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A B S T R A C T

Ebola virus (EBOV) causes a severe haemorrhagic fever in humans and has a mortality rate over 50%. With no
licensed drug treatments available, EBOV poses a significant threat. Investigations into possible therapeutics
have been severely hampered by the classification of EBOV as a BSL4 pathogen. Here, we describe a drug
discovery pathway combining in silico screening of compounds predicted to bind to a hydrophobic pocket on the
nucleoprotein (NP); with a robust and rapid EBOV minigenome assay for inhibitor validation at BSL2. One
compound (MCCB4) was efficacious (EC50 4.8 μM), exhibited low cytotoxicity (CC50 > 100 μM) and was spe-
cific, with no effect on either a T7 RNA polymerase driven firefly luciferase or a Bunyamwera virus minigenome.
Further investigations revealed that this small molecule inhibitor was able to outcompete established replication
complexes, an essential aspect for a potential EBOV treatment.

1. Introduction

The Ebolavirus genus, alongside Cuevavirus and Marburgvirus, is
classified within the Filoviridae family within the orderMononegavirales.
There are 5 species within the genus: Bundibugyo (BDBV), Reston
(RESTV), Sudan (SUDV), Taï Forest (TAFV) and Zaire (previously known
as ZEBOV) the type species now referred to as Ebola virus (EBOV)
(Amarasinghe et al., 2017; Kuhn et al., 2010). Marked differences can
be seen between the different species with regard to geographical
spread and pathogenicity. For example EBOV can exhibit disease
mortality rates of up to 90% in humans (Rollin, 2009), while RESTV is
not known to cause disease in humans (Miranda and Miranda, 2011).

The high pathogenicity of EBOV, the ease of transmission via bodily
fluids (Bausch et al., 2007), the rapid infection progression (CDC,
2014), and the current lack of licenced treatments has resulted in its
classification as a Biosafety Level 4 (BSL4) pathogen, hampering de-
velopment of effective therapies. Hence, despite much research on
EBOV replication and potential therapeutics there are currently no li-
cenced treatments for infection.

EBOV is a filamentous enveloped virus with a non-segmented,

negative sense single stranded RNA (-ssRNA) genome of ∼19 kb
(Geisbert and Jahrling, 1995; Kiley et al., 1982). The genome encodes 7
proteins: a nucleoprotein (NP), a glycoprotein, 4 viral proteins (VP24,
VP30, VP35 and VP40) and the L protein (RNA-dependent RNA-poly-
merase) (Mühlberger et al., 1999).

The NP forms a complex with VP35, VP30, and L which is essential
for genome replication and transcription (Ruigrok et al., 2011; Sun
et al., 2012; Zhou et al., 2013). This complex is the basis for the EBOV
minigenome system (MG) (Mühlberger et al., 1999) where plasmids
expressing these 4 proteins under the control of a T7 promoter are
transfected into cells constitutively expressing T7 RNA polymerase,
together with a plasmid with a T7 promoter driving production of an
RNA containing the reverse complement of a reporter gene (firefly lu-
ciferase) flanked by EBOV genome recognition sequences. A functional
replication complex will recognise these sequences, transcribe the re-
porter and allow translation of luciferase which provides an indirect
measurement of EBOV-specific gene expression. Because the complete
genome is not present and therefore no infectious virus can be pro-
duced, this system allows for the investigation of EBOV genome re-
plication and transcription at BSL2.
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Recently, the structure of the NP and the interactions with VP35
have been characterised (Dong et al., 2015; Leung et al., 2015). A hy-
drophobic pocket on NP either binds intramolecularly with a flexible
arm of NP (helix-20), or with an NP binding peptide of VP35 (NPBP,
residues 20–48). The two binding states control the binding of NP and
release of RNA and oligomerisation – essential to viral replication
(Kirchdoerfer et al., 2015). For other negative-strand viruses, it has
been shown that NP is a valid target for small molecule inhibitors
(SMIs), exemplified by the influenza inhibitor Nucleozin, which triggers

aggregation of NP with an EC50 in the nM range (Kao et al., 2010), and
the< 60 nM EC50 reported for a series of inhibitors which promote NP
oligomerisation (Gerritz et al., 2011). Another reason why NP is an
attractive target for possible inhibitors is the VP35 binding pocket is
highly conserved between EBOV and the related Marburgviruses (Zhu
et al., 2017). Although VP35 NPBPs bind with a stronger affinity to
their own NPs, they are able to bind to the NP of other filoviruses.

