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Abstract Transfer of oxygen between Earth’s core and lowermost mantle is important for
determining the chemistry and nature of stratification on both sides of the core-mantle boundary (CMB).
Previous studies have found that oxygen enters the metal when Fe-O liquid equilibrates with representative
lower mantle materials. However, experiments have not yet been conducted at CMB pressure-temperature
conditions. Here we use density functional theory to obtain the first estimates of oxygen partitioning
between liquid Fe-O-Si metals and ferropericlase at CMB conditions. Our method successfully reproduces
experimentally derived partitioning data at 134 GPa and 3200 K, while our calculations show a strong
increase of oxygen partitioning into metal with temperature and a weaker increase with pressure,
consistent with previous work. At CMB conditions of 135 GPa and 4000–4700 K oxygen partitioning into
metal is higher than previous estimates and increases strongly with metal oxygen concentration. Analysis
of the lower mantle chemical boundary layer shows that oxygen transport through the solid is severely
limited even with the enhanced partitioning and is unlikely to explain the thickness of a stably stratified
layer below the CMB inferred from seismology. However, if the lower mantle was molten in early times, as
suggested by core evolution models with high thermal conductivity, then the mass flux and stable layer
thickness are significantly increased.

Plain Language Summary Earth’s core is composed primarily of iron, silicon, and oxygen; it is
directly below the solid mantle, which is mainly composed of two different minerals called bridgmanite and
ferropericlase. Here we present the first calculations of iron oxide partitioning between ferropericlase and
liquid iron-silicon-oxygen mixtures at core-mantle boundary (CMB) pressure-temperature-concentration
conditions. Partitioning of iron oxide between the core and mantle is important for constraining the
chemistry on either side of the CMB, determining the composition of the core, and elucidating the origin
of the seismically detected stable layer at the top of the core (which has previously been ascribed to
FeO transfer from the mantle). We find that FeO partitioning into the core is stronger than found by
previous studies at lower pressures and temperatures and is particularly sensitive to oxygen content in the
metal. We analyze transfer of O through the lower mantle chemical boundary layer by diffusion and dynamic
instability and find that in both cases, oxygen flux is smaller than previous estimates even with the greater
partitioning. The resulting thickness of the chemically stable layer that arises below the CMB is too small
to explain the seismic observations.

1. Introduction

At present, Earth’s lower mantle is thought to comprise approximately 70–80% (Mg,Fe)SiO3 bridgmanite,
15–20% (Mg,Fe)O ferropericlase, and a small amount of calcium perovskite (Garnero et al., 2016). The liquid
core is 5–10% lighter than pure iron, the main light elements based on cosmochemical abundances and core
formation models being sulfur, silicon, and oxygen (Hirose et al., 2013; Nimmo, 2015; Rubie, Nimmo, et al.,
2015). Recent studies of metal-silicate partitioning at the base of an ancient magma ocean have found that
up to 7 wt% O and 8–9 wt% Si could have entered the core during its formation depending on the redox
conditions of early Earth (Badro et al., 2015; Rubie, Jacobson, et al., 2015).

Oxygen is thought to be a crucial component of the core mixture since it is the only candidate element that
has been shown to partition strongly into liquid iron on freezing at core conditions, which explains why the
seismically observed inner core boundary (ICB) density jump of 0.8 ± 0.2 gm/cc (Masters & Gubbins, 2003)
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is greater than expected from a pure solid-liquid phase transition (Alfè et al., 2002). Matching the seismic
velocity and core mass requires another element and this can be achieved with S or Si, which partition almost
evenly between solid and liquid iron (Alfè et al., 2002; Badro et al., 2014). Velocities and densities are calculated
at ICB conditions from first principles for a variety of candidate core compositions and compared to the seismic
and geodetic observations. Using this method, the molar concentrations of O and Si in the core, denoted c̄c

O
and c̄c

Si respectively, are estimated as c̄c
O = 0.08–0.17 and c̄c

Si =0.02–0.10 (Alfè et al., 2002; Badro et al., 2015;
Davies et al., 2015).

