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Abstract—In this paper we propose a novel approach for
defining Local Binary Patterns (LBP) to directly encode graph
structure. LBP is a simple and widely used technique for
texture analysis in static 2D images, and there is no work
in the literature describing its generalisation to graphs. The
proposed method (GraphLBP) is efficient and yet effective as a
noise-tolerant graph-based representation. We compute the new
feature representation for graphs by combining LBP with Galois
Fields, using irreducible polynomials. The proposed method is
scalable as it preserves the local and global properties of the
graph. Experimental results show that GraphLBP can both
increase the recognition accuracy and is both simpler and more
computationally efficient when compared with state of the art
techniques.

Index Terms—Graph Characterization, Local Binary Patterns,
Galois Fields

I. INTRODUCTION

There has recently been an increasing interest in how to

analyze and compare patterns represented using graphs. This is

due to the richer representational power offered by structures

such as tree, graphs and hypergraphs. Moreover the possi-

bility of using such data representations, places considerable

demands on the available methodology from machine learning

and pattern recognition, which usually operate manily on vec-

torial data. A graph represents a pattern where nodes represent

features and the edges represent their relationships. Over the

past two decades graph-based methods have been widely used

to model and solve problems in different domains. For instance

a two-dimensional image can be represented by a planar graph

whose nodes represent pixles or pixel features and the edges

represent spatial relationship between those features. A mesh,

on the other hand, provides a reliable representation of a shape

represented in a three-dimensional (3D) space.

However, one of the limitations of graphs is that they

cannot be directly used for analysis tasks. For example, a

mesh constructed over a 3D shape might be very useful

for visualisation tasks but it may not be useful for shape

retrieval task. This is due to the lack of natural ordering in the

vertices (or edges) of the graph and so the traditional statistical

pattern recognition techniques cannot be directly applied to

graphs. Therefore, compared to feature vectors, graphs based

methods usually have high complexities. For example, while

comparing two vectors for equality can be done in linear

time with respect to the length of vectors, comparing two

graphs for exact similarity is not known to be in P class

till day. Another difficulty with graph-based representation is

the high sensitivity of graph to noise. Ideally the graph-based

methods must be tolerant and should accommodate the noise

by relaxing the graph matching constraints. For these reasons,

exact algorithms may not be practical.

To address the difficulties with graphs, an number of ap-

proximate graph-based methods have been proposed and suc-

cessfully applied in different domains. These methods can be

broadly divided into two categories, i.e., inexact methods and

decomposition methods. The first approach, Inexact methods,

include the use of graph-edit distance to embed the graph

in high-dimensional feature space. These methods first define

a set of graphs (called graphlets) that act as the bases set

for graph embedding [1]. A graph is embedded to a high

dimensional feature space by computing its graph edit distance

from each of the bases graphs. In the decomposition methods

the graph are first decomposed into substructures and then

the frequencies of these substrucutres are used to embed the

graphs into high dimensional feature space. A number of

approaches have been used to decompose a graph into sub-

structures. The simplest one uses the topological properties of

a graph i.e. vertex number, edge number, diameter etc. These

methods are computationally very efficient but are usually

not very expressive. For example in [2] Dutta et al. have

shown that out of 79 possible graphs of size 7, 44 collisions

were detected when they were pairwise compared for degree

distribution. In another approach, graphs are decomposed into

smaller subgraph based on structural properties such as walks

[3], paths [4], cycles [5] and trees [6] etc. These methods

provide a more expressive representation of graph but are

computationally expensive. To improve the performance of

decomposition methods, graph kernels have been introduced.

A graph kernel is a function that computes the similarity be-

tween graphs by assuming an implicit embedding of the graphs

in a high-dimensional feature space instead of decomposing

graphs into substructures. Finally spectral methods have also

been successfully used that uses the spectrum of Laplacian or

Adjacency matrix representation of a graph. These methods

have been proved successful for correspondence matching and

clustering of both 2D images [7] and 3D shapes [8]. However

those usually require at least cubic time in size of the graph.

In this paper we propose a novel decomposition framework

to embed the graphs in a high dimensional feature space.

