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Abstract— In this paper we consider a spin-based multi-
processor locking protocol, named the Multiprocessor resource
sharing Protocol (MrsP). MrsP adopts a helping-mechanism
where the preempted resource holder can migrate. The original
schedulability analysis of MrsP carries considerable pessimism
as it has been developed assuming limited knowledge of the
resource usage for each remote task. In this paper new MrsP
schedulability analysis is developed that takes into account such
knowledge to provide a less pessimistic analysis than that of
the original analysis. Our experiments show that, theoretically,
the new analysis offers better (at least identical) schedulability
than the FIFO non-preemptive protocol, and can outperform
FIFO preemptive spin locks under systems with either intensive
resource contention or long critical sections.

The paper also develops analysis to include the overhead of
MrsP’s helping mechanism. Although MrsP’s helping mechanism
theoretically increases schedulability, our evaluation shows that
this increase may be negated when the overheads of migrations
are taken into account. To mitigate this, we have modified
the MrsP protocol to introduce a short non-preemptive section
following migration. Our experiments demonstrate that with
migration cost, MrsP may not be favourable for short critical
sections but provides a better schedulability than other FIFO
spin-based protocols when long critical sections are applied.

I. INTRODUCTION

The transition from uniprocessors to multiprocessors has

been taking place over the last few years to meet the increasing

demand for computation power [2]. However, moving to mul-

tiprocessor platforms breaks most of the well-known locking

protocols and schedulability analysis approaches that are used

on uniprocessor platforms, which can only manage resources

that are accessed from one processor (local resources). With

this transition, resource sharing technology that can control

resources shared by tasks from different processors (global re-

sources) has received much attention. However, as a relatively

new area, some of the multiprocessor locking protocols either

lack efficient schedulability analysis support or have analysis

with considerable pessimism [14].

In this paper we focus on a FIFO spin-based multiprocessor

locking protocol, named the Multiprocessor resource sharing

Protocol (MrsP) [11]. In MrsP, a helping mechanism is adopted

where the resource holder can migrate to be helped under

certain situations. Our work starts by reducing the existing pes-

simism in MrsP response-time analysis [11]. Then we develop

new analysis that bounds the migration cost incurred with use

of the protocol. By integrating the two analysis approaches,

‡This work has been partially funded by the Spanish National R&D&I plan
(project M2C2, TIN2014-56158-C4-3-P).

we present a more complete MrsP schedulability analysis.

Based on the new combined analysis, a set of experiments

are performed to evaluate the efficacy of MrsP.

A. Background and Motivation

The original MrsP analysis provides an acceptable worst-

case response time for each task based on limited knowledge

of the system. It does this by assuming that, in the worst

case, each time a task tries to access a resource, it can

be delayed (blocked) once from each remote processor that

contains tasks requesting the same resource. If full details

of the system and the individual behaviour of each remote

task is known then holistic blocking analysis [8] can be used.

This reduces the pessimism of the original analysis as not

all resource access will result in the worst-case blocking.

However, as shown by Wieder and Brandenburg [29], holistic

blocking analysis still suffers from considerable pessimism

due to the approach of inflating a task’s computation time

with its resource accessing time (and potential delay). In

the same paper, a new analysis framework for spin locks is

developed based on mixed-integer linear-programming (ILP),

which further reduces the pessimism.

Unfortunately, the ILP-based analysis does not consider any

helping-based locking protocols so that it cannot be applied

to MrsP directly. In addition, although the ILP-based analysis

provides a valuable uniform analysis tool for a variety of spin

locking protocols, when focusing at one protocol, say MrsP,

the analysis is relatively complex and expensive due to the

use of linear-programming. Further, although the ILP-based

analysis can be applied to MrsP with modifications, this would

not consider the overheads of the helping mechanism. Conse-

quently, we aim to develop new MrsP analysis that inherits

the format of its original analysis in order to obtain a simpler

schedulability test but with the same degree of pessimism

that the ILP-based analysis achieves. In addition, as in MrsP

helping is provided by migrations, we aim to reduce and to

bound the migration cost that each resource-requesting task

can incur and integrate this into our new analysis to provide

a more complete migration-aware schedulability analysis test.