Partitioning of O, S, and Si depresses the melting point at the ICB by up to 1000 K (Davies et al., 2015), while O
partitioning during inner core growth drives compositional convection that helps power the dynamo process
generating Earth’s magnetic field. It is generally believed that most of the core’s light element inventory was
determined by metal-silicate separation and chemical equilibration at pressure-temperature-composition
conditions of an early magma ocean (Rubie, Nimmo, et al., 2015), but the amount of O sequestered into the
core during its formation is uncertain (Badro et al., 2015; Rubie, Jacobson, et al., 2015). Oxygen transfer (as
FeO) after core formation could produce stable stratification below the core-mantle boundary (CMB; Buffett &
Seagle, 2010) that persists to the present day (Helffrich & Kaneshima, 2010). The extent of post core formation
O transfer depends crucially on its partitioning behavior at CMB conditions.

Previous studies suggest that FeO will enter the metal when representative lower mantle assemblages are
placed in contact with liquid iron (Asahara et al., 2007; Frost et al., 2010; Knittle & Jeanloz, 1991; Ozawa et al.,
2008; Takafuji et al., 2005). These experiments are extremely challenging, and the vast majority are necessarily
conducted at upper/middle-mantle pressure-temperature conditions (Asahara et al., 2007; Frost et al., 2010;
Knittle & Jeanloz, 1991; Takafuji et al., 2005), with very few measurements at lowermost mantle pressures
(Ozawa et al., 2008). Frost et al. (2010) determined partitioning through a thermodynamic model that was
compared to experimental data in the accessible range. However, the role of temperature and composition at
CMB pressures has not been directly measured or calculated and is presently unknown. Increasing metal oxy-
gen content is found to increase oxygen partitioning into the metal at experimentally accessible conditions
(Tsuno et al., 2013); however, this positive feedback tends to yield unstable parameterizations when extrap-
olating the data (Fischer et al., 2015). A wide range of FeO partitioning results have therefore been obtained
from extrapolations of experimentally determined data to CMB conditions: estimates of the oxygen distribu-
tion coefficient KD(O) = c̄c

Fe × c̄c
O∕c̄m

Fe range between KD(O) ∼ 0.7 (Ozawa et al., 2008) and KD(O) ∼ 4 (Frost
et al., 2010). Here c̄c

Fe is the molar Fe concentration in the metal (superscript c denotes the core, and over-
bars denote molar concentrations), and c̄m

Fe is the molar concentration of Fe in ferropericlase (superscript m
denotes the mantle).

Here we obtain the chemical potentials of iron in Mg1−xFexO, and oxygen in an Fe1−x−ySixOy liquid at CMB
conditions. Crucially, we are able to calculate directly the dependence of partitioning on composition at these
conditions. Methods are described in section 2, and results, including a direct comparison with experimental
data at 134 GPa and 3200 K, are presented in section 3. Discussion and an analysis of the chemical boundary
layer above the CMB are given in section 4.

2. Methods

The techniques employed in this study have been used to calculate chemical potentials and partitioning of
oxygen, sulfur, and silicon in solid and liquid iron at ICB conditions (Alfè et al., 2002). Oxygen equilibrium at
the CMB between solid Mg1−xFexO and liquid Fe1−x−ySixOy is determined by the chemical potential of FeO in
the core (𝜇core

FeO ) and mantle (𝜇mantle
FeO ) with thermodynamic equilibrium obtained for

𝜇mantle
FeO = 𝜇core

FeO = 𝜇core
Fe + 𝜇core

O . (1)

It is useful to write

𝜇mantle
FeO (p, T , c̄m

Fe) = kBT ln c̄m
Fe + �̃�mantle

FeO (p, T , c̄m
Fe), (2)

and similarly

𝜇core
FeO (p, T , c̄c

O) = kBT ln c̄c
O + �̃�core

O (p, T , c̄c
O) + 𝜇core

Fe (p, T , c̄c
O) = kBT ln c̄c

O + �̃�core
FeO (p, T , c̄c

O). (3)
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The quantities �̃�mantle
FeO (p, T , c̄m

