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Abstract—In this paper, we develop a new deep hybrid graph
kernel. This is based on the depth-based matching kernel [1] and
the Weisfeiler-Lehman subtree kernel [2], by jointly computing
a basic deep kernel that simultaneously captures the relationship
between the combined kernels through deep learning networks.
Specifically, for a set of graphs under investigations, we commence
by computing two kernel matrices using each of the separate
kernels. With the two kernel matrices to hand, for each graph
we use the kernel value between the graph and each of the
training graphs as the graph characterisation vector. This vector
can be seen as a kernel-based similarity embedding vector of the
graph [3]. We use the embedding vectors of all graphs to train
a deep autoencoder network, that is optimized using Stochastic
Gradient Descent together with the Deep Belief Network for
pretraining. The deep representation computed through the deep
learning network captures the main relationship between the
depth-based matching kernel and the Weisfeiler-Lehman subtree
kernel. The resulting deep hybrid graph kernel is computed by
summing the original kernels together with the dot product kernel
between their deep representations. We show that the deep hybrid
graph kernel not only captures the joint information between the
associated depth-based matching and Weisfeiler-Lehman subtree
kernels, but also reflects the information content over all graphs
under investigations. Experimental evaluations demonstrate the
effectiveness of the proposed kernel.

I. INTRODUCTION

In recent years, graph kernels have been shown to provide
powerful tools for the analysis of graphs [4]. One main advan-
tage of using graph kernels is that they can better preserve the
structural information of graphs by mapping them to points in
a high dimensional Hilbert space.

Generally speaking, most state-of-the-art graph kernels
are instances of the generic R-convolution kernel developed
by Haussler [5], i.e., they compare pairs of substructures
resulting from the input graphs decomposition. Thus, any
graph decomposition approach can be employed to develop
a new graph kernel, e.g., walks [6], paths [7], restricted
subgraphs [8], or subtrees[9], [2], [10], [11]. Unfortunately,
most R-convolution based kernels suffer from the drawback of
ignoring the relative arrangement of correspondences between
decomposed substructures. This problem occurs when an R-
convolution kernel roughly identifies any pair of isomorphic
substructures and does not consider locational arrangement of
correspondences between the substructures.

To overcome the shortcoming of neglecting structural cor-
respondence information of R-convolution kernels, Neuhaus
and Bunke [12] introduce an aligned random walk kernel

by identifying the alignments through graph edit-distances.
Fröhlich et al. [13] developed a family of optimal assign-
ment kernels based on aforehand aligned substructures. Bai et
al. [14] developed a depth-based matching kernel by aligning
vertices through depth-based representations [15]. All these
kernels establish reliable structural correspondence information
and reflect more precise kernel-based similarities between
graphs. However, these graph kernels are all generally based
on the analysis of one type of substructure, hence potentially
missing some important structural information. This is because
it is difficult to define a graph kernel that encapsulates any type
of structural pattern. One way to overcome this problem is to
compute a hybrid kernel by combining a number of alternative
kernels with different properties. Specifically, with two existing
kernel measures K1 and K2 to hand, a hybrid graph kernel
KHyb [16] can be defined as

KHyb = µK1 + (1− µ)K2, (1)

where 0 ≤ µ ≤ 1. The main objective here is to learn
the rate µ which ensures that KHyb combines the similarity
information of the original kernels K1 and K2 while achieving
a higher performance than using the original kernels individ-
ually. Unfortunately, determining the optimal rate µ is not
trivial and typically requires cross-validation methods to search
hyperparameters space in a principles way. Furthermore, the
optimal value of µ usually varies across different datasets, thus
influencing the runtime of the learning process.

The aim of this paper is to develop a new deep hybrid graph
kernel based on the depth-based matching kernel [1] and the
Weisfeiler-Lehman subtree kernel [2], by jointly computing a
basic deep kernel that simultaneously captures the relationship
between the combined kernels through deep learning networks.
The reasons for using these two kernels are twofold. First, the
depth-based matching kernel can identify reliable structural
correspondence information between substructures by aligning
their vertices. Second, the Weisfeiler-Lehman subtree kernel
can reflect the intrinsic structure information through the sub-
trees rooted at each vertex with increasing heights. Thus, these
graph kernels are not only powerful tools for graph classifica-
tion problems, but also have different theoretical advantages. In
this work, we are interested to define a new hybrid graph kernel
that possesses the advantages of both the depth-based matching
kernel and the Weisfeiler-Lehman subtree kernel. Specifically,
for a set of graphs under investigations, we commence by
computing two kernel matrices using the depth-based matching
kernel and the Weisfeiler-Lehman subtree kernel respectively.
With the two kernel matrices to hand, for each graph we use



