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Abstract—In this paper, we propose net4Lap, a novel archi-
tecture for Laplacian-based ranking. The two main ingredients of
the approach are: a) pre-processing graphs with neural embed-
dings before performing Laplacian ranking, and b) introducing a
global measure of centrality to modulate the diffusion process. We
explicitly formulate ranking as an optimization problem where
regularization is emphasized. This formulation is a theoretical
tool to validate our approach. Finally, our experiments show
that the proposed architecture significantly outperforms state-
of-the-art rankers and it is also a proper tool for re-ranking.

I. INTRODUCTION

The unsupervised learning of continuous/neural embeddings

for words and objects [1], [2], [3], has attracted the interest

of many researchers due to the experimental success of these

representations. Since the introduction of word2vec (Skip-

gram model) [1], there has been a growing interest in under-

standing its formal properties. This model infers local contexts

by maximizing the correlation between the embeddings of

neighboring words via SGD. The resulting embedding is

encoded by the weights of the input layer of a shallow

neural network (one hidden layer). Levy and Goldberg [2]

looked at the co-ocurrence statistics and showed that the

global optimum obtained with negative sampling is closely

related to the factorization of the shifted PMI (Pointwise

Mutual Information) matrix of the word-context probabilities.

Pennington et al. [3] proposed the GloVe (Global Vector)

model. GloVe is a weighted least-squares regression model,

and the resulting embedding can be seen as a weighted MDS.

The relevance of word embeddings to this paper relies on

their link with random walks [4] (generative models and topic

transition). More precisely, Hashimoto et al. [5] formulated

transition probabilities in terms of sub-Gaussian functions

of Euclidean distances between words, thus linking word

embeddings with manifold learning through Itô processes [6].

As we will formulate later on, the limiting log-transition

probability converges to the geodesic in the manifold. More

recently, Grover and Leskovec [7] have applied these ideas to

propose node2vec, a method for inferring contextual feature

embeddings from graphs and networks. The underlying mech-

anism is to simulate random walks to capture bags of paths that

can feed the SGD, thus inferring geodesically consistent graph

embeddings. This methodology has been tested for multi-

label classification and link prediction in complex networks.

However, herein we contribute with experimental evidence

showing that node2vec cannot predict dense labellings such

as the ones provided by Laplacian-based methods. Therefore,

the power of neural embeddings is quite limited in problems

involving regularization such as ranking on manifolds. How-

ever, another interesting result showed in this paper is that

neural embeddings can boost the accuracy of Laplacian-based

rankers.

Ranking is a well known problem. Given a graph (or affinity

matrix) accounting for pairwise similarities between data on

a manifold, and and query node, a ranker sorts relevant data

to the query with respect to the global manifold structure [8],

[9], [10]. Since ranking is closely related to semi-supervised

labelling (transductive inference) [11], good rankers have been

recenlty defined in terms of minimizing the harmonic loss [12],

[13]. Harmonic losses quantify the lack of consistency between

the ranking function and the structure of the manifold. Then,

if the query node belongs to a given class, top ranked results

must lie in the same class so that the harmonic loss is

minimized. Ideally, all the elements of the class but the query

must have a higher rank that the remainder nodes in the graph.

To that end, ranking methods rely on diffusive (regularized)

similarities that infer new links between nodes belonging to

the same class.

However, the performance of ranking methods is heavily de-

pendent on the quality of the input graph (e.g. KNN, Gaussian,

ǫ-graphs). In this regard, many semi-supervised or supervised

approaches have emerged along the last decade: RankBoost:

[14] (combination of preferences), RankNet [15] (GD training

by examples), minimization of ranking mistakes [16], Bipartite

Ranking [17] (emphasis on positive and negative examples)

and learning with SDP [18].