Although the MG system has been used recently to identify small
molecule inhibitors of EBOV replication (Edwards et al., 2015; Luthra

Fig. 1. Identification of MCCB4. A. The EBOV NP structures - orange and green (Dong et al., 2015) and purple (Leung et al., 2015) - were merged to form the pocket
where VP35 (white helix) or NP helix-20 (pink helix) bind. Three hydrophobic hotspots were identified as important for these protein:protein interactions. B.
Compounds were virtually screened by eHiTs exhaustive docking engine (red structure) and AutoDock cluster analysis and pose prediction software (lilac structure).
C. Structure of MCCB4. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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et al., 2018; Nelson et al., 2017; Welch et al., 2016), these studies have
involved high throughput screens of pre-existing libraries of known
bioactive compounds. We sought to refine this approach by combining
it with a virtual screening cascade to identify compounds - available
within our in-house chemical libraries - predicted to bind to the NP
pocket. This combination identified a range of small molecule inhibitors
of EBOV genome replication, one of which (MCCB4) is described here.
The predicted binding was validated using an EBOV MG assay and
further investigated at a variety of time points, in multiple cell lines, by
binding site mutation and through structure-activity relationship (SAR)
analysis.

2. Materials and methods

2.1. Cell lines and plasmids

BSR-T7 cells are derived from BHK-21 cells and stably express T7
RNA polymerase (Buchholz et al., 1999). Huh7-Lunet-T7 cells are a
derivative of Huh7 cells and also express T7 RNA polymerase (Backes
et al., 2010). Cells were grown in DMEM (Sigma-Aldrich), 10% FBS
(Sigma-Aldrich), 1% non-essential amino acids (Lonza), penicillin-
streptomycin (100 units/mL) (Sigma) with either G418 (600 μg/ml)
(Life Technologies) (BSR-T7) or Zeocin (Invitrogen) (5 μg/ml) (Huh7-
Lunet-T7) added at every second passage. Cells were maintained at
37 °C with 5% CO2.

The minigenome system for EBOV (Makona strain, GenBank
KJ660347.2) (García-Dorival et al., 2016) expressing Firefly luciferase,
used in this study was kindly donated by Julian Hiscox (University of
Liverpool) following the minigenome system model developed by
Mühlberger et al. (1999) (see Supplementary Fig. 1). The control
plasmid pT7FFLuc contains a Firefly luciferase under the direct control
of a T7 promoter. The plasmids for the Bunyamwera minigenome ex-
press a Renilla luciferase and were described previously (Barr et al.,
2003; Walter et al., 2011).

2.2. Compounds

These were initially selected from our Medicinal Chemistry/
Chemical Biology (MCCB) group in-house compound library in the
School of Chemistry, University of Leeds. Compounds are stored at
14 °C in 100% DMSO stock solutions, within 0% humidity cabinets. Dry
stocks of the original compounds were later purchased from the original
supplier (ChemDiv) to confirm initial biological activity. Follow-up
compounds were purchased from ChemBridge or ChemDiv and shipped
as dry stocks. Compound purity was assessed by LCMS using standard
methods and a cut-off of> 95% purity was used.

2.3. Virtual screening cascade

The in-house library containing 48,750 small molecules was docked
to both crystal structures of Ebola NP (4Z9P and 4YPI) using the ex-
haustive docking algorithm eHiTs (Zsoldos et al., 2007).

The small molecules were then ranked according to predicted
binding affinity (eHiTs score). The top 5000 scoring molecules for each
protein structure were re-docked using an alternative docking software,
AutoDock 4.2 (Morris et al., 2009). The 5000 molecules were clustered
by energy (predicted binding affinity) and an arbitrary cut-off of −7.5
was chosen for visually inspection. Since 20 conformations are pro-
duced for each structure, visual inspection allowed us to ascertain good
clustering (> 10/20 conformations were of similar energy, i.e. a highly
populated pose), and identify predicted hydrogen bonds and steric
clashes with the protein. Compounds that satisfied this criteria were
cross-referenced with the top ranking molecules from eHiTs docking to
identify those which were predicted to bind favourably in both crystal
structures and both docking software. We envisioned that a consensus
docking approach (and orthogonal scoring functions) with both crystal
structures would increase our hit-finding. Additional in silico analysis
was performed using Maestro 10.2 (Maestro, Schrödinger, LLC, New
York, NY, 2017).

