotational band proportional to
J (J + 1). With this information, one immediately knows that
a larger spin leads to a larger energy. Also, the ratios between
the energies of the states are simply related. This picture does
not hold for large B. As an extreme example, consider the
B = 801b Skyrmion. For I = 3 this has a spin-3 state with
K3 = 0. Its energy in Skyrme units, calculated using Eq. (30)
and values from Table IV , is

TJ=3,I=3 = 1

2

(
12

139 000
+ 12

2900

)
= 2.11 × 10−3. (32)

There is also a spin-4 state with K3 = 3 that has energy

TJ=4,I=3 = 1

2

[
20

139 000
+ 12

2900
+

(
1

3180
− 1

2900

)
9

]

= 2.00 × 10−3. (33)

Hence, unusually, the state with higher spin has lower en-
ergy. Large nuclei sometimes have several rotational bands
in their experimental energy spectrum or do not have easily
distinguishable rotational bands. This analysis demonstrates
one reason why. However, for small I , the concept of simple
rotational bands remains valid as we will demonstrate below.

To compare our results to experimental data we must convert
Eqs. (29) and (30) from Skyrme units to physical ones. To do
this, we use the asymmetry term of the semiempirical mass

TABLE IV. The results of our numerical simulations. We tabulate
the baryon number, quadrality, symmetry, energy, binding energy per
baryon, estimated binding energy per baryon, and moments of inertia
of each Skyrmion. The energies EB and Ebinding/B are in Skyrme
units, and the estimated binding energies per baryon Ebond/B are
related to those in Tables I, II, and III by a conversion factor of 0.052.
For quadralities 0 and 2, U11 = U33 = u.

B Q Sym. EB Ebinding/B Ebond/B v w U11 U33

1 0 O(3) 1.415 0 0 48 48 48 48
4 1 O 5.18 0.120 0.0780 661 0 147 176
6 2 O 7.96 0.0883 0.0832 1540 −166 259 259
10 2 T 12.94 0.121 0.112 3750 145 398 398
13 0 O 16.96 0.110 0.106 6210 −71 516 516
16 1 T 20.48 0.135 0.125 8230 0 672 656
19 0 O 24.53 0.123 0.125 11 100 161 793 793
20 1 T 25.47 0.141 0.131 12 800 0 756 819
28 1 T 35.51 0.147 0.125 23 100 0 1024 1146
31 0 T 39.52 0.140 0.141 25 000 −113 1230 1230
35 0 T 44.47 0.144 0.143 33 900 206 1380 1380
38 2 O 48.21 0.146 0.141 37 500 −115 1480 1480
40 1 T 50.88 0.143 0.145 38 600 0 1600 1670
44 2 O 56.16 0.138 0.145 46 900 −268 1820 1820
50 2 T 63.50 0.148 0.137 64 500 158 1890 1890
52 1 T 65.85 0.149 0.150 63 400 0 2040 2070
55 0 O 70.01 0.142 0.136 74 300 476 2160 2160
56 1 T 70.79 0.151 0.150 78 200 0 2140 2270
681 1 T 85.70 0.154 0.150 99 600 0 2660 2690
682 2 T 86.51 0.143 0.154 99 600 230 2730 2730
79 0 O 100.00 0.149 0.155 125 000 99 3190 3190
801a 1 T 101.27 0.149 0.146 129 000 0 3280 3250
801b 1 T 100.66 0.157 0.156 139 000 0 2900 3180
802 2 T 101.08 0.152 0.156 135 000 −52 3170 3170
84 2 T 106.00 0.153 0.156 156 000 286 3320 3320
85 0 O 107.83 0.146 0.156 143 000 252 3493 3493

formula. In our notation, this term is

aA

(2I )2

B
, (34)

where aA has a physical value of around 23.2 MeV. The isospin
energy contribution in the Skyrme model is approximately

I (I + 1)

2u
. (35)

Since the isospin inertia u scales as B, this matches the
asymmetry term (34) for large nuclei. By comparing these for-
mulas for the B = 80 Skyrmions we find an energy conversion
factor of

7300 MeV. (36)

Hence the states discussed in the previous paragraph have
kinetic energy contributions of 15.40 and 14.60 MeV,
respectively. This is a new method to calibrate the Skyrme
model which we hope will give good results across a large
range of nuclei.