B. Related Work

On uniprocessor platforms, locking protocols have been

developed and well-practiced for decades. The Non Preemp-

tive Protocol provides the most straightforward protection

to resource-requesting tasks and can be applied with any

scheduling scheme. The Priority Inheritance Protocol [24] is

978-1-5386-1898-1/17/ $31.00 c© 2017 IEEE



suitable for fixed-priority systems and inspired the creation

of protocols that are agreed as the best practice for resource

sharing control on uniprocessor platforms — Priority Ceiling

Protocol (PCP) [24], the Stack Resource Protocol (SRP) [4]

and the Deadline Floor Protocol [9]. These protocols guarantee

that a task can only suffer from one blocking, as well as

avoiding deadlocks and carrying low run-time overheads [14].

On multiprocessors, MPCP [22] applies a limited migration

facility, where the resource holding task should explicitly

migrate to a processor before it can acquire the resource.

Later, the protocol was renamed as DPCP [20], [21] with

the notion of the local agent, which is a remote task that

can execute a global resource on behalf of other tasks.

MSRP [16] is a spin-based FIFO locking protocol. Under

MSRP tasks become non-preemptable while waiting for, and

executing with, the resource. With the FIFO non-preemptive

approach, MSRP guarantees resource execution progress and

is supported by sufficient schedulabiltiy analysis [16]. Later,

Wieder and Brandenburg’s work [8], [29] gave a more precise

schedulability test for MSRP. More recently, Biondi et al [6]

presented the first analysis for nested resource access for

FIFO spin locks, which can also be directly applied to MSRP.

In contrast, the FMLP [7] protocol introduced the notion of

resource groups, where resources are grouped based on the

length of resources. FIFO spin locks are used to protected

short resources while semaphores are adopted to protect long

resources. SPEPP [26] and M-BWI [15], [19] apply the notion

of a helping mechanism, where a waiting task can execute

on behalf of the preempted resource holder. More recently, a

protocol named RNLP [28], [27] has been developed to sup-

port nested resource requests by applying a token mechanism

and a set of request satisfaction mechanisms that can fit into

different system models. In [18], a new multiprocessor task

partitioning and resource allocating algorithm is proposed to

offer a guaranteed speedup of 11-6/(m+1), where m is the

number of processors in the system.

As MrsP is a relatively new protocol, the directly related

work of MrsP is limited. In [13], Catellani et al. proved

that MrsP can be effectively implemented inside the Litmus

kernel [12], [8] and RTEMS [23] with acceptable overheads. In

addition, several approaches to implement the MrsP primitives

are discussed along with the challenges and issues for sup-

porting the required functionalities of the helping mechanism.

In [10], MrsP is applied to Ada with a prototype outside-kernel

implementation. In [17], a complete definition of nested re-

sources behaviour in MrsP is presented with sufficient analysis

based on the original MrsP Response Time Analysis (RTA).

C. System and Task Model

In this work we apply a similar system model to that

presented in MrsP’s original paper [11]. We assume a fully

partitioned multiprocessor system with m processors (P1 to

Pm). We employ a fixed priority scheduling policy and a

general constrained sporadic task model. Each task in the

system, say τx, has a priority Pri(τx), a response time Rx, a

period Tx, a deadline Dx, a pure worst-case computation time

Cx without accessing any resources and a worst-case execution

time Ĉx, where Ĉx is the sum of the pure computation time

of task τx (Cx) and the time it spends accessing each resource

on its and others behalf. A task can generate a bounded set of

sequential jobs but only one job can be executable at a time. In

this work a higher priority value represents a higher priority.