Fe) and �̃�core
FeO (p, T , c̄c

O) have been computed using thermodynamic integration
(Alfè et al., 2002), in which the chemical potential difference between a solute X (O in the core and Fe in the
mantle) and a solvent A (Fe in the core and Mg in the mantle) is obtained by adiabatically (slowly) transmut-
ing A into X and calculating the reversible work performed in the process. In classical statistical mechanics
the masses of the atoms enter the chemical potential in a trivial way, and so in the molecular dynamics
simulations we set the masses of all atoms equal to the mass of iron (55.847 amu). The time step was 1 fs, and
the temperature was controlled using a Nosé thermostat. Here we are only concerned with small values of
the core O concentration, c̄c

O. The mantle FeO concentration is determined by the concentration of Fe, c̄m
Fe.

The condition of chemical equilibrium defines the oxygen distribution coefficient

KD(O) =
c̄c

Fec̄c
O

c̄m
Fe

= c̄c
Fe exp

[(
�̃�mantle

FeO − �̃�core
FeO

)
∕kBT

]
. (4)

To calculate the chemical potential of O in the liquid �̃�core
O (p, T , c̄c

O), we used simulation cells including N = 157
atoms. Calculations performed with N = 67 atoms showed differences in the chemical potential of less than
∼50 meV, and so the results obtained with N = 157 should be converged to within a much smaller error. The
plane-wave (PW) cutoff was 400 eV. Tests performed with PW cutoffs up to 1,000 eV showed convergence of
energy differences to better than ∼1 meV but also showed that pressures are underestimated by ∼2.2 GPa.
The calculated pressures were therefore corrected for this value. All simulations were performed with the Γ
point only; tests performed with a 2 × 2 × 2 grid showed that the chemical potential differences between
oxygen and iron were converged to within 20 meV.

For the solid we note that transmuting MgO into FeO only involves transmuting Mg into Fe. The chemical
potential of pure MgO, 𝜇0

MgO(p, T), is obtained from

𝜇0
MgO = 𝜇MgOperf

+ 𝜇MgOharm
+ 𝜇MgOanh

, (5)

where 𝜇MgOperf
is the energy of the perfect MgO crystal, 𝜇MgOharm

the contribution to the free energy in the har-
monic approximation, computed with the small displacement method (Alfè, 2009), and𝜇MgOanh

the remainder,
which can be computed using thermodynamic integration (Alfè et al., 2002). We found that the anharmonic
contribution to the chemical potential of MgO is −20 ± 0.2 meV and that to the chemical potential of FeO
is −80 ± 15 meV. We used 4 × 4 × 4 supercells (64 f.u.) and checked convergence of the results using cells
up to 8 × 8 × 8. The quasi-harmonic component of the free energy was obtained using a 2 × 2 × 2 grid of
k-points to sample the Brillouin Zone, a PW cutoff of 500 eV, and displacements of 0.01 Å. With these pre-
scriptions the quasi-harmonic free energies 𝜇0

MgOharm
and 𝜇Mg63FeO64harm

were converged to better than 1 and
10 meV, respectively.

To investigate the dependence of �̃�mantle
FeO (p, T , c̄m

Fe) on Fe concentration, we performed additional calculations
in which we replaced a second Mg atom with Fe. We have done that using several atomic configurations,
including replacing two Mg nearest neighbors or two Mg at larger distances from each other. In all cases
we found differences of less than 0.1 eV per formula unit, showing little FeO-FeO interaction. With a good
approximation we can therefore assume that �̃�mantle

FeO (p, T , c̄m
Fe) is constant with respect to concentration for

expected mantle concentrations.

3. Results

The majority of our simulations are performed at CMB conditions: 135 GPa and temperatures above 4000 K
(Table 1). To validate our approach, we also performed a suite of calculations at 134 GPa and 3200 K. At these
conditions and a starting composition consisting of a powdered mixture of pure metal and Mg81Fe19O, Ozawa
et al. (2008) found that KD(O) = 0.78+0.22