Let us now turn to some examples and compare the
Skyrmion predictions with experimental data. By restricting to
rigid-body quantization, we have ignored some physics which
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TABLE V. Low-energy states of the B = 31 Skyrmion.

I J P M T (MeV) Nucleus Ground-state Match?
spin/parity

1
2

1
2

+
0 2.36 31P 1

2

+
Y

5
2

−
3 3.47

7
2

+
4 4.48

7
2

−
3 4.59

3
2

3
2

−
3 11.62 31Si 3

2

+
N

3
2

+
0 11.78

5
2

+
4 12.31

5
2

−
3 12.42

5
2

1
2

−
3 26.05 31Al 5

2

+
N

3
2

+
4 26.42

3
2

−
3 26.53

5
2

+
4 27.22

7
2

1
2

+
4 46.82 31Mg 1

2

+
Y

1
2

−
3 46.93

3
2

+
4 47.30

3
2

−
3 47.41

will be important in describing the full energy spectrum. Many
more states would arise if we had quantized the Skyrmion’s
vibrational modes. Some of these modes will be soft, espe-
cially since Coulomb energy, which we have ignored, favors
configurations that are ellipsoidal rather than those we have
considered. Hence, we do not expect to reproduce the full ex-
perimental energy spectrum for the nuclei but hope to identify
some of the low-energy states with those we have calculated.

The B = 31 Skyrmion is a truncated tetrahedron of quadral-
ity 0 and is relatively tightly bound. Experimentally, nuclei
with different isospins I are distinct, and for given I the
nucleus that is most neutron rich has I3 = −I . The neutron-rich
sequence for B = 31 is 31P, 31Si, 31Al, and 31Mg, with isospins
I = 1

2 , 3
2 , 5

2 , and 7
2 . As explained in Sec. V, the Skyrmion

quantum states have grand spins 0,3,4, . . . . The energy of a
state with spin J , isospin I , and grand spin M is given by
Eq. (29). Due to the sizes of the moments of inertia, the states
are energetically ordered first by their isospin, then by spin,
and, finally, by grand spin. Since the B = 31 Skyrmion has
w = −113 < 0, a large M is favored. This fact provides a
mechanism for high-spin states (with large M) to have less
energy than low-spin states (with small M). However, w is
too small for this mechanism to change any orderings for
the low-energy states of this particular Skyrmion. We tabulate
the lowest-energy states in Table V and compare them to the
corresponding nuclei. The energies are measured relative to
the static mass of the Skyrmion.

Our results for the ground-state spins of the phosphorus-31
and magnesium-31 nuclei match the experimental data. The
magnesium-31 nucleus is difficult to probe experimentally. The
ground-state spin/parity assignment of 1

2
+

has only recently
been clarified [27]. For a history of the experimental and
theoretical work on the nucleus, see Ref. [28]. The nucleus
is a candidate member of the “island of inversion” due to the
unusual ground state. This state is not predicted by the tradi-

TABLE VI. Low-energy states of the B = 38 Skyrmion.

I J P M T (MeV) Nucleus Ground-state Match?
spin/parity

0 3+ 3 1.17 38K 3+ Y
6+ 6 4.09
7+ 7 5.45
9+ 9 8.76

1 2+ 3 5.49 38Ar 0+ N
3+ 3 6.12
4+ 3 6.96
5+ 6 7.78

2 1+ 3 14.97 38Cl 2− N
2+ 3 15.39
3+ 3 16.01
4+ 6 16.63

3 0+ 3 29.60 38S 0+ Y
1+ 3 29.81
2+ 3 30.23
3+ 6 30.63

tional shell model. Instead it is an “intruder state,” which can
only be described once the shell-model interaction is modified
[29]. For us, the spin/parity 1

2
+

assignment of the ground state
is a simple consequence of the symmetry of the nucleus. We
also find two spin 3

2 states with a small splitting, which are seen

in the data. However, we find a low-energy 1
2

−
state which is

not seen. Our model of silicon-31 has a ground-state spin/parity
3
2

−
, inconsistent with the experimental ground state which has

spin/parity 3
2

+
. Instead, the true ground state is described by our

first excited state, which lies only 0.16 MeV above the model
ground state. There is a 5

2
+

state in the experimental data whose

transition rate to the 3
2

+
ground state is large, around 12 Weis-

skopf units. Such a value suggests that the states are related
and have a collective nature, matching our interpretation of the
states as rotational excitations of the Skyrmion.