In the system there exist a set of resources R (e.g., data

structures and I/O devices) that are shared by tasks mutual

exclusively. As presented in the MrsP paper, two functions are

applied to describe the relation between tasks and resources:

function F (τx) returns a set of resources that are used by τx
and function G(rk) gives a set of tasks that request rk. For

each resource rk, ckx denotes the worst-case execution time

when task τx accesses rk. In addition, a task τx may request a

resource rk a number of times in one release, which is denoted

by Nk
x . In this work, however, we assume (as the original

MrsP analysis does) that the accessing time to resource rk is

identical for each task. Hence, the parameter ck is used in the

entire work to denote the critical section length of resource rk.

This assumption is not fundamental but eases presentation.

In this work we assume that a task can only access one

resource at a time. That is, we will only focus on non-

nested resource accesses. We acknowledge that nested resource

access is highly relevant. However, due to the complexity of

the topic in this paper and the page limit, this paper focuses

on presenting our results for the non-nested case. The results

of our research into nested resource access is presented in an

independent paper [17].

D. Blocking in Multiprocessors

We inherit the classification of blocking effects from [29]:

spin delay and arrival blocking. A task can incur spin delay

when (1) being blocked directly by remote requests when

accessing a global resource and (2) being blocked indirectly

by a local high priority task that holds a global resource. A

task, say τx, can incur arrival blocking if there exists a local

lower priority task that requests a resource with current active

priority equal or higher than τx’s priority. For global resources,

τx can incur remote blocking as the lower priority task can

be delayed by remote requests. The arrival blocking occurs

before the execution of τx and can only happen once. Note

that under MrsP a task that incurs direct spin delay can still

execute on behalf of other resource requesting tasks but is not

executable when incurring indirect spin delay. Thus, in MrsP,

we identify three blocking effects that a task can incur: direct

spin delay, indirect spin delay and arrival blocking.

II. MRSP

MrsP [11] is a spin-based locking protocol for partitioned

fixed-priority systems. This protocol is created as a variant

of MSRP: spin locks are adopted and resources are served in

a FIFO order. However, unlike the non-preemptive approach,

tasks under MrsP can be preempted during spinning and exe-

cuting with a resource. Under MrsP, each resource has a ceiling

priority on each processor that contains tasks requesting the

resource. The ceiling priority on a given processor is set to be



the highest priority of the requesting tasks. Once a task tries

to access a resource, it raises its priority to the ceiling during

spinning and accessing the resource. With FIFO spinning,

the length of the resource’s waiting queue is the number of

processors that contain tasks that request the resource. Yet

spinning and executing with resources only at the ceiling level

can lead to a prolonged blocking time as the resource holder

can be preempted by higher priority local tasks.

To bound the waiting time, a helping mechanism is in-

troduced where a spinning task can undertake the associated

computation of any other task that request the same resource.

The helping mechanism allows tasks to help the preempted

resource holder to make progress by using the wasted cycles.

In the worst case, a resource-requesting task will execute all

the critical section computations of tasks in the FIFO queue

each time it tries to access the resource, which leads to a

worst-case resource accessing time of the FIFO queue length

multiplied by the cost for accessing the resource. In [11],

two possible approaches to realise the helping mechanism

are supported: a task migration approach and a duplicated

execution approach. The duplicated execution approach can

only be applied to stateless resources so that migrations are

usually required when implementing MrsP in general. In this

work we focus on MrsP with migrations.

A. Original Response Time Analysis

The MrsP analysis is extended from the uniprocessor Re-

sponse Time Analysis (RTA) framework [3] for the PCP/SRP

case with minor modifications to reflect the parallel access to

global resources:

Ri = Ĉi +Bi +
∑

τj∈hpl(i)

⌈
Ri

Tj

⌉
Ĉj

The response time Ri for τi is determined by its execution

time Ĉi, the maximum blocking time Bi and the interference

from higher-priority tasks, where hpl(i) gives a set of high

priority local tasks. Ĉi is further determined by:

Ĉi = Ci +
∑

rk∈F (τi)

Nk
i e

k

where Nk
i is the number of times τi uses the resource and rk

represents each resource that τi requires. To reflect potential

parallel access for resources, ek is introduced to represent the

full execution time of a resource.

ek = |map(G(rk))|ck

With the FIFO spin approach and the helping mechanism,

the resource accessing time can be safely bounded by the

number of processors that contain tasks that request the

resource, where map returns a set of processors where the

given tasks are assigned to and || gives the size of a given set.

