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Abstract—In this work we propose a novel and compact
Neighbor Reconstruction Method (NRM) which is a unified pre-
processing method for graph-based sparse spectral algorithms.
This method is conducted by vector operations on a central
point and its corresponding neighbor points. NRM generates
new neighbor points which can capture the local space structure
of the central point more appropriately than original neighbor
points. With NRM, a large number of sparse spectral based
nonlinear feature extraction and selection algorithms gain signif-
icant improvement. Specifically, we embedded NRM to several
classical algorithms, Local Linear Embedding (LLE) [1], Lapla-
cian Eigenmaps (LE) [2] and Unsupervised Feature Selection
for Multi-cluster Data (MCFS) [3], with accuracy improvement
of up to 7%, 2.6 %, 2.4 % on ORL, CIFAR 10, and MINST
data sets respectively. We also apply NRM to a Super Resolution
algorithm, A+ [5], and obtain 0.12dB improvement than original
method.

I. INTRODUCTION

In the real world, data such as speech signals and digital

figures always have high dimensionality. To process these

data adequately, dimensionality reduction is required. In ma-

chine learning and statistics, dimensionality reduction is the

process of reducing the number of random variables under

consideration, and obtaining a set of principal variables [1].

Dimensionality reduction is widely used for feature selection

and extraction [2]. Feature selection can be viewed as the

search for feature subsets from the full data set, along with an

evaluation metric which scores the different feature subsets.

Feature extraction transfers the entire original data set into a

more informative and non-redundant representation, leading to

better human interpretations. The most obvious distinction be-

tween feature selection and extraction is that feature selection

does not create new features from the original data set, while

the latter transfers the entire data set into a new coordinate

space. In the following two paragraphs we will detail feature

selection and extraction respectively.

Based on different evaluation metrics, feature selection

methods can mainly be grouped into three categories: wrap-

pers, filters and embedded methods. Wrapper methods employ

a predictive model to score different selected subsets [9], [10],

[12]. Wrapper methods can usually achieve best performance

for a particular model, but a large amount of computation is

needed. Filter models use a proxy metric instead of the error

rate used in wrapper to score feature subsets [8], [3], [13],

[14]. With less computation, a filter model can provide more

general but lower prediction performance than that provided

by wrappers. Embedded methods are a catch-all group of

techniques which perform feature selection as part of the

model construction process [11], [16].

Based on the constructed mapping, feature extraction meth-

ods can roughly be classified into linear and nonlinear meth-

ods. Linear feature extraction algorithms construct a linear

mapping to transfer the original data set into a feature set with

designed properties, such as Principal Components Analysis

(PCA) [17], Linear Discriminant Analysis (LDA) [19] and

Locality Preserving Projection (LPP) [18]. These algorithms

perform well on linearly separable data sets. However, these

linear techniques cannot adequately handle complex nonlinear

data. By constructing a nonlinear mapping from original

data set to a feature set with designed properties, nonlinear

feature extraction algorithms, such as, Isomap [20], Locally

linear Embedding [1], Laplacian Eigenmaps [2], multilayer

autoencoders, have the ability to deal with complex nonlinear

data.

In the last decade, a manifold based view of data processing

has emerges, such as locally Linear Embedding (LLE) [1],

Laplacian Eigenmaps (LE) [2], Hessian LLE [21], Local Tan-

gent Space Analysis (LTSA) [22], Unsupervised feature selec-

tion for Multi-Cluster data (MCFS) [3], Unsupervised Feature

Selection with Structured Graph Optimization (SOGFS) [4].

These algorithms view input data as an undirected weighted

graph, which is used to approximate the manifolds. This

global graph is constructed by connecting smaller local graphs

in a admissible way. These small graphs are generated by

connecting data points with their corresponding neighbors.

The global graph is represented by a sparse matrix. Based

on this sparse matrix, locally linear algorithms solve a sparse

eigenvalue problem to generate the designed features. We refer

to these sparse spectral dimensionality reduction techniques as

graph based sparse spectral algorithms.

Here we propose a novel neighbor reconstruction method

which focuses on generating better small local graphs on man-

ifolds. Accordingly, data are viewed as laying on a manifold.