the kernel value between the graph and each of the training
graphs as the graph characterisation vector. This vector can
be seen as a kernel-based similarity embedding vector of the
graph [3]. We use the embedding vectors of all graphs to train a
deep autoencoder network, that is optimized using Stochastic
Gradient Descent together with a Deep Belief Network for
pretraining. Based on [17], the deep autoencoder network can
minimize the reconstruction error of the output and input
embedding vectors that encapsulate the joint kernel-based in-
formation of the combined graph kernels, the deep network can
jointly capture the salient information between the kernels in a
highly non-liner latent space. As a result, unlike the traditional
hybrid kernel that needs learning of an associated rate µ to
reflect the relationship between the combined kernels, we can
directly capture the main relationship between the combined
kernels through the deep autoencoder network. Furthermore,
we compute the deep representation of each graph through
the deep network. The resulting deep hybrid graph kernel is
computed by summing the matching kernel, the subtree kernel
and the dot product kernel between the deep representations of
the graphs. We show that the deep hybrid graph kernel not only
captures the joint information between the associated com-
bined depth-based matching and Weisfeiler-Lehman subtree
kernels, but also reflect the information content over all graphs
under investigations. Experimental evaluations demonstrate the
effectiveness of the proposed kernel.

The remainder of this paper is organized as follows. Section
II illustrates the preliminary concepts that will be used in
this work. Section III gives the definition of the deep hybrid
graph kernel. Section IV provides our experimental evaluation.
Finally, Section V concludes this work.

II. PRELIMINARY CONCEPTS

In this section, we will introduce two state-of-the-art graph
kernels that will be used to compute the deep hybrid graph
kernel. We commence by reviewing the concept of the depth-
based matching kernel. Finally, we review the concept of the
Weisfeiler-Lehman subtree kernel.

A. The Depth-based Matching Kernel

The depth-based matching kernel is a vertex alignment
kernel based on aligning the depth-based representations root-
ed at vertices between graphs [1]. Unlike most existing R-
convolution kernels that ignore the structural correspondence
information between substructures [5], this kernel can be seen
as an aligned subgraph kernel that incorporates locational
correspondences between pairs of isomorphic subgraphs.

Specifically, assume a graph G(V,E) with V as the vertex
set and E as the edge set. We commence by computing the
shortest path matrix SG for G, and each element SG(v, u)
represents the shortest path length between vertices v ∈ V
and u ∈ V . The K-layer neighborhood vertex set NK

v for a
vertex v ∈ V is determined by

NK
v = {u ∈ V | SG(v, u) ≤ K}, (2)

For the graph G(V,E), the K-layer expansion subgraph
GK
v (VK

v ; EK
v ) rooted at vertex v is
{

VK
v = {u ∈ NK

v };
EK
v = {u,w ∈ NK

v , (u,w) ∈ E}.
(3)

Note that, if K is equal to or greater than the longest shortest
path length L from v to the remaining vertices, the K-layer
expansion subgraph rooted at v is the global structure of
G(V,E). For the graph G(V,E), we compute the K-layer

depth-based representation DBh
G(v) around v ∈ V as the point

of v, and

DBK
G (v) = [HS(G

1
v), · · · , HS(G

k
v ), · · · , HS(G

K
v )]⊤, (4)

where (k ≤ K) and HS(G
K
v ) is the Shannon entropy of

the subgraph GK
v associated with the steady state random

walk [18].

For a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq), we
compute an affinity matrix R between pairwise vertices of
Gp and Gq for vertex matching. Specifically, for each pair
of vertices vi ∈ Vp and uj ∈ Vp, we compute the Euclidean
distance between their K-layer depth-based representations
DBK

Gp
(vi) and DBK

Gq
(uj) as the element Rpq(i, j) of Rpq ,

i.e.,

Rpq(i, j) = ‖DBK
Gp

(vi)−DBK
Gq

(uj)]‖2, (5)

where i ∈ {1, 2, · · · , |Vp|}, j ∈ {1, 2, · · · , |Vq|} and R is a
|Vp| × |Vq| matrix. If Rpq(i, j) is the smallest element both
in row i and in column j, we say that there is a one-to-one
correspondence between the vertices vi ∈ Vp uj ∈ Vq . The
state of correspondence between the vertices of Gp and Gq is

recorded in a correspondence matrix Cpq ∈ {0, 1}|Vp||Vq|, and
each element Cpq(i, j) satisfies

Cpq(i, j) =

{

1 if R(i, j) is the smallest element
both in row i and in column j;

0 otherwise.
(6)

Eq.(6) indicates that if Cpq(i, j) = 1, the vertices vi and vj
are matched.