Bi = max
{
ê, b̂

}

The blocking term Bi is determined by the maximum value

between the maximum execution time of resources that are

used by low priority tasks and at least one equal or higher

priority task (ê) and the maximum duration of non-preemptive

sections incurring within the operating system (̂b).

B. Discussion

The original MrsP analysis applies a compact approach and

can be used even with a limited knowledge of the system

(e.g., the exact resource usage of remote tasks). However, this

analysis may account for a critical section more than once.

Consider a three processors single resource system in Figure 1,

where each task is assigned with a priority of its index value

(e.g., Pri(τ5) = 5) and requests resource r1. Suppose that

during the release of any task in the system, other tasks will

only be released once. For τ3, which requests r1 3 times, it can

incur direct spin delay 3 times from P1 and 2 times from P3

by remote requests with same color, where Ĉ3 = C3 + 3c1 +
3c1 + 2c1 = C3 + 8c1, including requests form τ3 itself. Yet

applying MrsP analysis to τ3 will account for one extra critical

section, where Ĉ3 = C3 +3× 3c1 = C3 +9c1 as the analysis

assumes that each time τ3 accesses r1 it incurs blocking from

both P1 and P3 i.e., processors with tasks requesting the same

resource. As for task τ2, Ĉ2 = C2 + 9c1 if MrsP analysis is

applied, yet τ2 will only incur direct spin delay by 2 remote

requests from P1 and its third request will not incur spin

delay at all because other remote requests delay τ3 directly

(thus block τ2 indirectly) and will be accounted for as part of

the high priority task interference of τ2.

P3

𝜏
1 1 2

P2𝜏
3

𝜏
2

1 2 3

1 2 3

P1𝜏
5

𝜏
4

1 2 3

1 2

Fig. 1: Issues when bounding spin delay under MrsP

In addition, Wieder and Brandenburg [29] point out that

inflating a task’s computation time (i.e., using Ĉ to bound the

indirect spin delay) can also account for a request multiple

times. Consider the same example, now we focus on τ2 and as-

sume that during τ2’s release τ3 can be released (and preempt

τ2) 3 times so that
⌈
R2

T3

⌉
= 3 while other tasks are released

once. Even with an accurate direct spin delay bounding, the

interference of τ2 is 3 × Ĉ3, where Ĉ3 = C3 + 3c1 + 5c1

as explained above. By doing this, the analysis assumes that

each time when τ3 is released in the context of τ2, it can be

blocked 5 times from P1 and P2, which is 15 blocking in total.

However, as other tasks are released only once, there are at

most 7 remote requests that can block τ3’s requests in its three

releases so that 8 critical sections are over-calculated.

In the ILP-based analysis the spin delay is taken out of the

tasks execution time (i.e., the task’s computation time inflation

approach is discarded) and all blocking effects are accounted

in parameter Bi. With a set of constraints, the blocking effects

for a task are bounded by the exact number of requests to each

resource issued from each remote processor and local high



priority tasks with the principle that one remote request can

only cause one blocking. For example, to analyse MSRP, an

objective function is introduced as Bi to define the blocking

variables (XS for spin delay and XA for arrival blocking)

and 9 constraints are applied to bound these variables for

each resource. In total, 30 constraints have being developed

for eight spin locks. In addition, to accurately account for the

number of requests that are issued during the release of τi,
the back to back hit phenomenon is accounted for, where a

task, say τx, can be released once during the lifetime of τi
(i.e.,

⌈
Ri

Tx

⌉
= 1) yet can cause one more blocking due to

the resource accessing in its last release (
⌈
Ri+Rx

Tx

⌉
= 2).

With such a design, the ILP-based analysis addressed the

issues above and provides a less pessimistic as well as a more

accurate analysis compared to other existing analysis [29].