Specifically, we present the new method which generates a

much closer neighbor by aggregating the central point and its

corresponding neighbor points together and dividing the result



by a scalar (detailed in Fig 2). Briefly, our contributions are:

1) The neighbor reconstruction method can generate a

closer neighbor for an assigned central point leading to

a significant improvement for embedding methods.

2) The neighbor reconstruction method is a unified compact

preprocessing method for graph based sparse spectral

algorithms. Namely, it can be applied to many existing

feature selection and extraction algorithms.

3) We also analyze theoretically the mechanism of neighbor

reconstruction method, guaranteeing its convergence to

manifolds. And give out the optimised adjustable param-

eter c.

II. RELATED WORK

The problem of graph based sparse spectral feature ex-

traction and feature selection can be defined respectively as

follows. Assume we have a data set represented as a D×n ma-

trix X consisting of n sample vectors xj(j ∈ {1, 2, 3, ..., n})
with D dimensionality. Assume that this data set has intrinsic

dimensionality d, where d < D and often d ≪ D. In

mathematical terms intrinsic dimensionality means the sample

points in data set X are lying on or near a manifold with

dimensionality of d which is embedded in the D-dimensional

Euclidean space. In feature extraction, researchers construct

some nonlinear mappings to make the high dimensional fea-

ture space mapped into a low dimensional one. On the other

hand feature selection can be viewed as the search technique

for proposing new feature subsets from original data set, along

with an evaluation measure which scores the different feature

subsets. In the following subsections we analyze three discrim-

inative methods stretching over two research domains. We now

review in detail two important sparse spectral dimensionality

reduction techniques, Local Linear Embedding (LLE) [1] and

Laplacian Eigenmaps (LE) [2].

Local Linear Embedding Firstly, LLE constructs a graph

to represent the data set X. In LLE, to describe the local prop-

erties of the manifold around a data point xj , which is written

as a linear combination wj (the reconstruction weights) of its

k nearest neighbors xji(i ∈ {1, 2, 3, ..., k}). LLE assumes the

reconstruction weights wj is shared between high- and low-

dimensional space. Hence, LLE utilizes reconstruction weights

to obtain corresponding low-dimensional representation.

Laplacian Eigenmaps LE finds a low-dimensional data

representation by preserving local properties of the manifold.

In LE, the local properties are based on the pairwise distances

between near neighbors. Like LLE, LE firstly construct a

sparse adjacency matrix Wle in a different way. LE generates

a low-dimensional representation of the data in which the

distances between a data point and its k nearest neighbors

are minimized.

Multi-Cluster Feature Selection (MCFS) Like LE, Unsu-

pervised Feature Selection for Multi-cluster Data (MCFS) [3]

also constructs a sparse adjacency distance matrix Wmcfs.

Based on Wmcfs, MCFS employs graph spectral embedding

method to generate a low-dimensional representation of orig-

inal data.

Figure 1: To capture two neighbors within radius r, the

number of sampled data exponentially grows with increasing

dimension number.

All of these methods can be viewed as different graph-

based sparse spectral algorithms. Our analysis is based on a

basic property of the manifold: if a local intrinsic manifold

subspace is small enough then it can be well described by its

corresponding embedded Euclidean subspace. To model the

intrinsic manifold, these methods construct a sparse adjacency

matrix W. In graph based sparse spectral algorithms, although

W is constructed in different ways, the k nearest neighbors

xji are usually used to represent the local subspace. If the

neighbors are close enough to the central point xj , according

to this property, the generated sparse adjacency matrix W can

model intrinsic the manifold in a better way than those gen-

erated by relatively distant neighbors. This is an explanation

why a method can perform better than its original version

when a larger training set is used. Clearly a larger data set

means that closer neighbors can be found. Due to the high

dimension of the data, numerous data would be required to

find a sufficiently close neighbor for a central point. Fig 1

illustrate this problem.

Clearly large data set is important for finding a sufficiently

close neighbor. However it is massively expensive in both

computation and memory. This observation motivates our

work in this paper.