For a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq), we

compute the depth-based matching kernel k
(h)
DB(Gp, Gq) by

counting the number of aligned vertex pairs associated with
the correspondence matrix Cpq , i.e.,

k
(h)
DB(Gp, Gq) =

|Vp|
∑

i=1

|Vq|
∑

j=1

Cpq(i, j). (7)

B. The Weisfeiler-Lehman Subtree Kernel

In this subsection, we review the concept of the Weisfeiler-
Lehman subtree kernel. This kernel is based on counting the
number of the isomorphic subtree pairs, as identified by the
Weisfeiler-Lehman algorithm [19].

Specifically, for a sample graph G(V,E) and a vertex
v ∈ V , we denote the neighbourhood vertices of v as
N (v) = {u|(v, u) ∈ E}. For each iteration m where m > 1,
the Weisfeiler-Lehman algorithm strengthens the current label
Lm−1
WL (v) of each vertex v ∈ V as a new label Lm

WL(v) by
taking the union of the current labels of vertex v and its
neighbourhood vertices in N (v), i.e.,

Lm
WL(v) =

⋃

u∈N (v)

{Lm−1
WL (v),Lm−1

WL (u)}, (8)



Note that, when m = 1 the current label L0
WL(v) of v is its

initial vertex label. Based on the definition in [19], for each it-
eration m the new label LM

WL(v) of v corresponds to a specific
subtree structure of height m rooted at v. Furthermore, for a
pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq), if the new updated
vertex labels of vp ∈ Vp and vq ∈ Vq at the m-th iteration
are identical, the subtrees corresponded by these new labels
are isomorphic. Thus, the Weisfeiler-Lehman subtree kernel

k
(M)
WL (Gp, Gq), that counts the pairs of isomorphic subtrees [2],

can be defined by counting the number of identical updated
vertex labels at each iteration m, i.e.,

k
(M)
WL (Gp, Gq) =

M
∑

m=0

∑

vp∈Vp

∑

vq∈Vq

δ{Lm
WL(vp),L

m
WL(vq)},

(9)

where

δ(Lm
WL(vp),L

m
WL(vq) =

{

1 if Lm
WL(vp) = Lm

WL(vq),
0 otherwise.

(10)

III. THE DEEP HYBRID GRAPH KERNEL

In this section, we introduce a framework for computing a
new deep hybrid graph kernel. We commence by reviewing the
concept of deep autoencoder network [17]. Finally, we show
how to compute the deep hybrid graph kernel based on the
depth-based graph kernel and the Weisfeiler-Lehman subtree
kernel through the deep network.

A. Deep Autoencoder Networks

In this subsection, we review the deep autoencoder, which
is an example of unsupervised deep learning network [17] and
consists of an encoder network and a decoder network. On the
one hand, the encoder network comprises a number of non-
linear functions that can transform the original input data into a
lower dimensional deep representation [20], [21]. On the other
hand, the decoder network comprises a number of non-linear
functions that can reconstruct the original input data based on
the deep representations. It has been proven that these deep
representations are able to capture the manifold structure of
the input data embedded in a highly non-linear space. In other
words, the deep representation enhances the linear separability
of the original input data [17].

Fig.1 shows the deep autoencoder network architecture that
will be used in this work. The parameters of the network are
shown in Table.I. Let xi be an input. For each t-th layer, we
compute the hidden representation yti as

yti =

{

σ(W (1)xi + b(1)) if t = 1;
σ(W (t)yt−1

i + b(t)) if t = 2, ..., T.
(11)

After T steps, we transform the input data xi into y
(T )
i through

the encoder network. Then, after another T steps, we reverse
the calculation process of the encoder network and reconstruct

xi as output x̂i based on y
(T )
i through the decoder network.

y
(T )
i is the resulting deep representation of the input data xi.