2.4. EBOV and BUNV minigenome and pT7FFLuc transfections

1×105 cells were seeded in each well of a 24-well plate and al-
lowed to adhere overnight to achieve a desired cell density of ∼90%
confluency. Per well, cells were transfected with EBOV-MiniG 0.5 μg,
NP 0.25 μg, VP30 0.125 μg, VP35 0.125 μg and L 0.125 μg; the
pT7FFLuc 0.3 μg; or BUNV(S) REN 0.4 μg, L-sup 0.1 μg and S-sup 0.1 μg.
Transfections were performed with Lipofectamine (ThermoFisher

Fig. 2. Activity of MCCB4. MCCB4 was tested for activity against the T7FFLuc
control, the BUNV minigenome and EBOV minigenome. The compounds were
added to BSR-T7 cells at 100, 50, 10, 5, 1, 0.5, 0.25 0.1 and 0.01 μM im-
mediately before transfection. Cells were harvested at 24 hpt and analysed for
Renilla or Firefly luciferase activity, or cell viability by MTT assay. Values are
represented as percentages of a transfection only control. A. EC50 curve of
percentage reduction in luciferase. EBOV, red circles. T7FFLuc control, blue
squares. BUNV control, black diamonds. B. CC50 curve of percentage reduction
in cell viability. EBOV, red circles. T7FFLuc control, blue squares. BUNV con-
trol, black diamonds. Averages plotted from 3 independent experiments per-
formed in triplicate. Error bars show standard deviation (SD). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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Scientific) according to manufacturer's instructions. Compounds for
testing were made to the required concentrations in serum free DMEM
directly before use and added to cells immediately before transfection.
See Fig. 3B for deviations in compound addition.

2.5. Luciferase and MTT assays

Cells were harvested 24 hpt by washing in PBS then lysing in Passive
Lysis Buffer (PLB, Promega) (See Fig. 3B legend for deviations in the
timings of cell harvest). Samples were freeze/thawed at −20 °C and
read using the Firefly or Renilla luciferase reporter assay systems
(Promega) and a FLUOStar optima microplate reader.

MTT assays were performed alongside luciferase assays. After
washing the cells in PBS, the MTT reagent (1 mg/mL in H2O) (Alfa
Aesar) was added for 1 h. DMSO was used to lyse cells prior to being
read on a Tecan Infinite F50 microplate reader. All plates contained a
transfection only control and a cell only control to show 100% luci-
ferase signal and background signal, respectively. 116 compounds were
tested for effect against EBOV replication.

2.6. Site-Directed mutagenesis

Mutagenesis was performed on the NP plasmid, using a Q5 Site-
Directed mutagenesis kit (NEB). Primers were designed using
NEBaseChanger™ (sequences available on request) and contained silent
Accll and Sacl restriction sites, respectively, for identification.

3. Results

3.1. In silico identification of small molecule inhibitors of NP-VP35
interaction

From 48,750 structures contained within the in-house compound
library, 116 compounds were selected, based on the consensus scoring
approach detailed above, for biological evaluation in the EBOV genome
assay. Of these 11 compounds showed promising activity against EBOV
at 100 μM. All hit compounds showed chemical diversity in hetero-
cycles and functional groups, however, of the 11 active compounds,
MCCB4 was chosen for further investigation as it had typical physico-
chemical properties: a molecular weight of 485 daltons, a calculated

Fig. 3. Time-course analysis of the activity of MCCB4. A.
MCCB4 was analysed at the EC50. Samples were harvested at
the indicated times hpt, values are represented as percentages
of a transfection only control. Dashed line represents back-
ground of the assay. B. A time of addition study was under-
taken at a concentration of MCCB4 equivalent to the EC90. The
top panel is a schematic demonstrating when MCCB4 is present
during transfection. The graph shows the data as a percentage
of a transfection only DMSO control, harvested at the same
time. All averages plotted from 3 independent experiments
performed in triplicate and compared using an unpaired two-
tailed t-test. Error bars show SD. **** P Value < 0.0001. ** P
Value 0.01.