II. CONTRIBUTIONS

In this paper, we propose a neural-regularization ranking

architecture. We exploit both the flexibility and scalability

of SGD to pre-process the input graph so that it is well

conditioned for Laplacian regularization. As we show in

Section III-B, neural embeddings tend to produce isotropic

contexts. Although this representation is not able of doing

effective ranking per se, its local isotropy is key for boosting

the accuracy of rankers based on Laplacian regularization (see

the experiments in Section IV). We also show that models of



random walks with return probabilities are proper samplers

for bags-of-paths feeding the neural embedding (Section III-

C). In addition, we formulate ranking as an optimization

problem (Section III-D) as a means of formally validating

our architecture. Finally, we introduce global centrality into a

ranking approach. The role of global centrality is twofold: a)

capture the underlying density of the manifold using a global

measure, and b) increase the accuracy of re-ranking processes.

III. THE NET4LAP MODEL

A. The net4Lap Architecture

Given an input KNN graph, net4Lap (neural networks

for Laplacian-based regularization), learns an embedding via

SGD (see Fig. 1) from bags-of-paths sampled through random

walks. A second KNN based on the embedding is more

harmonic (locally isotropic) than the original and it feeds a

Laplacian regularizer based on global centrality. As a result,

a new KNN graph based on ranking relationships re-feeds the

SGD neural model for re-ranking.

In the following, we describe the formal elements that

implement the proposed architecture.

B. Local Isotropy of the Embedding

Given an undirected weighted KNN graph G = (V,E,W ),
we have that Wij = h( 1σ ||xi−xj ||2) are the pairwise affinities

between the data (nodes) xi,xj ∈ R
D, h(.) is a sub-Gaussian

function, and (i, j) ∈ E if Wij > 0. Then, SGD aims at

inferring a function f : V → R
d from:

max
f

∑

i∈V

log
∏

j:(i,j)∈E

Pr(j|f(i)) (1)

where Pr(j|f(i)) = e〈f(i),f(j)〉)/Zi (log-probability propor-

tional to correlation) and Zi =
∑

k∈V e〈f(i),f(k)〉 is the local

partition function [7]. Then, assuming that the xi are clustered

in classes c ∈ C and that similar data are mostly generated

under similar discourses (classes) we have

Prc∈C [(1− ǫ)Z ≤ Zu ≤ (1 + ǫ)Z] ≥ 1− δ, (2)

where n = |V |, ǫ = Õ(1/
√
n), δ = exp(−Ω(log2 n)),

i.e. the partition function is concentrated [19]. This leads to

Pr(j|f(i)) ≈ Pr(k|f(i)) for common neighbors j, k of the

node i. As a result, the entropy of the new weights W ′
ij =

h( 1
σ′
||f(i)− f(j)||2) is minimized wrt to that associated with

the original Wijs.

In this way, we obtain a new KNN graph G′ = (V,E′,W ′)
where the weights W ′

ij are locally isotropic. Let then g(S) be

a ranking function applied to a subset S ⊆ V and L(S) be its

harmonic loss defined as follows:

L(S) :=
∑

i∈S,j∈S̄

W ′
ij(g(i)− g(j)) . (3)

Since the W ′
ijs are almost constant for (i, j) ∈ E′, min-

imizing L(S) leads to bound local variations of g(.), i.e.

g(i) ≈ 1
d′

i

∑

j:(i,j)∈E g(i)W ′
ij , where d′i is the degree of i.

Harmonicity is thus enforced wrt the original KNN graph.

This boosts significantly the accuracy of g(.).

C. Role of Random Walks

Neural embeddings are build by sampling bags-of-paths in

G = (V,E,W ), so that the context of any node i can be

predicted from the statistical co-ocurrences with neighboring

nodes. Sampling is driven by random walks (RWs). According

to [5][6], if P (Xt = j|Xt−1 = i) = h
(

1
σ ||xi − xj ||2

)

then

lim
t→0

−t logP (Xt = xj |Xt−1 = xi) → ρ(xi,xj) , (4)

where ρ(.) is the geodesic. Since the above condition holds

for classical RWs, where pij = Wij/di, choosing them

as path generators usually yields good empirical results on

average (see Section IV). However, not all types of RWs work

equally well. In particular, good alternative path samplers, such

as Partial Absorbing RWs (PARWs) and node2vec RWs,

exhibit an ability of slowing down the diffusion process.