−0.17. In the range 1.2 ≤ c̄c
O ≤ 14 mol% we find KD(O) increases with c̄c

O
as expected (Table 1). At c̄c

O = 1.2 and 2.5 mol% we obtain KD(O) = 1.4+0.28
−0.23, in very close agreement with the

experimental value. The agreement would be even better if we take into account the 10% uncertainty in the
experimental temperature (Ozawa et al., 2008). Further refinement of the comparison is clearly limited since
we are comparing two technically challenging and fundamentally different techniques that are subject to
their own unique uncertainties. Experimental difficulties include identifying melting in the sample (Anzellini
et al., 2013; Ozawa et al., 2008), the potential for oxidation of the sample at high pressure and temperature
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Table 1
Chemical Potential of Oxygen at Core-Mantle Boundary Conditions

c̄c
O

c̄c
Si

T �̃�core
FeO

− �̃�mantle
FeO

Rcore
FeO

− Rmantle
FeO

(mol% O) (mol% Si) (K) (eV) KD(O) P (eV)

2.5 0 4112 −0.77 ± 0.05 8.57+1.33
−1.16 8.79+1.33

−1.16 1.75 ± 0.10

15.3 0 4112 −0.90 ± 0.06 10.74+2.34
−2.00 12.68+2.34

−2.00 1.45 ± 0.12

28.0 0 4112 −0.89 ± 0.06 8.88+2.27
−1.92 12.33+2.27

−1.92 1.21 ± 0.12

2.5 0 4300 −0.87 ± 0.05 10.20+1.51
−1.32 10.46+1.51

−1.32 2.03 ± 0.10

15.3 0 4300 −1.08 ± 0.06 15.61+3.24
−2.76 18.44+3.24

−2.76 1.35 ± 0.12

28.0 0 4300 −1.04 ± 0.06 11.92+2.91
−2.48 16.56+2.91

−2.48 1.06 ± 0.12

2.5 0 4700 −1.19 ± 0.05 18.41+2.48
−2.19 18.88+2.48

−2.19 1.87 ± 0.10

15.3 0 4700 −1.27 ± 0.06 19.49+3.67
−3.17 23.01+3.67

−3.17 1.76 ± 0.12

28.0 0 4700 −1.27 ± 0.06 16.57+3.67
−3.17 23.01+3.67

−3.17 1.02 ± 0.18

2.5 7.6 4112 −0.73 ± 0.06 7.65+1.45
−1.22 7.85+1.45

−1.22 2.09 ± 0.16

15.3 7.6 4112 −0.86 ± 0.06 9.59+2.09
−1.76 11.32+2.09

−1.76 1.54 ± 0.14

21.7 7.6 4112 −0.97 ± 0.06 12.10+2.85
−2.41 15.45+2.85

−2.41 1.12 ± 0.12

28.0 7.6 4112 −1.03 ± 0.08 13.18+4.64
−3.70 18.30+4.64

−3.70 0.79 ± 0.18

1.2 0 3200 −0.095 ± 0.05 1.39+0.28
−0.23 1.41+0.28

−0.23 —

2.5 0 3200 −0.097 ± 0.05 1.38+0.28
−0.24 1.42+0.28

−0.24 —

13.4 0 3200 −0.33 ± 0.10 2.88+1.45
−1.01 3.31+1.45

−1.01 —

14.0 0 3200 −0.30 ± 0.05 2.58+0.59
−0.50 3.00+0.59

−0.50 —

Note. Core O concentration c̄c
O

, core Si concentration c̄c
Si

, temperature T , excess chemical potential difference of FeO
between the core and the mantle, �̃�core

FeO
− �̃�mantle

FeO
(Methods), distribution coefficient KD(O) = c̄c

Fe × c̄c
O
∕c̄m

Fe, partition coef-
ficient P = c̄c

FeO
∕c̄m

FeO
= c̄c

O
∕c̄m

Fe, and heat of reaction Rh = Rcore
FeO

− Rmantle
FeO

as one FeO unit is transferred from the mantle
to the core. In defining P we have used the fact that the core FeO concentration is determined by the amount of O since
FeO dissociates into Fe and O in the liquid, while in the mantle the concentration of FeO is equal to the concentration of
Fe. All calculations are conducted at a pressure of 135 GPa except the bottom section, which are calculated at 134 GPa.

(Frost et al., 2010), and diffusion of oxygen out of the liquid metal as the sample is quenched (Geßmann &
Rubie, 1998; O’Neill et al., 1998). Our current theoretical technique is limited to small oxygen concentrations
and requires a solid silicate phase.