The objective of the deep autocoder network is to minimize

the reconstruction error of output x̂i and input xi, and the loss
function is defined as

L =

n
∑

i=1

‖x̂i − xi‖
2
2 (12)

To optimize the deep autocoder network, we first use the
Deep Belief Network [17] to pretrain its parameters to avoid
trapping in local optimum in the parameter space. Then, the
deep network is optimized by means of the Stochastic Gradient
Descent method, where the gradients can be conveniently
obtained by applying the chain rule to backpropagate error
derivatives first through the decoder network and then through
the encoder network, i.e., back-propagate ∂L

∂θ
to update θk.

As [20] stated, minimizing the reconstruction error can
smoothly capture the manifold structure of the original data
and thus capture the main characteristics of the data.

B. The Deep Hybrid Graph Kernel

In this subsection, we propose a new deep hybrid graph
kernel based on the depth-based graph kernel [1] and the
Weisfeiler-Lehman subtree kernel [2] through the deep autoen-
coder network. The reason of using these two state-of-the-art
graphs is twofold. First, the Weisfeiler-Lehman subtree kernel
can not only accommodate vertex labels but also capture rich
intrinsic structure information through the expanding subtree
rooted at each vertex. Second, the depth-based matching kernel
can establish reliable structural correspondence information
between graphs that is ignored by the Weisfeiler-Lehman
subtree kernel. In other words, while these two graph kernels
have different characteristics with different advantages, the
resulting hybrid kernel will combine these advantages.

Assume we have a set of graphs G =
{G1, · · · , Gi, · · · , GN}. We commence by computing
the kernel matrices KDB and KWL using the depth-based
matching kernel and the Weisfeiler-Lehman subtree kernel,
respectively. Each kernel matrix K· is a N × N matrix,
and each element K·(i, j) indicates the similarity between
a pair of graphs Gi ∈ G and Gj ∈ G in terms of a graph
kernel measure. For each graph Gi ∈ G, we compute the
characteristics vector Vi of Gi associated with the i-th rows
of the kernel matrices KDB and KWL, i.e.,

Vi = [KDB(i, 1), · · · ,KDB(i,M), (13)

KWL(i, 1), · · · ,KWL(i,M)],

where M denotes the number of training graphs. Based on the
definition in [3], Vi can be seen as a vectorial representation of
Gi based on the similarity between Gi and a set of prototype
graphs. Here, we use the graph kernels as the similarity mea-
sures and the training graphs in G as the prototype graphs. As
a result, this joint kernel-based similarity embedding vectors
encapsulate rich structural information from both the depth-
based matching kernel and the Weisfeiler-Lehman subtree
kernel.

With the kernel-based similarity embedding vectors of all
graphs in G to hand, we use these embedding vectors as
input data to train the deep autoencoder network introduced
in Section III-A. Based on Eq.(11) we obtain a set of N deep
representation vectors of all graphs in G as

DRs = {y
(K)
1 , · · · , y

(K)
i , . . . , y

(K)
N }, (14)



Fig. 1. The Architecture of the Deep Autorencode Network.

TABLE I. TERMS AND NOTATIONS

Symbol Definition

n number of vertexes

K number of layers

X = {xi}
n

i=1, X̂ = {x̂i}
n

i=1 the input data and reconstructed data

Y k = {yk
i
}n
i=1 the k-th layer hidden representation

Wk, Ŵk the k-th layer weight matrix

bk, b̂k the k-th layer biases

θ(k) = {Wk, Ŵk, bk, b̂k} the overall parameters

where y
(K)
i is the deep representation of graph Gi ∈ G. The

deep representation y
(K)
i of each graph Gi can effectively

capture the manifold structure of the graph space through the
the autorencoder network.

With the deep representation y
(K)
i ∈ DRs of each graph

Gi ∈ G to hand, we compute a deep graph kernel k for each
pair of graphs Gi ∈ G and Gj ∈ G as

kDP = 〈y
(K)
i , y

(K)
j 〉, (15)

i.e., the dot product between the deep representations y
(K)
i and

y
(K)
j of Gi and Gj . The resulting deep hybrid graph kernel

based on the depth-based matching kernel and the Weisfeiler-
Lehman subtree kernel is defined as

kDHK = kDP + k
(M)
WL + k

(K)
DB , (16)

i.e., the deep hybrid kernel consists of three basic kernel

measures. Specifically, k
(M)
WL reflects the intrinsic structure

information through the subtrees rooted at each vertex with

increasing heights that vary from 1 to M . k
(K)
DB is based on the

structural correspondence information between substructures
identified through the K-layer depth-based representations
rooted at each vertex. On the other hand, the deep graph kernel
kDP directly encapsulates the joint kernel-based similarity

information of the kernels k
(M)
WL and k

(K)
DB . This is because

the deep representations for kDP are computed through the
deep autoencoder network, that minimizes the reconstruction
error of the output and input kernel-based similarity graph

embedding vectors associated with k
(M)
WL and k

(K)
DB . As a result,

this is turn allows us to avoid the problem of determining the

optimal mixing between the input kernels (as in the hybrid
reproducing kernel [16]) by encapsulating this information in
kDP.