PARWs [20] are defined as follows:

pij =

{

αλi

αλi+di
if i = j

(1− pii)× Wij

di
if i 6= j

(5)

where the PARW gets absorbed in i with probability pii, λi >
0 modulates the mobility through the cluster (depending on

its density) and α > 0 plays an important role when using the

PARW to define an affinity function (see next subsection).

On the other hand, node2vec relies on RWs with some

return probability:

pij =

{ πij

Z if (i, j) ∈ E
0 otherwise

(6)

where πij = αpq(t, j)×Wij , t is the last node visited by the

RW and

αpq(t, j) =







1
p if dtj = 0

1 if dtj = 1
1
q if dtj = 2

(7)

where dtj denotes the shortest path distance between nodes t
and i, and p, q control, respectively how fast the RWs explores

and leaves the neighborhood of a given starting node. More

precisely, the walk tends to return to t either if p is large or it

has many common neighbors. Setting q to a small value also

helps to constrain the walk to a given neighborhood. Thus,

the above RW is designed to explore a given graph in search

of some structural properties such as homophily (inference of

communities) and structural equivalence (nodes with the same

role, such as hubs or between-cluster nodes). When applied to

clustering, one must set a large p and/or a small q.

Finally, we have investigated MERWs [21] (Maximum

Entropy RWs), recently used as a means of predicting visual

saliency in computer vision [22]. Therefore, we emphasize the

dissimilarities rather the affinities (otherwise, the RW travels

mostly through intra-class links) and set Ŵij = −σ logWij :

pij =

{

Ŵij

λ × φj

φi
if (i, j) ∈ E

0 otherwise
(8)

where, λ is the Perron-Frobenius (dominant) eigenvalue of

W̃ and φ is its associated eigenvector. This RW is designed



so that the entropy of the generative process increases at a

rate log(λ), thus enforcing that all paths between different

nodes are equally probable. This dependency of the global

connectivity of the graph makes MERWs very appealing,

however they tend to underestimate the geodesics, as we will

show in the experiments.

D. Ranking as Laplacian-based Regularization

PARWs allow to define an interesting Laplacian-based sim-

ilarity. This similarity relies on the probabilities A = [aij ]
that PARWs starting at i get absorbed at j in finite time. In

addition, A = (αΛ + L)−1αΛ, where L = D′ − W ′ is the

Laplacian of G′ and Λ = diag(λ1, . . . , λn) (see [13],[20]).

However, A is not symmetric in general. It is row stochastic

so that there are non-zero probabilities of being absorbed. Wu

et al. [20] show that

lim
α→0+

(αΛ + L)−1αΛ = 1λ̄T , (9)

with (λ̄)i = λi/
(

∑n
j=1 λj

)

, regardless of graph structure.

They use this fact to show that PARWs unify several models

of RWs. Later, in [13], they focus on the left part of A,

M = (αΛ + L)−1 to show that: a) it is a symmetric

similarity matrix, and b) the choice of Λ determines how

well the PARW moves through the manifold according to its

local density. For instance, the harmonic loss predicts that

Λ = I is better for moving around dense clusters, whereas

Λ = D′ is better when the manifold is locally sparse. A good

empirical balanced choice is Λ = H := diag(h1, . . . , hn)
where hi = min(d′i,median(d′)) and d

′ = diag(D′) is the

vector of degrees. In this regard, they denote Λ as a regularizer

and use M as a ranking matrix, since it produces denser and

stronger edges between nodes in the same class that those

between nodes in different classes.