The advantage of our approach is that it is based on the

degree distribution of a graph and is computationally very

efficient. We also empirically show that the proposed method



achieves higher accuracy when compared to state-of-the-art

decomposition techniques that are based on the structural

properties of a graph. Our idea is inspired by the Local Binary

Pattern (LBP) that was originally proposed by [9] for texture

analysis of 2D images. Due to its computational simplicity and

discriminating power, it attracted the pattern recognition and

image processing researchers and also found its application

in other areas like remote sensing [10], visual inspection [11],

face recognition [12] & motion analysis [13]. Recently, Werghi

et al.[14] proposed a novel framework based on the idea of

LBP for texture analysis of 3D shapes that are represented

by meshes. The advantage of LBP-based methods for features

extraction over traditional approaches is that of its simplicity

and effectiveness. Motivated by this, in this paper we propose

a novel framework, referred to as GraphLBP, that extends the

idea of LBP to graphs. Our aim is to capture the dominant

features of the vertices with its neighbours and encode the

local structure around each vertex. To obtain a small set of the

most discriminative LBP-based features for better performance

and dimensionality reduction, LBP-based representations are

associated with Galois Field Algebra which are useful in

translating the local features into a vector of fixed length.

II. PRELIMINARIES

In this section we will give some basic definitions of

important terminologies which are used throughout the paper.

A. Graph

A graph G = (V,E) consists of a finite nonempty set of

vertices V and a finite set of edges E. Two vertices vi and vj
are neighbours or adjacent if they are the end vertices of the

same edge ek = (vi, vj). Two edges ei and ej are adjacent if

they have an end vertex in common, say vk, i.e. ei = (vk, vl)
and ej = (vk, vm). If all vertices of G are pairwise neighbours,

then G is complete. An edge is called incident on its end

vertices. The degree (or valency) deg(V ) of a vertex V is the

number of edges incident on it.

B. Local Binary Patterns

Local Binary Patterns (LBP) are a non-parametric method,

that summarises local image structures efficiently by compar-

ing each feature of the object with its neighbouring features.

The Local Binary Pattern (LBP) was introduced by Ojala

et al. [15] [16] for describing 2D textures in still images.

The most important properties of LBP for images are its

tolerance regarding monotonic illumination changes and its

computational simplicity. In the original definition, the LBP

operator [15] assigns labels to image pixels by first comparing

the 8 neighbours with the centre value (i.e., the neighbor pixel

value is considered as 1 if its value is greater or equal to

the central pixel value, and 0 otherwise), then considering

the sequence of 1/0 in the pixel neighbourhood as a binary

number. This is shown in Figure 1, where the upper left pixel

in the neighbourhood is regarded as the most significant bit

in the final code. This eight bit number encodes the mutual

relationship between the gray levels of the central pixel and its

neighbouring pixels. The histogram of the numbers obtained

in such a way can then be used as a texture descriptor. This

operator distinguished by its simplicity and its invariance to

monotonic gray-level transformations.

Fig. 1. Computation of the basic LBP code from 3 x 3 neighbourhood of a
central pixel. The central pixel is compared with each neighbour, starting from
upper-left corner and produce 1 if its value is greater or equal, 0 otherwise.
The result is an 8-bit binary code

LBP can be extended to operate on circular neighbourhoods

of different radii, allowing sub-pixel alterations [16]. These

initial formulations subsequently led to the definition of alter-

native neighbourhood variants. For instance, Liao et al. [17]

proposed oriented neighbourhood LBP which accounts for

anisotropic information. Similarly the multi-block LBP(MB-

LBP) that compares the averages of the gray level intensity of

neighbouring pixels rather than the value of individual pixels,

in order to capture macrostructural features in the image [18].

A more complete list and discussion on the many LBP variants

can be found in [19].

C. Galois Field Algebra

A Galois Field is a finite field, i.e., a field in which there

exists finitely many elements. For Galois Fields, the order of

the field (i.e., the number of elements in the field) is always

a prime or a power of a prime. For any prime integer p

and any integer m greater than or equal to 1, there is a

unique field with pm elements denoted as GF (pm). These

finite fields are extensively used in cryptographic algorithms

like Advanced Encryption Standard(AES), elliptical Curve

Cryptography(ECC) as well as in coding theory like Reed

Solomon codes. It is particularly useful in translating computer

data as they are represented in binary forms. Representing data

as a vector in a Galois field allows mathematical operations to

scramble data easily and effectively. In this paper our goal is to

use Galois field on the binary patterns obtained from the LBP

when applied on a graph. Since our data is represented in the

form of binary numbers, so we will assume our binary patterns

are elements of GF (2m). As with any other field, the basic

operations are defined in Galois field. Two most commonly

used operations are multiplication and addition.

Addition in Galois Fields:In GF (2m), addition is especially

easy, since addition and subtraction is the same, and further-

more this operation can be done in hardware using basic XOR

logic gate, since there is no concept of carry generation and

carry propagation.