In addition to the direct comparison at 134 GPa and 3200 K, we show our suite of calculations alongside
previous results (Frost et al., 2010; Ozawa et al., 2008) for the partitioning of FeO between ferropericlase and
liquid iron. Although they are at different conditions and therefore cannot be compared directly, it is clear
that both sets of results broadly follow the same trend (Figure 1). The overall magnitude and spread of our
T = 3200 K data are consistent with the available solid silicate-liquid metal partitioning experiments at similar
temperature (Figure 1), demonstrating the general consistency between the two approaches.

Our results show that KD(O) increases strongly with temperature, as found previously (Fischer et al., 2015; Frost
et al., 2010; Tsuno et al., 2013). In the absence of Si KD(O) is a weak function of c̄c

O in the range 0 ≤ c̄c
O ≤ 30

mol%, while adding 7.6% Si produces a strong increase of KD(O) with c̄c
O (see also Table 1). This is consistent

with extrapolations from previous work (Fischer et al., 2015; Tsuno et al., 2013), which predict high O and Si
concentrations in the metal at high temperature.

4. Discussion

Transfer of O from mantle to core must be limited in some way or their bulk compositions would be in
equilibrium by now (Stevenson, 1981): values of c̄c

O between 2.5 and 28 mol% together with the calculated
values of KD(O) require at most 2.5% FeO in coexisting (Mg,Fe)O (Table 1), which is less than one third of the
expected FeO concentration in ferropericlase at lower mantle conditions (Asahara et al., 2007). This conclu-
sion is consistent with previous work (Buffett & Seagle, 2010) using partitioning results extrapolated based
on the thermodynamic model of Frost et al. (2010). One plausible resolution to this apparent paradox is that
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Figure 1. Comparison of our results with published work. Our data are plotted together with other experimental studies
of solid silicate-liquid metal partitioning. The arrows highlight the direct comparison discussed in the text between
a present calculation and a previous experimental determination of KD(O) at the same pressure-temperature conditions.

the top of the core is enriched in O compared to the bulk due to FeO transfer across the CMB (Frost et al., 2010)
with the base of the mantle depleted in FeO compared to the bulk (Figure 2).

The crucial dynamical quantity is the mass flux of FeO. The chemical reaction is fast, and radial motion near the
CMB must be significantly restricted, so the rate must be controlled kinetically by diffusion. Fick’s law of mass
diffusion relates the flux of FeO per unit area, iFeO, to the mass fraction of Fe in ferropericlase, cm

Fe, according to

iFeO = −𝜌mDm∇cm
Fe, (6)

where 𝜌m ≈ 5500 kg/m3 is the lower mantle density (Dziewonski & Anderson, 1981) and Dm = O(10−12 −
10−16) m2/s is the diffusion constant of FeO in the solid mantle (Ammann et al., 2010). Recall that the mass

Figure 2. Illustration of chemical exchange between the lower mantle and core. FeO-rich material can be brought
into contact with the core by diffusion or buoyancy. Diffusion depletes the lower mantle through a skin depth of
thickness 𝛿 = 2

√
Dtres, where D is the diffusion coefficient and tres the residence time for undepleted material at the

core-mantle boundary (CMB). The top of the layer is at radius rbulk and the base of the layer is the CMB radius rcmb.
Buoyant FeO-depleted material rises with the Stokes velocity Vs . Passage of FeO across the CMB creates a stably
stratified layer (red) at the top of the core.
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fraction of FeO in ferropericlase is determined by the mass fraction of Fe. We are interested in the flux of O,
iO = iFeOAO∕AFeO, where the factor AO∕AFeO = 16∕72 converts from FeO to O using the atomic weights of O
(AO) and FeO (AFeO). The total mass flux of O across the CMB is IO = 4𝜋r2

cmbiO, where rcmb is the CMB radius,
and so

IO = −4𝜋r2
cmb𝜌

mDm∇cm
Fe

AO

AFeO
. (7)

At the present day, IO is limited by the minute chemical diffusivity (Ammann et al., 2010; Holzapfel et al., 2005)
in the solid mantle. For a typical lower mantle flow speed of 1 cm/year diffusion will deplete mantle material
through a skin depth 𝛿 = 2