However, herein we make the regularizing power of M more

explicit. More precisely, M = αΛ−1A, and A is the solution

to the following minimization problem

min
A

Q(A) = ||αΛ1/2A− Λ1/2||2 + γtrace(ATLA) . (10)

with γ = 1. The right term penalizes large deviations associ-

ated with linked nodes:

trace(ATLA) =
∑

i,j

W ′
ij

∑

k

(aik − ajk)
2 . (11)

For large W ′
ij we have that the differential absorption flow

∑

k(aik − ajk)
2 induced by (i, j) must be kept as smaller as

possible, thus forcing aik ≈ ajk ∀k . This differential flow can

only grow when W ′
ij ≈ 0 or (i, j) 6∈ E′. This constraint is

even harder in our ranking architecture, due to local isotropy

(Section III-B). Therefore, in G′ = (V,E′,W ′) (the KNN

graph resulting from the neural embedding), the existence of

an edge with a large W ′
ij induces equally probable common

absorption sites k for both i and j. As a result, the structure

contained in {W ′
ij} imposes new affinities (links) based on

the absorption probabilities.

The left term T := ||αΛ1/2A−Λ1/2||2, leads to minimizing

a correlation. From the Frobenius norm, and setting R = (A−
I), we have that this term has the form

T = trace

(

[

αΛ1/2R
] [

αΛ1/2R
]T
)

= trace
(

α2Λ1/2RRTΛ1/2
)

= trace
(

α2ΛRRT
)

= α2
∑

i

[

(aii − 1)2 +
∑

k

a2ik

]

λi . (12)

This leads to seek for self-absorption probabilities aii ≈ 1 (it

can be proved that aii > aij for j 6= i). This is compatible with

the minimization of the absorption flow
∑

k a
2
ik. The single

stochasticity of A is implicit in the solution. In addition, if

λi = 1 (Λ = I), the term T is less constrained that when λi =
d′i (Λ = D′). This explains why PARWs surf very well through

dense manifolds by setting Λ = I , whereas large absorptions

are penalized when navigating through sparse manifolds (Λ =
D′). Setting Λ = H contributes with a clever trade-off that

adapts ranking to the underlying manifold, as well as it relax

our optimization problem.

E. Role of Global Centrality

Ranking based on PARWs is mostly focused on using degree

centrality. Centrality characterizes the importance of a node

within the graph, and degree is the most local measure of

centrality. Wu et al. [13] expanded the M as an inverse,

uncovering the following diffusive process:

M =

(

∞
∑

k=0

[QW ′]
k

)

Q , (13)

where degree D′ plays a central role by normalizing the

growing powers of W ′ with a descreasing weight Q :=
(D′ + αΛ)−1. Let qi = d′i + αλi. Then, each p-steps path

Γ = W ′
i1,i2

W ′
i2,i3

. . .W ′
ip−1,ip

is normalized by
∏ip

a=i1
qil . If

we set Λ = D′, this downweighting is harder than when we

use Λ = I . This is important, even when setting α → 0.

Looking at the above expansion, we decided to explore

the effect of building Λ in terms of a more global centrality.

The shape of M suggested us to rely on one of the earliest

global centrality measures, the one defined by Katz [23]. It

is summarized as follows: a node is important if it is linked

to other important nodes. In this way, an isolated high degree

node is a false positive in terms of importance for the diffusion

process implemented by M . Since isolated high degree nodes

are usually associated to between-cluster nodes (inter-class

noise) it is then key to implicity downweight the importance

of these false positives.

Katz centrality is given by the vector C = (I − βW ′)−1
1

where β < 1/λ and λ is the main eigenvalue of W ′. Then,

similarly to the expansion of M , we have

(I−βW ′)−1 = I+βW ′+β2W ′2+ . . . =

∞
∑

k=0

βkW ′k . (14)



To commence, (W ′k)ij accounts for the weights of all paths

of length k between nodes i and j. Then, all these entries

are downweighted by a global quantity (a fraction of 1/λk).

From C = (I − βW ′)−1
1, it is straight to obtain C(i) =

∑∞
k=0

∑n
j=1 β

k(W ′k)ij . However, it is not so obvious that

C(i) relies on correlations between the i-th row of W ′ and

the remainder rows (columns, since W ′ is symmetric).

Let d′
i denote the i−th row of W ′, d′i the degree of node i

and d
′ = diag(D′) the vector of degrees. Then

C(i) = 1 + βd′i + β2S1 + β3S2 + . . . , (15)

where S1 = [d′
id

′
1
T
, . . . ,d′

id
′
n
T
] and Sk = Sk−1d for k > 1.