III. IMPROVING MRSP RTA

Due to the reasons stated in Section I-A, we created a

new schedulability test explicitly for MrsP that overcomes the

issues described in II-B but without the need for the potentially

expensive ILP technique. Our improved MrsP RTA aims to

provide an analysis with an identical degree of pessimism as

the ILP-based analysis. In contrast to the ILP-based analysis,

we aim to bound the three blocking effects identified in

Section I-D separately and then fit them into the original MrsP

RTA equations (without inflating the task’s execution time) to

facilitate the migration cost analysis in Section IV.

A. Modified MrsP Response-Time Equation

Equation 1 gives the response time of task τi, where the

blocking effects are reflected by three parameter: Ei is the

total resource accessing time of τi with direct spin delay

accounted for; Ii,h indicates the indirect spin delay incurred

by τi from a local high priority task τh and the arrival blocking

is accounted for in Bi. Note that in our new analysis, Ci is the

pure computation time of τi without accessing any resource.

Function
⌈
Ri

Th

⌉
· Ch gives the pure computation interference

from a local high priority task τh without accessing resources.

Ri = Ci + Ei +Bi +
∑

τh∈hpl(i)

(

⌈
Ri

Th

⌉
· Ch + Ii,h) (1)

B. Direct and Indirect Spin Delay

We start by bounding the total resource accessing time with

direct spin delay E and indirect spin delay I incurred by τi.
These two equations share a similar format but take different

inputs, as shown in equations 2 and 3, where ekx(l, µ) gives the

accessing time (with direct spin delay) to resource rk that task

τx can incur within the duration l and a release jitter µ. By

given different duration and jitter length, the function gives a

different bounding as τx can be released a different number of

times (so that a different number of requests) within the given

duration. Accordingly, our analysis does not rely on inflating

execution time.

Ei =
∑

rk∈F (τi)

eki (Ri, 0) (2)

Ii,h =
∑

rk∈F (τh)

ekh(Ri, Rh) (3)

Equation 2 gives the total resource accessing time of τi. For

τi itself, l = Ri and µ = 0 so that we will only account for

resource requests in one release. As for the indirect spin delay

(equation 3), l = Ri and µ = Rh so that the back-to-back

hit can be accounted for when computing the total number of

requests issued from a high priority task τh to rk in the context

of τi (i.e., during τi’s release). To facilitate the migration cost

analysis, we analyse the resource accessing time of a task in

each individual access so that ekx(l, µ) is further expanded as:

ekx(l, µ) =

Nk
x (l,µ)∑

n=1

ekx(l)(n) (4)

where Nk
x (l, µ) =

⌈
l+µ
Tx

⌉
·Nk

x gives the number of requests τx

can issue to resource rk with the back to back hit and ekx(l)(n)
gives the time of τx’s n-th access to rk within a duration l.

To reflect the worst case scenario, a higher priority task

should incur blocking before any low priority tasks do, as

the spin delay incurred by high priority tasks is propagated

to all local lower priority tasks as interference. Thus, when

computing the direct spin delay that τx can incur for accessing

rk, the requests from a remote processor should delay τx’s

higher priority tasks a prior to τx, which leads to the following

observations, where Nhk
x(l) =

∑
τh∈hpl(x) N

k
h (l, Rh) gives

the number of requests issued by local high priority tasks,

Npkm(l) =
∑

τj∈τ(Pm) N
k
j (l, Rj) gives the number of requests

issued from a remote processor m, τ(Pm) gives a set of tasks

allocated on processor m and (f(x))a denotes max{f(x), a}
for the ease of presentation.

Theorem 1. The maximum number of requests on a remote

processor m that may block τx directly for accessing rk

within the duration l is bounded by NSk
x,m(l) = (Npkm(l) −

Nhk
x(l))0.

Proof. Let Nmay
S denote the number of requests from a remote

processor that may block τx. If Nmay
S > NSk

x,m(l), then there

exist remote requests that can block both τx and a higher

priority task on τx’s processor that requests rk directly, which

is not possible as one request can only cause one blocking.

Otherwise (where Nmay
S < NSk

x,m(l)), certain requests that

may block τx are not accounted for.