V. Easton et al. Antiviral Research 156 (2018) 46–54

49



logP of 4.8, and contained no hydrogen-bond donors. It was predicted
to bind over hotspots one and two (Fig. 1), in a similar manner to the
other active compounds.

MCCB4 is a linear hydrophobic molecule containing an ene-thia-
zolidinedione group. This molecule has the potential to act as a Michael
acceptor via covalent bond formation to nucleophilic residues within
proteins, and display ‘promiscuous’ behaviour in biological assays
(Baell and Walters, 2014). We were, therefore cautious concerning any
biological activity observed for this molecule and wished in particular
to probe the selectivity of the activity displayed by this molecule.

3.2. MCCB4 inhibits EBOV genome replication and transcription

In order to assess whether MCCB4 was able to inhibit EBOV genome
replication and transcription, we utilised a minigenome (MG) system
(Supplementary Fig. 1). As negative controls we also used a Bu-
nyamwera virus (BUNV) MG system, and a plasmid in which FF-luc
expression was directly driven by a T7 promoter. All EC50 and CC50 data
curves demonstrated in this paper are shown as percentages of an in-
plate DMSO only control. All data was generated from 3 independent
experiments performed in triplicate, allowing us to minimise the effect

of well-to-well variation in transfection efficiency.
Transfected cells were treated with MCCB4 over a 104-fold range of

concentrations from 10 nM to 100 μM. As shown in Fig. 2A, MCCB4
exhibited a dose-dependent inhibition of the EBOV MG with an EC50 of
4.8 μM. This was specific to EBOV as the EC50 for both BUNV MG and
the T7FFLuc controls was> 100 μM. In parallel, we confirmed that
MCCB4 did not exhibit any significant toxicity (CC50 > 100 μM:
Fig. 2B). This was assessed in cells transfected with the various com-
binations of plasmids to account for any additional toxicity due to ex-
pression of exogenous proteins (in particular those of EBOV).

To characterise the behaviour of MCCB4 further, a time course was
performed. BSR-T7 cells were transfected in the presence or absence of
4.8 μM MCCB4 (EC50) and harvested at the time points indicated. These
data are shown as percentages of the DMSO only transfection control
and demonstrated a statistically significant inhibition of luciferase from
12 h post transfection (hpt), with a 50% inhibition at 24 and 48 hpt
(Fig. 3A). Between 0 and 6 hpt the luciferase signal was indis-
tinguishable from background levels.

To further probe the potential of MCCB4 as a drug lead for the
treatment of EBOV infection, the activity of MCCB4 on established NP-
VP35 complexes was investigated as an indication of possible post ex-
posure treatment. MCCB4 at a concentration equivalent to the EC90

(49 μM) was added to BSR-T7 cells at different time points pre- (−24–0
hpt), during (0–48 hpt & 0–24 hpt) and post-transfection (24–48 hpt)
(Fig. 3B, top panel). Cells were harvested at 48 hpt and the data shown
as a percentage of a DMSO only control. Pre-treatment of cells with
MCCB4 followed by removal at transfection did not reduce the luci-
ferase signal detected (Fig. 3B, −24–0 hpt). As expected, the addition
of MCCB4 at transfection was able to disrupt EBOV replication complex
formation, as demonstrated by the 85% reduction in luciferase (Fig. 3B
and 0–48 hpt). The addition of MCCB4 post-transfection (Fig. 3B and
24–48 hpt) also reduced luciferase signal by 84%. This suggested that
MCCB4 was able to effectively compete for binding to NP in established
replication complexes. Interestingly, while the addition of MCCB4 at
transfection and subsequent removal (Fig. 3B and 0–24 hpt) revealed a
65% reduction in luciferase compared to the DMSO only control – this
reduction was significantly less than that displayed by both the sus-
tained addition (0–48 hpt) and the post transfection addition (24–48
hpt).