Multiplication in Galois Fields: In GF (2m), multiplication

is performed using polynomial multiplication followed by

modular reduction using polynomial. In our case we are doing

modular reduction via irreducible polynomial. A polynomial

is said to be irreducible if it cannot be factored into nontrivial



polynomials over the same field. For example in the field of

rational polynomials Q[x] (i.e., polynomials f(x) with rational

coefficients), f(x) is said to be irreducible if there do not exist

two non-constant polynomials g(x) and h(x) in x with rational

coefficients such that f(x) = g(x)h(x). A list of irreducible

polynomials of degree 2 to 5 is given in Table I.

TABLE I
IRREDUCIBLE POLYNOMIALS OF DEGREES 2 THROUGH 5

Degree irreducible polynomials

2 1 + x+ x
2

3 1 + x+ x
3, 1 + x

2 + x
3

4 1 + x+ x
4,1 + x+ x

2 + x
3 + x

4, 1 + x
3 + x

4

5

1 + x
2 + x

5, 1 + x+ x
2 + x

3 + x
5, 1 + x

3 + x
5,

1 + x+ x
3 + x

4 + x
5, 1 + x

2 + x
3 + x

4 + x
5,

1 + x+ x
2 + x

4 + x
5

III. GRAPHLBP

In this section we describe how LBP can be defined for a

graph. We discuss the challenges that are involved in defining

LBP on a graph and propose methods to overcome those

problems. We refer the proposed framework as GraphLBP. We

begin by defining LBP In its original form, the LBP operator

assigns labels to image pixels by comparing the intensity value

of a pixel with its 8 neighbours and is given by

LBP =

P−1∑

p=0

s(gp − gc)2
p,

where gc is the gray value of the central pixel, gp is the gray

value of its neighbours and P is the total number of involved

labels. The value of the function s(x) is 1 if x ≥ 0 and 0

otherwise.

In our approach, we define LBP for every vertex of a graph.

For a labelled graph, where every vertex of a graph is assigned

a unique label, comparison can be done directly (if there exists

a partial ordering between lables). For unlabelled graphs, we

use the degree of a vertex to construct LBP, i.e, the degree of

a vertex is compared with the degree of its neighbour vertices.

However, applying the LBP on graph-based representation

is not a straight forward method because the graph-based

representation has few limitations. First, there is no ordering

information available in the vertices of a non-planner graph.

This will result in different LBP for different ordering of

neighbouring vertices. Secondly, the number of neighbours of

a vertex are not fixed, resulting in LBP with varying lengths.

Finally, graphs are sensitive to noise due to which there are

additional/missing edges/vertices. For these reasons, applying

LBP operator directly may not be practical.

To overcome these problems, in this section we propose

two algorithms, that together can be used to define GraphLBP.

We begin by defining a LBP for a vertex of a graph. As

mentioned earlier, we use the degree of a vertex to define

its local binary pattern. To construct LBP for a vertex v, we

take all the neighbours of v and sort them in descending order

according to their degrees. The pattern value for each vertex

v is computed by comparing its degree with the degrees of its

neighbour vertices and produce 1 if the deg(v) is greater or

equal to the degree of its neighbour, otherwise 0. Consider,

for example, the graph of Figure 2.

Fig. 2. A simple graph with 8 vertices

To construct a LBP for the vertex v in the graph of Figure

2, we take all its four neighbours and sort them into degree

sequence order. The resulting sorted sequence is 6, 4, 4, 3.

Since deg(v) is 4, the LBP for the vertex v is 0111. This

procedure is outlined in Algorithm 1.

Algorithm 1 Local Binary Patterns of Graph Vertices

1: Input : Graph G = (V,E)
2: Output: GLBP ⊲ Local Binary Pattern of each vertex of

graph

3: procedure GRAPHLBP(G)

4: for i← 1, all vertices do

5: Vnieghbors ← Get Neighbors(Vi) ⊲ Get

Neighbors of each Vertex

6: Nsorted ← Sort Neighbors(Vneighbors) ⊲ Sort

the neighbor vertices w.r.t highest degree

7: for j ← 1, all Neighbors do ⊲ Comparing the

vertex with its neighbors

8: if degs(Vi) >= Nsorted(j) then

9: GLBP (i,j) ← 1
10: else

11: GLBP (i,j) ← 0
12: end if

13: end for

14: end for

15: end procedure

Note that the resulting binary pattern produced for a vertex

v by Algorithm 1 is not of fixed length and encodes only infor-

mation local to the vertex v. To obtain a fixed length encoding

and to define a stronger representation for a graph, we combine

the local binary pattern of a vertex with its neighbours and

make use of the Galois Field. This is done by adding the LBP

of a vertex with its neighbours using field addition. To obtain

a fixed length encoding, the resulting value is reduced using

an irreducible polynomial of a fixed degree. This will produce

a binary hash value for each vertex of a graph. To understand

this, consider the vertex v of graph of Figure 2. The LBP

produced by Algorithm 1 for v is 0111, while LBP produced

for its neighbours are 111111, 0011, 0011, 000. Adding all

these values via galoisfieldaddition will produce 111111.