For instance, in Fig. 2, we show the role of S1. Since d
′
id

′
j
T

retains the correlation between the degree expansion of nodes

i and j, we have that central nodes are endowed with large

correlations. For instance, d1 < dj for all j ∈ {2, 3, 4}, but it

is the most central node since it is linked to important nodes

2, 3 and 4. In terms of correlations, we have
∑

j d
′
1d

′
j
T

>
∑

k d
′
id

′
k
T ∀i 6= 1.

Katz centrality is also an adaptive way of accounting for

local manifold density. Back to Fig. 2, if (2, 4) ∈ E, then

node 2 becomes the most central node: both its degree and

its correlations grow. This is the typical scenario of dense

manifolds (where Λ = I is optimal). For sparse manifolds,

where Λ = D′ is optimal, degrees decrease but correlations do

not necessarily decrease, unless the W ′
ijs are locally isotropic,

as it is the case. As we show in Section IV, Katz centrality

slightly improves the accuracy of ranking with respect to the

adaptive use of I or D′ when the inter-class noise is not too

large. Setting λi = C(i) and considering up to S1 in Eq. 15,

we have that Q in the expansion of M (Eq. 13) becomes

qi = d′i + α(1 + βd′i + β2S1)

= α+ (1 + αβ)d′i + αβ2
∑

j

(d′
id

′
j
T
)d′j . (16)

In a sparse manifold, Pr[(i, j) ∈ E] is small for most of the

nodes j 6= i. This leads to qi ≈ α + (1 + αβ)d′i and this

is compatible with the setting Λ = D′. However, in a dense

manifold, the correlations d′
id

′
j
T ≈ n (become nearly constant

and maximal) and therefore

qi ≈ α+ (1 + αβ)d′i + αβ2 × n
∑

j

d′j

= α+ (1 + αβ)d′i + αβ2n× vol(G′) , (17)

where vol(G′) is the volume of the graph. The leading

eigenvalue λ of W ′ satisfies max{d̄′,
√

d′max} ≤ λ ≤ d′max.

where d̄′ is the average degree and d′max is the maximum

degree. In a dense manifold (and mostly under local isotropy)

we have that d′i ≈ d̄′ and λ ≈ d′max ≈ n. Then

qi ≈ α+ (1 + α
1

zn
)d′i + α

1

zn
× vol(G′) , (18)

where z ≥ 1 is the fraction of λ defining β = 1/(zλ).
As a result qi is dominated by vol(G′). Therefore, setting

Λ = C (centrality) results in adaptive PARWs regarding

Fig. 1. net4Lap. Given a KNN graph, neural embedding (SGD with negative
sampling) yields an harmonic version that feeds the Laplacian regularizer. As
output, we obtain a denser graph suitable either for ranking or for obtaining
an improved KNN graph which in turns feeds SGD for re-ranking.

the local density of the manifold. The trade-off given by

setting Λ = HC , with HC := diag(h1, . . . , hn) where

hi = min(C(i),median(C(i))), contributes to enforcing this

adaptiveness.

Finally, we revisit the optimization problem formulated in

Subsection III-D (Eq. 10) to explain why Katz centrality boots

the re-ranking accuracy when feeding SDG with the modified

M . Given the right term T (Eq. 12), we must minimize

α2
∑

i

[

(aii − 1)2 +
∑

k

a2ik

]

C(i) . (19)