III. NEIGHBOR RECONSTRUCTION METHOD(NRM)

The first step of a graph based sparse spectral algorithm is to

select k nearest neighbors for every data point and then to take

subsequent processing steps. We add a unified pre-processing

step between the first step and the subsequent processing steps

to comes for regular procedures. Inspired by Euclid’s theorem

in plane space, namely the parallelogram axiom of vectors,

we designed a new neighbor reconstruction method. More

details are shown in Fig 2. Denote the neighbors of xj as

the set of vectors [xj1 ,xj2 , ...,xjk ] ∈ R
D×k. We concatenate

the central point and its corresponding neighbors together as

column in the matrix X̄ = [xj1 ,xj2 , ...,xjk ,xj ]. We induce a

reconstruction operator,



Figure 2: Geometric interpretation of neighborhood recon-

struction. The figure shows how to create a cosine similarity

closer point (xji +xj)/c by using xj and its neighbor xji . c is

an adjustable parameter to make (xji + xj)/c be close to the

intrinsic manifold, namely the solid line. In this figure, when

c = 1.85, (xji + xj)/c can fall on the intrinsic manifold.
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∈ R
(k+1)×(k+1) (1)

where c(> 1) is an adjustable parameter. For the jth(1 ≤
j < k + 1) column Rj , it can generate the jth reconstructed

neighbor 1
c
xji +

1
c
xj by the right multiplication X̄Rj . For

the (k + 1)th column, it is used to preserve central point

xj for the next iteration. In NRM, reconstruction manipu-

lation is achieved in parallel by right multiplying R by X̄.

This manipulation can be done achieved iteratively. X̄(r) =
X̄R

r(r ∈ {1, 2, 3, ..., s}) where s is a truncation number. By

mathematical induction, we can obtain a closed form of X̄(r),

X̄
(r) = X̄R

r (2)

=
[

1
cr
xj1 + S(r, c)xj , ...,

1
cr
xjk + S(r, c)xj ,xj

]

where S(r, c) = 1
cr

cr−1
c−1 . After operating on X̄ s times, NRM

collects X̄
(r) as a large set X = {X̄(r)}sr=1. The final step in

NRM is to select k the nearest points for xj from X to replace

the original neighbor set. The complete NRM algorithm is

summarized in Alg. 1

A. Local Linearly preserving NRM (LLP-NRM)

In many applications the local manifold curvature is small,

so we also propose a local linearly preserving NRM which is a

very simple form of NRM detailed in Alg. 2. Small curvature

leads to a flat data manifold, so the local manifold can be

approximated well by a hyperplane which implies the length

of the geodesic is almost equal to the Euclidean distance of

the sampled points. Namely,

l(xj ,xji) ≈ △x (3)

Algorithm 1 NRM

Require:

Central point xj ;

The corresponding neighbors [xj1 ,xj2 , ...,xjk ];
Truncation number s;

Adjustable parameter c.
Ensure:

Reconstructed neighbor set N;

1: for r=1,2, ..., s do

2: Put central point and its corresponding neighbors to-

gether X̄ = [xj1 ,xj2 , ...,xjk ,xj ];
3: Do the manipulation X̄

(r) = X̄R
r;

4: Collect X̄
(r) into X = [X̄(1), X̄(2), ..., X̄(r−1)] ∈

R
D×(k+1)r;

5: end for

6: In X select another k nearest neighbors except xj to be

N;

7: return N;

Algorithm 2 LLP-NRM

Require:

Central point xj ;

The corresponding neighbors [xj1 ,xj2 , ...,xjk ];
Truncation number s;

Shrinkage parameter c̃.
Ensure:

Reconstructed adjacency matrix W̄;

1: Construct sparse adjacency distance matrix W =
{wij}

n
i,j=1, where

wij =

{

m(xi, xj), j ∈ Γi

0, j /∈ Γi

m(·, ·) is an assigned metric, Γi is a index set which

contains column indices of kth smallest values in ith row.