3.3. MCCB4 activity is observed in two different cell types

To ensure that the effect of MCCB4 was not specific to BSR-T7 cells,
EC50 and CC50 analyses were performed in Huh7-Lunet-T7 cells, a
human hepatocellular carcinoma cell line which also expressed the T7
RNA polymerase. Both fibroblasts and hepatocytes are capable of sup-
porting Ebola replication (Baskerville et al., 1985). The transfection
efficacy of the EBOV MG and the T7FFLuc control in the different cell
lines were similar (data not shown). In Huh7-Lunet-T7 cells, MCCB4
was shown to be effective with an EC50 1.5 μM (Fig. 4A). MCCB4 ex-
hibited a low level of cytotoxicity (CC50 43.2 μM) and a low level of
activity against the T7FFLuc control (EC50 30.8 μM) in the Huh7-Lunet-
T7 cells (Fig. 4B).

3.4. Validation of MCCB4-NP interaction through mutation of the NP
hydrophobic pocket

Although MCCB4 was predicted using eHiTs and AutoDock software
to bind the EBOV NP, it was possible that MCCB4 acted on an alter-
native target. In order to validate the predicted targeting of MCCB4 to
NP, we studied the effect of specific mutants of NP on the inhibitory
activity of MCCB4. Specifically, residues F280 and L284 within NP,
predicted to interact with MCCB4, were substituted with alanines (NP
F280A and L284A) (Fig. 5A).

Cells were transfected with the EBOV minigenome plasmids in-
cluding either wildtype or the 2 mutant NPs and treated with MCCB4

Fig. 4. MCCB4 activity in Huh7-Lunet-T7 cells. MCCB4 was tested for effect
against the T7FFLuc control, and EBOV minigenome in Huh7-Lunet-T7 cells.
The compounds were added to cells at 100, 50, 10, 5, 1, 0.5, 0.25 0.1 and
0.01 μM immediately before transfection. Cells were harvested at 24 hpt and
analysed for Firefly luciferase activity. Values are represented as percentages of
a transfection only control. A. EC50 curve of percentage reduction in luciferase.
EBOV, red circles. T7FFLuc control, blue squares. B. CC50 curve of percentage
reduction in cell viability. EBOV, red circles. T7FFLuc control, blue squares.
Averages plotted from 3 independent experiments performed in triplicate. Error
bars show SD. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the Web version of this article.)
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Fig. 5. Mutagenic analysis of NP confirms the mode of action of MCCB4. A. The EBOV NP hotspot 2 residues Phe280 and Leu284 were mutated to alanine
(F280A and L284A, respectively). B. EC50 curve of percentage reduction in luciferase. MCCB4 was added to cells at 100, 50, 10, 5, 1, 0.5, 0.1, and 0.01 μM
immediately before transfection with either wildtype EBOV NP, mutant F280A or L284A. Cells were harvested at 24 hpt and analysed for Firefly luciferase. Values are
represented as percentages of a transfection only control. C. Comparison of EC50 values generated from the wildtype NP or mutant NP transfections. EC50 values from
3 independent experiments performed in triplicate were plotted and compared using an unpaired two-tailed t-test. Error bars show SD. *** P Value < 0.001.
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over a 10-fold range of concentrations. Of note, although the two mu-
tations resulted in a 10-fold reduction in RLU compared to wildtype,
they were replication competent (Supplementary Fig. 2). The low levels
of RLU were not due to residual unspecific reporter gene activity as they
were significantly higher than the values obtained in the absence of the
plasmid expressing the L polymerase. These data were compared to the
relevant transfection-only control and shown as a percentage of this to
take into account any discrepancy between absolute units of luciferase.
As a control, cells were treated with mycophenolic acid (MPA), an in-
osine monophosphate dehydrogenase inhibitor which inhibits RNA
virus replication (Khan et al., 2011), including EBOV (Johansen et al.,
2015). As expected, MPA at the EC90 concentration affected all three

NPs equally.
While MCCB4 inhibited both EBOV NP mutants at high concentra-

tions, the EC50 values were significantly higher than those shown by the
wildtype NP (F280A 15.5 μM, L284A 13.8 μM Fig. 5B and C), demon-
strating that these mutations resulted in partial resistance to MCCB4.
MCCB4 cytotoxicity (CC50 > 100 μM, Fig. 5B) was not affected by the
substitution of wildtype NP with either of the mutants. These data are
consistent with the predicted binding of MCCB4 to the hydrophobic
pocket within NP.