When local density is small, this term is as constrained as

when setting Λ = D′. The main difference arises, however,

when local density is large. Then C(i) heavily depends on

vol(G′) ≫ d′i. This constraints the absorption probabilities

much more in comparison with setting λi = 1. First, self-

absorptions aii are amplified. Second, the absorption flow
∑

k a
2
ik is minimized. Third, Eq. 11 shows that the differential

absorption flow
∑

k(a
2
ik − a2jk) must be minimized as well

in the neighborhood of an edge (i, j) ∈ E. Putting both

absorption and differential absorptions together, we have that

aik ≈ (1−aii)/n, and similarly for ajk. As a result, centrality-

based ranking creates edges of very similar weights in the

neighborhood of existing ones. In addition, one may think that

when W ′
ij ≈ 0 (typically intra-class edges) then absorptions

can be arbitrary large, but this is not possible due to the

hard constraint imposed on the absorption flows. Therefore,

centrality increases intra-class density whereas it reduces inter-

class density. This behavior leads to pick mostly intra-class

neighbors in the new KNN that has to feed the SGD during

re-ranking. Boosting in terms of accuracy is due to the fact

that the input to SGD is yet more locally isotropic that the

original KNN graph G = (V,E,W ).

IV. EXPERIMENTS

A. Datasets and Parameters

Our approach is tested in 4 datasets, each one with a partic-

ular distribution of inter-class noise. They are: NIST, Flickr32,



Fig. 2. Katz centrality. Node 1 is more centered than its neighbors despite it
has a smaller degree than them: degree vectors correlations yield

∑
j d1d

T
j >

∑
k did

T
k

∀i 6= 1. However if the link (2, 4) exists, this is not true and node
1 becomes less central.

COIL-20 and CIFAR-10. In all cases, the sub-Gaussian is the

neg-exponential: h
(

1
σ ||xi − xj ||2

)

= exp
(

− 1
σ ||xi − xj ||2

)

.

Then, σ is obtained from fixing k (number of neighbors for

the KNN) so that σ = (k/100) × Smean, where Smean is

the average Euclidean distance between pairs of nodes in the

dataset.

Regarding the parameters of the neural network, when

sampling of bags-of-paths with RWs, all of them have a fixed

length l = 80 (there is not too much variation in accuracy

if we increase this length). Another important parameter is

the number of neurons in the hidden layer (dimesion d of the

manifold). We found that d = 128 is a good choice. Reducing

d usually reduces the accuracy. Finally, we set the window

size for the context learner as in node2vec: r = 10.

NIST [24] is a subset of n = 5, 000 examples, with |C| =
10 classes (500 × 10) of MNIST1: handwritten digits from 0
to 9 in images of 28×28 pixels. Their original dimensionality

is reduced to D = 86 via PCA. Other parameters for ranking

are: α = 0.01, k = 20 for the KNN (σ = 19.0371).
This dataset exhibits a low intra-class noise and quite dense

classes. The class corresponding to digit-1 has the largest

affinities and the largest inter-class noise as well. Some other

classes can be confused, such as digit-5, digit-7 and digit-9.

FlickrLogo32 [25] consists of 32 classes with 70 elements

per class (n = 2, 240): images of logos of different products2.

Each image is represented by a GIST feature vector [26] (D =
512). Other ranking parameters: α = 0.05, k = 25 for the

KNN, (σ = 0.2973). The classes of this dataset are even denser

than those of NIST but there is much more intra-class noise

(both structured and unstructured).

COIL-20 The COIL-20 dataset3 consists of 20 classes with

72 elements per class [27] (n = 1, 440): images of objects

taken from different points of view; their size is of 128× 128
pixels (D = 16, 384) . Other ranking parameters: α = 0.05,

k = 20 for the KNN graph (σ = 2.08e + 07). Half of the

classes are very compact and free of inter-class noise. The

1http://yann.lecun.com/exdb/mnist/
2http://www.multimedia-computing.de/flickrlogos/
3http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

remaining classes are less dense and exhibit a highly structured

inter-class noise.

CIFAR is a subset of the CIFAR-10 dataset4 with 10 classes

and 100 elements per class (n = 1, 000): images of 32x32

pixels (different from those used in [13]) represented by a

GIST feature vector. Other parameters for ranking: α = 0.05,

k = 25 for the KNN (σ = 0.2877). All the classes are

very sparse, even when representing images with the GIST

descriptor, and inter-class links are more prominent than intra-

class edges.