The B = 38 Skyrmion has quadrality 2 and symmetry O−.
It was obtained numerically by relaxing a truncated B = 44
octahedron, but after relaxation is better thought of as a B = 44
Skyrmion with its B = 6 core taken out. Its quantum states
also have energy given by (29). Again w < 0, so a large grand
spin is energetically favored. The octahedral symmetry of the
B = 38 Skyrmion implies that states with grand spin 0 are
ruled out. Instead, they must have grand spin 3,6, . . . . The
low-energy quantum states are shown in Table VI. Here, two
ground states have the correct spin. Most notably, we find
that the ground-state spin for potassium-38 is 3+, agreeing
with the experimental result. Our model wrongly predicts the
ground state of argon-38 to have spin 2+. However, the states
of argon-38 are curious. Just above the 0+ ground state there
are several rotational bands, with spins 2 and upwards. Due
to the symmetry of the B = 38 Skyrmion, all of the predicted
states have positive parity. This is a major shortcoming of our
calculation since the B = 38 nuclei have many experimental
states with negative parity. In particular, the chlorine-38 ground
state has spin/parity 2−. We could obtain negative-parity
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states by allowing the Skyrmion to deform and including its
vibrational modes in the quantization. For instance, there is a
vibrational mode that breaks octahedral but retains tetrahedral
symmetry. Coupling this mode to the rotations will allow for
negative-parity states.

Finally, consider the quadrality 1, B = 801b Skyrmion
in an I = 0 state. This is a model for zirconium-80.
Rigid-body quantization allows for states with spin/parity
0+,3−,4+,6±, . . . . Their energies are simply

J (J + 1)

2v
7300 MeV. (37)

This gives a pure, tetrahedral rotational band with ener-
gies 0,0.32,0.53,1.10, . . . MeV. Experimentally, zirconium-
80 does have a rotational band, though with spins
0+,2+,4+, 6+,8+,10+ and energies 0,0.29,0.83,1.61,2.61,
3.79 MeV. These are not the states described by our tetrahedral
Skyrmion. To include these states in our model we must
consider a different low-energy B = 80 Skyrmion or allow
the tetrahedron to deform. However, the predicted energies
are of the same order as the experimental states. This gives
us confidence in the new calibration that we have suggested.
The energies from the experimental rotational band suggest
that the intrinsic shape of the nucleus is highly deformed,
but it is possible that further states of this hard-to-produce,
semi-magic Z = N nucleus with less deformation are still to
be discovered. Other authors have suggested that a tetrahedral
intrinsic structure is favored [30–32], and this is also the
prediction of the Skyrme model.

VII. CONCLUSIONS

We have used FCC cluster Skyrmions of the lightly-bound
Skyrme model as starting configurations in our search for
solutions of the standard Skyrme model. This paper has
focused on those clusters that correspond to SU(4) weight
diagrams, which are all tetrahedrally symmetric subclusters
of the FCC lattice, and sometimes octahedrally symmetric.

The Skyrmions we have found are mostly novel, and have a
range of even and odd baryon numbers up to B = 85. SU(4)
representation theory allows us to find algebraic formulas
that approximately describe some physical properties of the
classical Skyrmions, including their binding energies.

We have discussed the rigid-body quantization of these
Skyrmions. Because of the symmetries, just a few patterns
of allowed spin/isospin/parity states occur. The interest of
our treatment, compared to standard treatments of collective
motion in nuclear physics, is that spin and isospin occur in
a unified manner as coupled collective excitations. This is
not novel in the context of Skyrmions, but occurs here in
some novel ways, and is applied to several new examples of
Skyrmions with relatively large baryon number. We have also
presented the formulas for the energies of these states; they
depend on a few moments of inertia that we have calculated
numerically. We have discussed in some detail a few examples
of the Skyrmion states that arise, in particular for B = 31, B =
38, and B = 80, and compared the results with experimentally
known states.

Further work is needed, to investigate more examples of
Skyrmions arising from weight diagrams, but also to consider
competing clusters of low energy with different structures.
Intermediate baryon numbers should also be considered. They
arise by attaching or removing one or more B = 1 Skyrmions
near the surface of a symmetric cluster.
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