Fig. 6. SAR analysis of MCCB4-8. The MCCB4 derivative MCCB4-8 was tested
for effect against the T7FFLuc control, and EBOV minigenome. The compounds
were added to BSR-T7 cells at 100, 50, 10, 5, 1, 0.5, 0.1, 0.05 and 0.01 μM
immediately before transfection. Cells were harvested at 24 hpt and analysed
for Firefly luciferase. Values are represented as percentages of a transfection
only control. A. Structure of the MCCB4-8 compound. B. EC50 curve of per-
centage reduction in luciferase. EBOV, red circles. T7FFLuc control, blue
squares. C. CC50 curve of percentage reduction in cell viability. EBOV, red
circles. T7FFLuc control, blue squares. Averages plotted from 3 independent
experiments performed in triplicate. Error bars show SD. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 7. SAR analysis of MCCB4-12. The MCCB4 derivative MCCB4-12 was
tested for effect against the T7FFLUC control, and EBOV minigenome. The
compounds were added to BSR-T7 cells at 100, 50, 10, 5, 1, 0.5, 0.1, 0.05 and
0.01 μM immediately before transfection. Cells were harvested at 24 hpt and
analysed for Firefly luciferase. Values are represented as percentages of a
transfection only control. A. Structure of the MCCB4-12 compound. B. EC50

curve of percentage reduction in luciferase. EBOV, red circles. T7FFLuc control,
blue squares. C. CC50 curve of percentage reduction in cell viability. EBOV, red
circles. T7FFLuc control, blue squares. Averages plotted from 3 independent
experiments performed in triplicate. Error bars show SD. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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3.5. Structure-activity relationships of MCCB4 and related analogues

In order to rapidly ascertain structure-activity relationship (SAR)
data for MCCB4, five close structural derivatives, where particular
functional groups had been modified, were purchased (from ChemDiv
Inc) and a further eight ChemBridge analogues were identified using
the programme ROCS (rapid overlay of chemical structures) (OpenEye
Scientific Software, Santa Fe, NM. http://www.eyesopen.com)
(Hawkins et al., 2007), a program which identifies compounds based on
3D shape similarity. Initially compounds were screened for efficacy
compared to the MCCB4 parent compound. Two MCCB4 derivatives,
MCCB4-8 (Fig. 6) and MCCB4-12 (Fig. 7) were identified as effective
and so further investigated. Transfected cells were treated with the
analogues over a range of concentrations (10 nM–100 μM). As shown in
Figs. 6 and 7, both MCCB4-8 and MCCB4-12 exhibited a dose-depen-
dent inhibition of the EBOV MG.

MCCB4-8 is identical to the parent compound MCCB4 except for a
fluorine at the 3-position of the terminal benzene ring (Fig. 6A, red
box). MCCB4-8 has an EBOV specific EC50 11.2 μM (Fig. 6B) and a CC50

of 45 μM (Fig. 6C EBOV). MCCB4-12 is identical to the parent com-
pound MCCB4 except for a fluorine at the 4-position of the terminal
benzene ring (Fig. 7A, red box). MCCB4-12 has an EBOV specific EC50

8.8 μM (Fig. 7B) and a CC50 of ∼58 μM (Fig. 7C EBOV and T7FFLuc).
The higher EC50 values and the lower CC50 values for these derivatives
demonstrate that these structural changes are not advantageous.

4. Discussion

The data presented here outlines an in silico screen of SMIs which
are predicted to bind in the hydrophobic pocket on the EBOV NP.

MCCB4 is predicted to bind to hotspots 1 and 2 within the hydro-
phobic pocket on the NP structure (Fig. 1). The benzyl group of MCCB4
fills the deep hydrophobic hotspot 2 with the pyridyl group located in
hotspot 1. From our computational analysis, compounds predicted to
bind to NP had structural features that allowed the molecule to traverse
both these hotspots. MCCB4 contains five ring motifs and also an ene-
thiazolidinedione group (which is structurally similar to the rhodamine
class of promiscuous inhibitors (Baell and Walters, 2014), which po-
tentially decrease its attractiveness for further drug development.
Whilst we were mindful of the potential for promiscuous inhibition of
additional cellular processes, we did not observe any additional toxic
effects in our cellular assays compared with other compounds which
were identified as non-selective and toxic. MCCB4 is present in
screening collections but has not been reported in the scientific litera-
ture or in Chembl, the bioactive screening database.