√
Dmtres, where tres is the residence time for undepleted material at the CMB

(Figure 2). We therefore write ∇cm
Fe ≈ [cm

Fe(rbulk) − cm
Fe(rcmb)]∕𝛿, where rbulk is the radius at the top of the lower

mantle chemical boundary layer. The total mass flux of O into the core is then

IO ≈ 2𝜋r2
cmb𝜌

m
[

cm
Fe(rcmb) − cm

Fe(rbulk)
]√Dm

tres

AO

AFeO
. (8)

For complete depletion of the layer in contact with the core, cm
Fe(rcmb) = 0. Taking cm

Fe(rbulk) = 0.2, a high
estimate of the FeO content of ambient lower mantle, Dm = 10−12 m2/s and a nominal residence time of
tres = 10 Myrs gives 𝛿 ≈ 30 m and an O flux of ≈1,000 kg/s. This is smaller than the O flux down the core
pressure gradient (Gubbins & Davies, 2013) and the result of Buffett and Seagle (2010), which was based on
the thermodynamic model of Frost et al. (2010) calibrated at 25 GPa. It would be smaller still using the lower
values of Dm and higher values of tres.

Passage of FeO into the core by solid-state diffusion is therefore negligible, but mantle material depleted
in FeO is buoyant and potentially able to rise, driving convection to aid removal of iron from the CMB
(Figure 2). The rise time of a spherical parcel of depleted mantle, radius 𝛿∕2, rising at the Stokes velocity
Vs = 𝜌m

[
cm

Fe(rcmb) − cm
Fe(rbulk)

]
g𝛿2AO∕18𝜇AFeO, is 𝛿∕Vs. Removal is consistent when 𝛿∕VS = tres. The mass flux

decreases with increasing dynamic viscosity 𝜇 and decreasing Dm. For 𝜇 = 1019 Pa s, a rather low value, and
other numbers as above we obtain 𝛿 = 66 m, tres = 35 Myrs and Vs = 6×10−14 m/s. Compared to the previous
estimates, the mass flux is increased by the larger 𝛿 but decreased by the longer tres, the overall effect being a
reduction by a factor of 2. The boundary layer remains intact until global mantle convection carries the mate-
rial upward. Other processes such as erosion (Buffett et al., 2000) may expose fresh mantle to react with the
core, or partial melt associated with ultralow velocity zones (Williams & Garnero, 1996) could aid migration,
increasing the estimates above. However, both estimates suggest that the solid mantle limits the passage of
oxygen into the core to small amounts.

Buffett and Seagle (2010) and Gubbins and Davies (2013) found that the flux of O creates a stabilizing com-
positional gradient at the top of the core that is too strong to allow material entrainment or mixing by the
underlying convection. They both found stable layers approximately 100-km thick at the present day that
formed over the age of the Earth, which are thinner than the estimates of 300–700 km from some seismic
studies (Helffrich & Kaneshima, 2010; Kaneshima, 2017). The reduced O flux found here will further reduce the
stable layer thickness below the seismic estimates.

FeO dissociation is accompanied by heat absorption at the CMB. The reaction is endothermic because the
heat of reaction coefficient Rh = 𝜇 − T(𝜕𝜇∕𝜕T)P,T > 0, consistent with fitting to experimental data (Asahara
et al., 2007). In our calculations this arises from the strong temperature dependence of the chemical potential
difference (Table 1). The reaction does not directly power the geodynamo because it occurs at the CMB where
heat is extracted; however, it provides power indirectly by augmenting the CMB heat flow. The additional
power is proportional to iO and is therefore small for transfer from a solid mantle.

The amount of oxygen delivered to the core could be altered by several factors, including the presence of
other elements, a primordial chemical stratification established during core formation (Jacobson et al., 2017;
Landeau et al., 2016) or the existence of an early partially molten layer at the base of the mantle (Brodholt &
Badro, 2017; Labrosse et al., 2007). Extrapolations of experimental results to core conditions suggest that Ni
and S have little effect (Tsuno et al., 2011). Si might also accompany O into the core in significant amounts
(Tsuno et al., 2013), though future calculations will need to include bridgmanite to assess the role of Si at CMB
conditions. Partitioning behavior at high concentrations must be calculated since our calculations do not rule
out the possibility that O transfer could saturate or even reverse direction if the top of the core evolves to a
pure FeO composition.