Theorem 2. The number of direct spin delays that τx can

incur for accessing rk from a remote processor m within the

duration l and jitter µ is min{NSk
x,m(l), Nk

x (l, µ)}.

Proof. Let N can
S denote the number of spin delay that τx can

incur. If N can
S = NSk

x,m(l) ∧ NSk
x,m(l) > Nk

x (l, µ), there

exists a remote request that can block τx multiple times. In

contrast, where N can
S = Nk

x (l, µ) ∧ Nk
x (l, µ) > NSk

x,m(l),
there exist more than one requests on a remote processor that

can block the same access of τx. Under MrsP, neither case is

possible.



To examine the blocking in each access, we assume that

the first access to a resource incurs as much spin delay as

possible. This assumption will not introduce any pessimism

as the total spin delay a task can incur remains identical.

Accordingly, equation ekx(l)(n) can be constructed to compute

the time for each access (see equation 5), where n is bounded

to [1, Nk
x (l, µ)] by equation 4 and one extra ck is accounted

for the access by τx itself. For the ease of presentation, let

(f(x))ba denote min{max{f(x), a}, b}, where a and b are

positive integers with a ≤ b.

ekx(l)(n) =
∑

Pm 6=P (τx)

(NSk
x,m(l)− n+ 1)10 · c

k + ck
(5)

Proof. In τx’s n-th access, requests from a remote processor

m can block τx only if there still exists unaccounted requests

on m i.e., (NSk
x,m(l)−n+1)0 >= 1. Upon one access, there

can be at most one request on a remote processor that can

cause the spin delay and hence (NSk
x,m(l)− n+ 1)10.

With equations 4 and 5, the direct spin delay in E and

the indirect spin delay I can be computed. As proved, our

approach accounts for each critical section only once and does

not rely on inflating task’s computation time so that the issues

discussed in Section II-B are addressed. In addition, with

the back to back hit considered, the new equations provide

less pessimism and more accurate spin delay bounding than

that of the original MrsP analysis. In contrast to the ILP-

based analysis (which only gives a total amount of spin delay

for each task), our approach is able to compute the delay

of each individual access. Analysing the spin delay of each

access to each resource seems unnecessary for this work but

is fundamental for the migration cost analysis in Section IV.

C. Arrival Blocking

The arrival blocking is accounted for by parameter Bi

(equation 6), where êi gives the maximum arrival blocking

that τi can incur and is calculated by equation 7.

Bi = max{êi, b̂} (6)

êi = max{|αk
i | · c

k|rk ∈ FA(τi)} (7)

Equation 7 firstly identifies resources that can cause τi to incur

arrival blocking FA(τi) and then gives the maximum blocking

time among the resources in FA(τi). Under MrsP, a resource

rk can cause arrival blocking to τi if it has a higher or equal

ceiling priority on τi’s processor Pri(rk, P (τi)) and will be

accessed by local lower priority tasks τll, where FA(τi) ,

{rk|Nk
ll > 0 ∧ Pri(rk, P (τi)) ≥ Pri(τi)}.

The arrival blocking can be computed without the knowl-

edge of the exact task that causes such a blocking. For any

resource (either local or global) in FA(τi), it can cause a local

blocking of ck. For a global resource rk, there can be at most

one request from each remote processor that can cause τi to

incur arrival blocking transitively. Therefore, by identifying

the number of such processors, the arrival blocking can be

computed. Let P (τi) denote τi’s processor and αk
i be the set

of processors with requests to rk that cause arrival blocking

to τi (including P (τi)), where

αk
i , {Pm|NSk

i,m(Ri)−Nk
i > 0∧Pm 6= P (τi)}∪P (τi) (8)

Proof. Similar to the proof of equation 5, a request to rk from

a remote processor can block a lower priority task on τi’s
processor only if the remote request does not cause any delay

yet (including τi) i.e., NSk
x,m(l)−Nk

i > 0. Otherwise (where

NSk
x,m(l) − Nk

i ≤ 0), this remote request (if any) will be

calculated more than once because it is already accounted for

in the spin delay of τi.