Finally, note that, to eliminate difference in scales resulting
when combining the different graph kernels, we suggest to
transform the basic deep kernel kDP, the depth-based matching

kernel k
(K)
DB and the Weisfeiler-Lehman subtree kernel k

(M)
WL in

Eq.(13), Eq.(15) and Eq.(16) into their normalized versions.
For instance, for a sample kernel k(i, j), its normalized version
knm(i, j) is defined as

knm =
k(i, j)

√

k(i, i)k(j, j)
. (17)

The resulting normalized kernel value is therefore bounded
between 0 and 1.

C. Discussions

The proposed kernel has a number of advantages. First,
unlike most state-of-the-art graph kernels [8], [22], [9], [23],
[24], [14], [25], [26] that only reflect the similarity information
between pairs of graphs, the deep hybrid graph kernel kDHK

can encapsulate similarity information between a larger num-
ber of graphs. This is because the associated basic deep graph
kernel kDP of kDHK is computed as the dot product between
the deep representations of the similarity embedding vectors of
all graphs. The embedding vector of each graph is computed
by measuring the kernel-based similarity between a graph
and each prototype graph, and we use all training graphs as
prototype graphs. As a result, the deep representation of each
graph embedding vector encapsulates the information between



the graph and all the training graphs. Second, unlike other
hybrid graph kernels (e.g., the hybrid reproducing kernel [16])
that need to compute the weighted coefficients associated with
each combined graph kernel to reflect the relationship between
these combined kernels, our deep hybrid graph kernel can
smoothly capture the joint relationship between the combined
kernels through the deep representations computed through
the autoencoder networks. Furthermore, since the deep autoen-
coder network can significantly capture the manifold structure
of the graph embedding space, the resulting deep hybrid graph
kernel can reflect richer graph structural information. The
above observations suggest the theoretical effectiveness of the
proposed deep hybrid graph kernel.

IV. EXPERIMENTAL RESULTS

A. Datasets

MUTAG: The MUTAG dataset consists of graphs representing
188 chemical compounds, and here the goal is to predict
whether each compound possesses mutagenicity [27]. The
maximum, minimum and average number of vertices are 28,
10 and 17.93 respectively.

PPIs: The PPIs dataset consists of protein-protein interaction
networks (PPIs). The graphs describe the interaction relation-
ships between histidine kinase in different species of bacteria.
Histidine kinase is a key protein in the development of signal
transduction. If two proteins have direct (physical) or indirect
(functional) association, they are connected by an edge. There
are 219 PPIs in this dataset and they are collected from 5
different kinds of bacteria (i.e., a) Aquifex4 and thermotoga4
PPIs from Aquifex aelicus and Thermotoga maritima, b) Gram-
Positive52 PPIs from Staphylococcus aureus, c) Cyanobacteri-
a73 PPIs from Anabaena variabilis, d) Proteobacteria40 PPIs
from Acidovorax avenae, and e) Acidobacteria46 PPIs). The
number of maximum, minimum and average vertices for the
PPIs dataset are 128, 3 and 109.63 respectively.

Reeb: The SHREC 3D Shape database consists of 15 classes
and 20 individuals per class, that is 300 shapes [28]. This
is a standard benchmark in 3D shape recognition. From the
SHREC 3D Shape database, we establish the Reeb graph
datasets through the mapping function: ERG barycenter, i.e.,
the distance from the center of mass/barycenter. The number of
maximum, minimum and average vertices for the Reeb dataset
are 220, 41 and 95.42 respectively.

Shock: The Shock dataset consists of graphs from the Shock
2D shape database. Each graph is a skeletal-based represen-
tation of the differential structure of the boundary of a 2D
shape. There are 150 graphs divided into 10 classes. Each class
contains 15 graphs. The number of maximum, minimum and
average vertices for the Shock dataset are 33, 4 and 13.16
respectively.