DAVIES ET AL. 6047



Geophysical Research Letters 10.1029/2018GL077758

A stable chemical layer produced during core formation (Landeau et al., 2016) may reduce subsequent FeO
exchange if it is enriched in oxygen. The composition of any such layer is currently uncertain, and therefore,
this scenario cannot presently be investigated in detail. Another significant question is whether such a layer
could survive the final stages of core formation, with recent work suggesting that it may have been erased by
the moon-forming impact (Jacobson et al., 2017).

Core thermal history calculations with high thermal conductivity predict that the lowermost mantle would
have been molten for a substantial fraction of Earth’s history (Davies, 2015; Nimmo, 2015). In this scenario the
oxygen flux through the molten lower mantle boundary layer would be greatly enhanced compared to the
solid owing to the vastly reduced liquid viscosity and thermal diffusivity (Brodholt & Badro, 2017), though
the oxygen partition coefficient would decrease since iron is more readily accommodated in a melt than a
solid phase (Andrault et al., 2012; Nomura et al., 2011). The net effect depends on these two factors, though we
expect the enhanced oxygen flux to win out. This scenario has the potential to transfer a significant amount
of O into the core.

To estimate the mass flux from a molten lower mantle, we use equation (8) and assume a value of Dm ∼
10−8 –10−9 m2/s obtained for diffusion of O in liquid iron (Gubbins et al., 2004; Posner et al., 2017). Convective
velocities on the order of 1–10 m/s have been estimated for the magma ocean (Solomatov, 2015; Ziegler &
Stegman, 2013), suggesting values of tres in the range 10−2 –102 years. Since radial flow should be impeded
in the vicinity of the CMB we assume the range tres = 100–1,000 years, which gives IO ∼ 105 –107, 2–4 orders
of magnitude higher than for the solid. Lower values of tres would increase this estimate further. In the stable
region below the CMB the mass fraction of O, cc

O, satisfies the diffusion equation,

𝜕cc
O

𝜕t
= Dc∇ccc

O, (9)

where Dc ∼ 10−8 –10−9 m2/s is the O diffusion coefficient in the core (Davies et al., 2015; Gubbins et al., 2004).
We use an analytical solution to this equation that applies in an infinite half-space with a time-independent
flux at the CMB. The solution for the concentration gradient is standard and can be written (Gubbins & Davies,
2013, equation(12))

𝜕cc
O

𝜕r
=

iO
(𝜌cDc)

erfc([rcmb − r]∕2
√
(Dct)), (10)

where 𝜌c = 9, 900 kg/m3 (Dziewonski & Anderson, 1981) is the density at the CMB. This solution is valid for thin
layers of O(100) km (Gubbins & Davies, 2013) as expected at the top of the core. The base of the stable layer is
defined as the point where 𝜕cc

O∕𝜕r equals the destabilizing gradient, 𝜕C∕𝜕r, due to core convection. Following
Buffett and Seagle (2010), we set 𝜕C∕𝜕r = −𝛼T∕𝛼c𝜕T∕𝜕r, where 𝛼T = 2 × 10−5 K−1 is the thermal expansion
coefficient (Gubbins et al., 2003), 𝛼c = 1.1 is the expansion coefficient for O, and 𝜕T∕𝜕r ∼ 10−3 − 10−4 K/m is
the superadiabatic temperature gradient (Davies et al., 2015; Nimmo, 2015).

As an example we assume that a molten lower mantle persisted for time t = 1 billion years following core for-
mation. With the range of values above we find that the layer thickness at this time is between 75 and 125 km,
significantly thicker than the 20–60 km obtained by the same calculation using the estimates of flux from a
solid mantle above or the value of ∼40 km obtained at this time by Buffett and Seagle (2010). The thickest
layers may overestimate the effect since continual enrichment of the top of the core in O will reduce the con-
centration difference across the chemical boundary layer, reducing the mass flux. On the other hand, larger
values of tres would increase the layer thickness. Nevertheless, this simple calculation demonstrates the poten-
tial significance of a long-lived basal magma ocean (Labrosse et al., 2007) for core-mantle chemical exchange
and paves the way for more sophisticated models that couple the time-dependent chemical boundary layers
on both sides of the CMB.
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