2: for r=1,2, ..., s do

3: Shrink neighbors: W(r) = 1
c̃r
. ∗W;

4: Collect W(r) into a big matrix

W =
[
W,W(1), ...W(r−1)

]
∈ R

n×nr

5: end for

6: Select k smallest values from W to

replace non-zero values in W row by row;

7: return W̄;

Here l(xj ,xji) is the geodesic between xj and xji , and

△x = ‖xj − xji‖2. Hence, to obtain closer points, we can

directly shrink the neighbors to the center point alone with

the vector xj − xji . This variant method is suitable for those

algorithms requiring sparse adjacency distance matrix.

B. Convergence

In this subsection, we analyze 1
cr
xji +S(r, c)xj to demon-

strate the convergence of NRM to the around of the intrinsic



Figure 3: The distribution of NRM generated neighbors. The

blue dashed curve is intrinsic manifold. These points on the

curve are sampled data points. The green one of the two

blue points is center point and others are its corresponding

neighbors. Red small points mark out the distribution of

reconstructed point when c and s vary.

manifold. And we give out the optimised adjustable parameter

c. In Fig 3, performing NRM on a toy example to support

our analysis in the following paragraph. For a fixed c(> 1),
We investigate whether it is useful to iterate. For precise

descriptions, we introduce some mathematical deduction.

1) Euclidean metric convergence: Let D be the Euclidean

distance between 1
cr
xji + S(r, c)xj and xj . Namely,

D(
1

cr
xji +S(r, c)xj ,xj)

2 =‖
1

cr
xji +S(r, c)xj−xj ‖

2
2 (4)

We now explore the relationship between r and D, To do this

rewrite Eq.(4) as,

D =‖
1

cr
xji + (S − 1)xj ‖2 (5)

=<
1

cr
xji ,

1

cr
xji > +2 < (S − 1)xj ,

1

cr
xji >

+ < (S − 1)xj , (S − 1)xj > (6)

Taking consideration of that xji is a neighbor of xj , we use

a min term △x to connect them as xj +△x = xji . In Eq.(5)

replace xji with xj + △x = xji we can obtain a easier

equation,

D =<
1

cr
xji ,

1

cr
xji > +2 < (S − 1)xj ,

1

cr
xji > (7)

= (
1

cr
+ S − 1)2 ‖ xj ‖

2
2 +O(△x)

Firstly, we focus on the first term ( 1
cr

+ S − 1)2 ‖ xj ‖
2
2. We

denote g(r, c) = 1
cr

+ S − 1. For arbitrary given r ≥ 1, we

have,

∂g(r, c)

∂c
=

∂( 2
cr

+ 1
cr−1+, ...,+ 1

c1
− 1)

∂c
(8)

= (
−2r

cr+1
+

−(r − 1)

cr
+, ...,+

−1

c2
) < 0

which means that g(r, c) monotone decrease for c. On the

other hand, its lucky to see that with arbitrary r ≥ 1, when

c = 1,

g(r, c) =
1

cr
+

1

cr
+

1

cr−1
+, ...,+

1

c1
− 1 (9)

=
1

cr
+

1

cr
(1 + c+, ...,+cr)− 1

= 1 + (1 + 1+, ...,+1)
︸ ︷︷ ︸

r−1

−1

= r − 1 ≥ 0

when c = 2,it’s easy to see,g(r, c) = 0. And when c ≥ 2,

because g(r, c) monotone decrease for c and g(r, 2) = 0, we

can obtain that g(r, c) ≤ 0. And,

lim
c→+∞

g(r, c) = lim
c→+∞

1

c− 1
(1 +

1

cr−1
−

2

cr
)− 1 (10)

= −1

In summary, with arbitrary r ≥ 1, g(r, 1) > 0, g(r, 2) = 0,

and −1 < g(r, c) < 0, c ∈ (2,∞). In this paragraph, we will

do some analysis on r for g(r, c). Given arbitrary c ≥ 1, we

want to explore the relation between g(r, c) and r. Starting

from the definition of monotonicity, we give out the following

conclusion,

g(r, c) =

{
monotone decrease for r c > 2,
monotone increase for r 2 ≥ c > 1 .