Reducing the binary values using, for example, the irreducible

polynomial 1 + x+ x3 of degree 3 will produce a hash value



110. This value will be treated as the LBP of the vertex v.

Note that this approach has two advantages. Firstly, it produces

fixed length codes for each vertex. Secondly, it produces a

more richer encoding by incorporating the information of

the neighbours. The local binary patterns of the vertices are

finally grouped using histogram binning to produce a global

signature for graph characterization. Algorithm 2 outlines the

steps performed in computing GraphLBP.

Algorithm 2 Features Extraction from Graph

1: Input : Graph GLBP , n

2: ⊲ The LBP computed in Algorithm 1 and bin size

3: Output: GraphV ector ⊲ Feature Vector of the Graph

4: procedure GETVECTOR(GLBP )

5: for i← 1, all vertices do

6: for j ← 1, all Neighbors do

7: Vadd ← gfadd(GLBP (Neighborj), Vadd)
8: end for

9: Gvec(i)← gfdeconv(Vadd, Pirreducible)
10: end for

11: Graphvector ← hist(Gvec, 10)
12: end procedure

Note that the Algorithm 2 requires two external parameters.

In our experimental evaluation, we have chosen the irreducible

polynomial 1+ x+ x3 of degree 3, while the number of bins

as 10.

Time Analysis: The worst case running time of the GraphLBP

(Algorithm 2) is O(|V |2). This is due to the fact that, in the

worst case(assuming complete graph), both the outer loop and

the inner loop in the algorithm will be executed and will take

O(|V |2) of running time. For a graph, represented in the form

of adjacency list, the aggregate running time of the algorithm

is O(|E|). Note that the running time of most state of the

art algorithms including random walk, Ihara coefficients, and

shape DNA is O(|V |3).

IV. EXPERIMENTAL EVALUATION

In this section we perform experimental evaluation of the

proposed method and compare it with state of the art methods.

For this purpose, we selected the graphs that are extracted from

different views of an object taken with various transformation

and illumination conditions. The objective is to assess whether

GraphLBP can be used to embed the graphs in a vector space

to characterize their structure. The images are selected from

COIL (Columbia Object Image Library) [20]. This dataset

consists of 20 different objects each with 72 views. These

views are obtained from equally spaced directions over 360o.

In our experiments we have selected 4 different objects with all

their 72 views. Figure 3a shows some examples of photographs

taken from COIL.

To construct graphs over these images, we have applied

Harris corner detector [21]. Harris corner detector is used to

extract a list of candidate feature points. We treat these feature

points as vertices and construct a Delaunay triangulation over

those feature points. A Delaunay triangulations (DT) [22]

for a set P of points in a Euclidean space is a triangulation,

DT(P), such that no point in P is inside the circumcircle of

any triangle in DT(P). Figure 3 shows an example of an object

and its corresponding Delaunay Triangulation.

(a) Object (b) DT

(c) GG (d) RNG

Fig. 3. COIL Objects and their extracted Graphs

Once the graphs are extracted from the object images, we

apply GraphLBP to the extracted graphs to embed them in a

high-dimensional feature space. To evaluate the performance

of the proposed method, we compare it with following state-

of-the-art methods.

Random walk kernel [3]: Random walk kernel is state-of-

the-art graph kernel used to compare graphs. It measures the

similarity between two graphs by counting the frequencies of

matching random walks in the two input graphs. It avoids the

decomposition of the input graphs in to walks by using the

product graph formalism. This increases the efficiency of the

kernel.

shape DNA [23]: This method defines shape by a vector

composed of first few smallest eigenvalues of the Laplacian

matrix representation of a graph. This method was originally

proposed by Reuter et al. [23] for 3D shape classification. For

our experiments, we have chosen first ten positive eigenvalues

of the Laplacian matrix. Note that the smallest eigenvalue of

the Laplacian matrix is always zero and so we have ignored

it in our representation.

Ihara coefficients [5]: This method uses a feature-vector

that records prime cycle frequencies in a graph. These cycle

frequencies are computed using first few coefficients of the

reciprocal of the Ihara zeta function of the graph, commonly

referred to as Ihara coefficients. For comparison purpose in

our paper, we use the feature vector constructed from the

coefficients c3, c4 and cln|2E|, as proposed by Peng in[5]. Note

that Ihara coefficients are considered a powerful tool to capture

the cyclic structure of graphs [5], [24].