B. Evaluation on Graph Classification

We evaluate the performance of our kernels on several
standard graph datasets, including MUTAG, Reeb, PPIs and
Shock.

Experimental Setup: We evaluate the performance of the
deep hybrid graph kernel (DHGK) on graph classification

problems. We compare our kernel with several alternative state-
of-the-art graph kernels. These graph kernels include 1) the
depth-based matching kernel (DBMK) [1], 2) the Weisfeiler-
Lehman subtree kernel (WLSK) [2], 3) the shortest path graph
kernel (SPGK) [7], 4) the graphlet count graph kernel with
graphlet of size 4 (GCGK) [29], and 5) the hybrid reproducing
graph kernel (HRGK) [16]. For the DHGK kernel, we set the
parameters K = 10 (i.e., the greatest subgraph layer associated
with the combined DBMK kernel) and M = 10 (i.e., the
greatest subtree height associated with the combined WLSK
kernel), because of the good performance of the kernels with
these parameters based on the works in [1], [2]. Similarly,
for the independent DBMK and WLSK kernels, we set both
their own associated parameters M and K as 10. Moreover,
for the associated multi-layer deep autoencoder network of the
proposed HRGK kernel, we set the dimension of each layer
is 600, 400, 200 and 100, i.e., the associated encoder and
decoder network both have 4 layer learning structures. The
classification performance of each kernel is evaluated using
10-fold cross-validation and a C-Support Vector Machine (C-
SVM). Moreover, we employ the LIBSVM library [30]. For
each fold, we choose the parameters of each kernel together
with the C parameter of the C-SVM by cross-validation on
the training data. For each kernel and dataset, we repeat the
whole experiment 10 times and we compute the average classi-
fication accuracy and standard error. The average classification
accuracies (± standard error) are shown in Table II.

Results and Discussions: In terms of classification accuracy,
we can see that the proposed DHGK kernel can outperform
the alternative graph kernels, with the exception of the WLSK
kernel on the PPIs dataset. However, the proposed DHGK
kernel is still competitive to the WLSK kernel on the PPIis
dataset. The effectiveness of the proposed DHGK kernel are
threefold. First, unlike the remaining graph kernels that only
reflect the information between pairwise graphs, the proposed
DHGK kernel can reflect comprehensive information over all
graphs under investigations. This is because the associated
deep basic kernel for the DHGK kernel is computed through a
kernel-based embedding vector, and this embedding vector of
each graph is computed based on measuring the kernel value
between the graph and each of the training graphs. Second,
unlike the HRGK kernel, which is also a kind of hybrid
graph kernel, only the proposed DHGK kernel can jointly
capture the relationship between the combined kernels through
the deep autoencoder network. Furthermore, since the deep
network can capture the manifold structure of kernel-based
graph embedding space, the proposed DHGK kernel can reflect
richer graph characteristics. Third, the proposed DHGK kernel
can simultaneously encapsulate the joint information and the
independent information from the DBMK and WLSK kernels,
thus leading to a significant improvement over the original
kernels.

V. CONCLUSIONS

In this paper, we have developed a new deep hybrid graph
kernel based on the depth-based matching kernel and the
Weisfeiler- Lehman subtree kernel. Our main idea is based on
jointly computing a basic deep kernel that simultaneously cap-
tures the relationship between the combined kernels through
a deep autoencoder network. We have shown that the deep
hybrid graph kernel not only captures the joint information



TABLE II. CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR).

Datasets MUTAG Reeb PPIs Shock

DHGK 88.05 ± .61 69.73 ± .51 87.61± .87 42.13 ± .55

DBMK 85.27± .69 69.40± .56 83.74± .73 35.20± .62

WLSK 82.05± .57 58.53± .53 88.07 ± .41 36.40± 1.00

SPGK 83.38± .81 55.73± .44 59.04± .44 37.88± .93

GCGK 82.04± .39 23.40± .60 46.61± .47 26.93± .63

HRGK 84.35± .71 32.71± .51 53.61± .23 26.93± .63

between the associated depth-based matching and Weisfeiler-
Lehman subtree kernels, but also reflects the similarity infor-
mation between each graph and the set of training graphs.
Experimental evaluations demonstrate the effectiveness of the
proposed kernel. Overall, the proposed work provides us a new
way of defining new hybrid graph kernel. Our future work will
investigate different hybrid kernels based on other state-of-the-
art graph kernels.
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