In consideration of the former analysis on the relation

between g and r, c, it is obvious to find that when c ∈ [2, 1),
g(r, c) is non negative and monotone increase for r. And

when c ∈ (2,∞), g(r, c) is negative and monotone decrease

for r. Hence (g(r, c))2 is monotone increase for r, namely

D( 1
cr
xji + S(r, c)xj ,xj)

2 is monotone increase for r. Now

we return to Eq.(7) and focus on the min term O(△x). It

obvious to see that when g 6= 0, the min term can be justifiably

removed. While when g = 0, namely c = 2, O(△x) it is non-

negligible. we need to do some analysis on O(△x).

O(△x) =< △x, 2(
1

cr
)2xj + (

1

cr
)2△x+

(S − 1)

cr
xj >

(11)

= ((
1

2r
)2 +

1

2r
)△x

T
xj + (

1

2r
)2 ‖ △x ‖22

Here, limr→+∞ O(△x) = 0. So we can make a conclusion

that when C = 0, D is monotone decrease for r. While when

c 6= 0, namely g 6= 0, the min term O(△x) can be justifiably

removed and D is monotone increase for r.

2) Cosine metric convergence: Let C be the cosine distance

between 1
cr
xji + S(r, c)xj and xj .

C = arccos〈
1

cr
xji + S(r, c)xj ,xj〉 (12)



where 〈·, ·〉 represents the angle between a pair of vectors.

Before we analyse the relationship between C and r, a theorem

should be given out,

Theorem 1. Given vectors a,b ∈ R
n, which satisfy <

a,b >≥ 0, then we have
<a,b>
‖a‖‖b‖ ≤ <a+b,b>

‖a+b‖‖b‖ , namely,

cos〈a,b〉 ≤ cos〈a,a+ b〉.

Following with theorem 1, we give out the convergence of

NRM on cosine metric. Firstly we have,

cos〈
1

c

(
1

cn−1
xji + S(c, n− 1)xj) + xj

)

,xj〉 (13)

≥ cos〈
1

cn−1
xji + S(c, n− 1)xj),xj〉

With recurrent trick,

cos〈

(
1

cr
xji + S(c, r)xj)

)

,xj〉 (14)

= cos〈
1

c

(
1

cr−1
xji + S(c, r − 1)xj) + xj

)

,xj〉

≥ cos〈
1

cr−1
xji + S(c, r − 1)xj),xj〉

......

≥ cos〈xji ,xj〉

So like D, C is also monotone decrease for r and this property

can be preserved for arbitrary c.
Based on the former analysis, we can conclude that when

c = 2 and vary r, the neighbors generated by NRM is

simultaneously convergent to central point on Euclidean metric

and cosine metric. This conclusion is suitable for every point

and its neighbors.

IV. EXPERIMENTS

In this section to validate the benefits of NRM, we conduct

experiments on two tasks, single image super resolution and

image classification.

A. Image super resolution (SR)

In this part we apply NRM on a classical example-based SR

method A+ [5]. A+ is a typical neighbor embedding method.

By applying NRM on A+ we can construct a better neigh-

borhood than original method leading to better performance

measured by quantitative PSNR and (structural similarity)

SSIM results. We validate NRM on Set5, Set14, and B100

detailed in Table I and visualize some results in Fig 4 and

obtain 0.12dB improvement.

B. Image classification

In this section we apply NRM and LLP-NRM on graph

based sparse spectral methods. Firstly, we employ different

methods and their reinforced variants to extract or select

features from the raw data. Then we randomly and equally

split these feature sets into disjoint training and testing sets.

We train classifier on the training data. Finally, we compare

the performance of classifiers on the test data.

Figure 4: Visualization of NRM applied on SR

data A+ [5] Reinforced A+
set s PSNR SSIM Time PSNR SSIM Time

2 36.55|0.9611|0.8 36.65|0.9614|1.6
Set5 3 32.59|0.9139|0.5 32.67|0.9202|0.8

4 30.28|0.8737|0.3 30.40|0.8760|0.5
2 32.28|0.9649|1.6 32.39|0.9649|3.6

Set14 3 29.13|0.8940|0.9 29.20|0.8946|1.7
4 27.32|0.8281|0.6 27.42|0.8300|1.1
2 30.77|0.8773|1.1 30.83|0.8772|2.3

B100 3 28.18|0.7791|0.6 28.23|0.7820|1.1
4 26.77|0.7085|0.4 26.83|0.7105|0.7

Table I: Performance of x2, x3,and x4 magnification in terms

of averaged PSNR (dB),SSIM and execution time (s) on data

set Set5, Set14 and B100.