B. Evaluating the RWs

Our first experiment consists of evaluating the performance

of different models of RWs. We want to evaluate to what

extent our ranking approach is dependent on the choice of

a particular model. In Table I we show two rows per dataset

and type of RW (columns): in the first row we show the mean

average precission (MAP) when degree centrality is used. In

the second one we show the MAP when Katz centrality is

applied (slightly better results with Katz in almost all cases).

As we can see, RWs, PARWs and node2vec (for which we

show the best p, q pairs) are proper choices, whereas MERWs

are not adequate, due to their non-return and maximum entropy

behaviors: equal probability of linking two nodes leads to be

unable to discriminate between intra-class and inter-class links.

Geodesics are then under-estimated. As a conclusion, either

RWs or PARWs is a good choice, since node2vec requires

learning the optimal p and q.

C. Ranking and Re-ranking Accuracies

In a second experiment (see Table II), we compare the

MAPs for: a) Ranking with the neural embedding (column

E), b) State-of-the-art ranking [13] without neural embedding,

(H), c) ranking by applying H-ranking to the embedding

(EH), d) same with Katz centrality (EK), e) Re-ranking

based on EH-ranking (Re-EH) and f) same for EK-ranking

(Re-EK).

The results validate our approach: 1) Neural embedding

alone is not enough to achieve state-of-the-art MAPs, 2) State-

of-the-art H-ranking is significantly improved (but in CIFAR-

10) by feeding the regularization with the embedding; 3) Katz

centrality slightly improves node centrality in ranking (EK
vs EH), 4) However, in Re-ranking, Katz centrality clearly

outperforms node centrality.

Our best ranking and re-ranking results are obtained with

the NIST dataset (14% of gain in Re-ranking wrt H-ranking),

since it has a small amount of inter-class noise. For Flickr

the gain is reduced to 4%, and a similar gain is obtained for

COIL. Finally, CIFAR is a very difficult dataset (sparse and

inter-class noise), where H-ranking is slightly dominant.

Then, the predictions of the theory (local isotropy, constrain-

ing absorption probabilities through centrality, and relative

invariance to the choice of random walks as samples, provided

that they implement return probabilities) are validated by the

experiments.

4http://www.cs.toronto.edu/ kriz/cifar.html



TABLE I
EVALUATION OF RWS

RW PARW node2vecp,q MERWa MERWb

NIST .7416 .7318 .7438p=1,q=1 .7236 .6338

.7507 .7405 .7529p=1,q=1 .7332 .6383

Flickr .5744 .5807 .5817p=4,q=1 .4137 .3855

.5822 .5751 .5832p=4,q=1 .4122 .3858

COIL .7725 .7669 .7700p=1,q=1 .5879 .5171

.7779 .7756 .7656p=1,q=1 .5835 .5198

CIFAR .2166 .2173 .2171p=1,q=1 .2112 .2031

.2180 .2189 .2182p=1,q=1 .2130 .2026

TABLE II
MAP: RANKING AND RE-RANKING

E H EH EK Re-EH Re-EK

NIST .5629 .6415 .7438 .7529 .7577 .7779

Flickr .4978 .5433 .5817 .5832 .5792 .5839

COIL .6960 .7336 .7725 .7779 .7588 .7787

CIFAR .1511 .2242 .2173 .2189 .2131 .2140

V. CONCLUSION

In this paper, we have introduced net4Lap, a novel

architecture for Laplacian-based ranking. The novelty of this

architecture relies on: a) including shallow neural networks

in the loop, b) implementing a theoretical framework for

explaining why the neural-Laplacian combination boosts the

performance of state-of-the-art rankers (induction of local

isotropy and linking it with the harmonic loss), c) determining

the nature of the random walks used for sampling bags-of-

paths of fixed length, d) formulation of ranking in terms of

a minimization problem where Laplacian regularization plays

a fundamental role for theoretically validating the proposed

architecture, d) injecting a global centrality measure in the

ranking process, which is both consistent with the theory and

plays a critical role in re-ranking. Finally, our experiments

show that net4Lap outperforms the state-of-the-art both in

ranking and re-ranking.
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