MCCB4 was shown to be efficacious in reducing the luciferase signal
detected in EBOV MG transfected BSR-T7 cells (EC50 4.8 μM) and Huh7-
Lunet-T7 cells (EC50 1.5 μM). This effect was specific against EBOV
replication as shown by high EC50 values (EC50 > 100 μM) demon-
strated by both the T7FFLuc control transfection and the BUNV MG
transfection. MCCB4 was well tolerated by cells, exhibiting a
CC50 > 100 μM in BSR-T7 cells, although the compound appears to
have a greater cytotoxicity in Huh7-Lunet-T7 cells (CC50 43.2 μM). The

reduction in luciferase signal presented by the T7FFLuc and BUNV MG
control transfections tracks closely to cell viability so most likely re-
flects a reduction in the viability of transfected cells.

There are two distinct paths for potential EBOV treatments: post-
exposure prophylaxis and treatment of symptomatic patients. Both have
different challenges but a common strategy might be to limit virus re-
plication to allow the adaptive and innate immune systems time to fight
infection (Bray and Paragas, 2002; Feldmann et al., 2005). In this re-
gard we demonstrated that MCCB4 can inhibit EBOV replication with a
single dose at the time of transfection, but also was able to effectively
inhibit replication when added at 24 hpt, supporting the possible use of
MCCB4 as a post-exposure drug.

In order to confirm that MCCB4 interacts with EBOV NP at the
targeted hydrophobic binding pocket, two alanine substitution mutants
were generated (NP L284A and NP F280A) in this region. These changes
were predicted to reduce binding efficiency. This pocket is the binding
site of NP-VP35 during EBOV replication so a balance between re-
taining replicative function and disrupting the compound binding, must
be met. As expected, the mutants exhibited a 10-fold reduction in re-
plication (Supplementary Fig. 2). The mutations did not have any effect
on the sensitivity to the non-specific antiviral compound MPA which
was used as a control, nor the CC50 value of MCCB4 but did cause a
significant EC50 shift between wildtype and mutant in response to
MCCB4. This reduction was consistent with the hypothesis that MCCB4
binds to NP as predicted using in silico screening.

The selective index (SI = CC50/EC50) (Table 1) is a numerical
method of comparing the therapeutic window of potential drugs, with a
higher selective index being preferable. The EC50 values of the two
MCCB4 analogues, MCCB4-8 and MCCB4-12, are higher than the par-
ental compound (Table 1). In addition they exhibited lower CC50 va-
lues. Compounds MCCB4-8 and MCCB4-12, were predicted to enhance
binding to EBOV NP via an enhanced hydrophobic effect, with the
additional fluorine atom filling the deep hydrophobic hotspot 2. How-
ever, it is clear that the structural changes present in MCCB4-8 and
MCCB4-12 adversely affected the efficacy of the compounds, pointing
to a key role for the terminal benzene ring as a key player in the activity
of MCCB4. This observation will inform future SAR that will focus on
this part of the molecule in an attempt to improve efficacy.

5. Conclusions

Much research has been performed to investigate Ebola replication
with a view to developing this knowledge into therapeutic strategies.
Many SMIs have been tested in vivo and in vitro but this has yet to be
translated into successful clinical studies and licenced drugs. Using the
structure of NP, in silico screening was performed to identify SMIs in-
cluding MCCB4. MCCB4 is efficacious, selective and well tolerated by
cells. Limited SAR has been performed and it is our opinion that an
extended investigation into the structure of MCCB4 could generate a
superior compound suitable for in vivo investigations. As the NP protein
is conserved and essential for replication, this drug discovery pipeline
could generate a drug not only for EBOV but also related Filoviruses.
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COMPOUND TARGET CELL EC50 CC50 SIa

MCCB4 WT NP BSR-T7 4.8 μM >100 μM >20.8
MCCB4 WT NP Huh- Lunet-T7 1.5 μM 43.2 μM 28.8
MCCB4 NP F280A BSR-T7 15.5 μM >100 μM >6.5
MCCB4 NP L284A BSR-T7 13.8 μM >100 μM >7.2

MCCB4-8 WT NP BSR-T7 11.2 μM 44.9 μM 4
MCCB4-12 WT NP BSR-T7 8.8 μM 57.8 μM 6.5

a Selective Index (CC50/EC50).
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