1) Settings: The ORL1 face data set contains facial 64×64

images of 40 distinct subjects each of which has 10 images.

The MNIST2 database (Mixed National Institute of Standards

and Technology database) is a large database of handwritten

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://yann.lecun.com/exdb/mnist/

methods 2.5K samples 5.0K samples 10.0K samples

LLE [1] 81.34(0.69) 84.46(0.27) 88.48(0.21)
RLLE 81.69(0.42) 86.84(0.23) 89.72(0.20)

LE [2] 84.88(0.39) 88.60(0.27) 92.11(0.13)
RLE 85.36(0.50) 88.74(0.13) 92.72(0.12)

MCFS [3] 85.50(0.56) 86.70(0.32) 87.35(0.25)
RMCFS 85.34(0.29) 86.73(0.38) 89.44(0.24)

Table II: Comparisons on for MINST handwritten digits data

(mean ± std). Fix the number of reduced dimensionality as

the optimal value and vary the number of samples.

methods 4K samples 6K samples 8K samples

LLE [1] 24.77(0.57) 26.16(0.40) 26.13(0.42)
RLLE 24.97(0.55) 26.08(0.39) 26.46(0.50)

LE [2] 19.29(0.37) 22.12(0.41) 22.38(0.35)
RLE 21.03(0.44) 23.90(0.30) 25.00(0.29)

MCFS 27.30(0.48) 29.13(0.63) 29.52(0.49)
RMCFS [3] 27.82(0.31) 29.80(0.44) 29.59(0.47)

Table III: Comparisons on CIFAR 10 data (classification rate

mean ± std). Fix the number of reduced dimensionality as the

optimal value and vary the number of samples.



methods All samples

LLE [1] 92.00(0.77)
RLLE 92.30(0.82)

LE [2] 79.10(1.22)
RLE 79.75(1.72)

MCFS [3] 88.00(1.03)
RMCFS 95.00(1.31)

Table IV: Comparisons on ORL data (classification rate mean

± std). The number of reduced dimensionality as the optimal.

digits widely used for training and testing in the field of

machine learning. For MINST database our training data

set is derived from the original MNIST database with 10

classes having 1000 20×20 examples. The CIFAR 10 3 dataset

consists of 60000 32x32 colour images belonging 10 classes,

with 6000 images per class. We employ a random forests

(RF) as our classifier. In this paper, the hyper-parameters

of classifier is are not varied. To eliminate the stochastic

effects of RF, we average the accuracy over 10 trials. We

employ six different methods to do validations. These are

a) Local linearly embedding (LLE), b) Laplacian Eigenmaps

(LE), c) Unsupervised Feature Selection for Multi-cluster Data

(MCFS) and their corresponding NRM variant, denoted as

RLLE, RLE, and RMCFS. And RLLE is LLE reinforced with

Alg 1, RLE and RMCFS are reinforced with Alg 2.

2) Results: Face recognition: we conduct face recognition

on the ORL face database and achieve an improvement of up

to 7% as detailed in Table IV

Digit recognition: we perform classification on the MINST

digital database. For each method, we vary the number of

samples leading to three groups for comparison. Finally we

achieve an improvement of up to 2.4%, as detailed in Table II

Object recognition: we perform classification task on the

CIFAR 10 object database. For each method, we vary the

number of samples leading to three groups for comparison.

Finally we obtain an improvement of up to 2.6%, as detailed

in Table III

V. CONCLUSION

In this paper we present a novel and compact neighbor

reconstruction method(NRM) for graph based sparse spec-

tral algorithms. Through manipulations on anchored points

and corresponding neighborhoods, NRM can reconstruct new

points which are closer to central point on the assumed

manifold. Though a theoretical analysis and experiments on

different tasks, we validate the benefits of NRM. In this paper

NRM use a unify truncation number c which is easy for

fine-tuning but not favorable for our theoretical analysis. In

future, we wish to learning different c values in reconstruction

operator R by some machine learning technologies.
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