Next we apply the these methods to the Delaunay triangu-

lations extracted from all the three datasets. To compare the

visualisation results, we apply principal component analysis

(PCA) to the resulting feature vectors. PCA is mathematically

defined as an orthogonal linear transformation that transforms

the data to a new coordinate system such that the greatest

variance by any projection of the data comes to lie on the first

coordinate(called the first principal component), the second

greatest variance on the second coordinate, and so on. Figure

4 compares the visualization results on the first three principal

components of Delaunay triangulations extracted from the



COIL dataset.
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Fig. 4. PCA embedding of feature vectors computed from Delaunay Trian-
gulations.

To quantitatively compare the performance of the proposed

method with alternative methods, we cluster the graphs using

k-means clustering [25]. k-means clustering is a method,

which aims to partition n observations into k clusters in which

each observation belongs to the cluster with the nearest mean.

We compute Rand index [26] of these clusters, which is a

measure of the similarity between two data clusters. Table II

compares the Rand indices of all the methods.

TABLE II
ACCURACIES OF DIFFERENT METHODS ON DELAUNAY TRIANGULATIONS

Method DT

GraphLBP 99.65%

Shape DNA 97.36%

Ihara 97.96%

Random Walk Kernel 97.99%

Selected Ihara 98.97%

The above results show that GraphLBP can give better

performance as compared to some state of the art methods.

To take this study one step further, we now apply GraphLBP

to Gabriel graphs and relative neighbourhood graphs extracted

from the same dataset. A Gabriel Graph [27] for a set of n

points is a subset of Delaunay triangulation, which connects

two data points vi and vj for which there is no other point

vk inside the open ball whose diameter is the edge (vi, vj).
The relative neighbourhood graph [28] is also a subset of

Delaunay Triangulation. In this case a lune is constructed on

each Delaunay edge. The circles enclosing the lune have their

centres at the end-points of the Delaunay edge; each circle has

a radius equal to the length of the edge. If the lune contains

another node then its defining edge is pruned from the relative

neighbourhood graph. Figure 3c and 3d show an example of a

Gabriel Graph and a relative neighbourhood graph respectively

for corresponding images shown in Figure 3a. Note that, since

both the GG and RNG are subset of DT, the experiments on

those datasets allow us to investigate the performance of the

proposed method under controlled structural modification.

As with DT, we apply GraphLBP and alternate methods

to the graphs extracted from the same objects and embed

the resulting feature vectors in a three dimensional vector

space using PCA. Figure 5 shows the resulting embeddings

of the feature vectors extracted from Gabriel graphs, while

Figure 6 shows the resulting embeddings of the feature vectors

extracted from Relative neighbourhood graphs. For compari-

son purpose, we have shown the visualisation results for the

proposed method and the alternate methods.
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Fig. 5. PCA embedding of feature vectors computed from Gabriel graphs.

The embedding results of Figure 5 suggest that, under

controlled structural modification, GraphLBP can still provide

a better separation as compared to other state of the art

methods. To quantitatively evaluate the performance of the

proposed method, we compute the Rand index of the resulting

clusters. Table III reports the resulting Rand indices for the

proposed method and alternative methods.

TABLE III
ACCURACIES OF DIFFERENT METHODS ON GABRIEL GRAPHS

Method GG RNG

GraphLBP 99.65% 98.30%

Shape DNA 71.66% 75.06%

Ihara 82.31% 64.97%

Random Walk Kernel 93.27% 95.66%

Selected Ihara 93.85% 95.34%

It is clear from the table III that under controlled struc-

tural modifications, the proposed method still gives superior

performance when compared to alternate methods.
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Fig. 6. PCA embedding of feature vectors computed from relative neighbour-
hood graphs.

V. CONCLUSION

In this paper we have described Graph-LBP. This is a novel

framework for characterizing graphs extracted from both real

world and synthetic data. The proposed method is scaleable

and maintains the simplicity and elegance characteristics of

original pixel LBP, which can be used to construct the fea-

ture vectors from image textures. We provided a route for

extracting structural properties from graphs via LBP, and have

mapped them to a vector space using Galois field algebra.

Our future research directions will focus on a) expanding our

method to other datasets i.e. ALOI, ETHZ etc. b) encompass

weighted graphs, directed graphs and hyper graphs - so that

it can be extended to develop more general object represen-

tations, and c) expand of idea of Graph-LBP on 3D mesh

models.
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