With αk
i computed for each resource in FA(τi), the arrival

blocking of τi is obtained with one extra access included to

represent the local blocking, as shown in equation 7.

D. Summary

This concludes the new MrsP Response-Time Analysis. This

analysis is independent of the priority assignment scheme and

is not fixed to any specific hardware architecture. Similar to

Wieder and Brandenburg’s analysis, the blocking time of a

given task in our analysis depends on the response time of

potentially all tasks in the system. With an initial response

time, say Ci, the analysis computes the blocking variables

(E, I and B) and an updated response times of all tasks

in the system iteratively and alternately until a fixed-point

is reached.(i.e., the response time and the blocking variables

remain the same after further calculations).

IV. MIGRATIONS IN MRSP AND ANALYSIS

With MrsP applied, tasks are allowed to migrate with

resources using the helping mechanism. If a resource holder is

being preempted, it can migrate to a remote processor where

there is an executing spinning task requesting for the same

resource. Once being preempted again, the holder can then

migrate either back to its original processor (if the preemptor

is finished) or to another valid processor (if any). After the

holder releases the resource, it will migrate back to its original

processor (if necessary).

In theory, the helping mechanism is attractive because it

guarantees an identical resource waiting queue as MSRP

does. Previously, the migration cost has been treated as run-

time overheads and not considered in schedulability analysis.

However, in practice, migrations usually require updating

operating system structures (e.g., run queues) and the reloading

of caches, which carry non-negligible cost. Accordingly, once

a resource holder requires migrations (i.e., is preempted), the

migration cost that the holder incurs can increase the resource

accessing time, which will reduce schedulability.

The analysis presented in Section III does not account for

the overheads due to migrations. Indeed, we are not aware of

any analysis for multiprocessor resource control that includes

the overheads of protocols that support migration. Admittedly,

the actual migration cost a task can incur largely depends on

real hardware platforms and operating systems. Yet by treating

the migration cost as a constant upper bound (e.g., mig in



our work), the maximum number of times a task can migrate

during one access to a resource can be obtained and hence the

migration cost can be bounded. In this section, we developed

further analysis that bounds the migration cost in MrsP. The

objective is to integrate this with the analysis in Section III to

provide a migration-cost aware MrsP schedulablility analysis.

Before presenting the analysis, we discuss the difficulty in

bounding the number of migrations that can occur and propose

a modification to the MrsP helping mechanism to allow more

efficient migrations.

A. The Problem of Frequent Migrations

The current definition of the MrsP helping mechanism

carries a certain degree of pessimism under the situation where

the resource holder is preempted and there are a large number

of potential helpers each of which reside in processors where

there is one or more high priority tasks with short periods.

As we will show in Section IV-B, this can result in the

resource holding task suffering frequent migrations. Under

such a situation, the task can spend more time migrating than it

does executing with the resource so that the resource accessing

time can be significantly prolonged and the efficiency of the

protocol can be undermined.

To avoid frequent migrations, we introduce a short non-

preemptive section into the MrsP helping mechanism so that

upon each migration with a resource, the holder is allowed to

execute non-preemptively (NP) immediately for a short time

before it inherits the corresponding resource ceiling priority.

The NP-section can provide guaranteed progress to resource

holders and can reduce the number of migrations effectively,

especially when high priority tasks are released frequently. The

only side effect of this approach is that any newly released

high priority tasks have to cope with the cost of one NP

section before it can preempt the holder and execute. However,

the length of the NP section can be configured so that the

high priority tasks are still able to meet their deadlines. As

a default it can be the maximum time of the NP-sections in

the hosting operating system (symbol b̂ in Section II). Our

analysis presented below bounds the cost of the migration with

this approach. In Section V, evidence is given to demonstrate

improved efficiency when this approach is adopted.

B. Migration Cost Analysis

To capture the worst-case scenario, we assume that a

preempted resource holder can migrate to any valid processor

(i.e., a processor that has a task spinning for the resource or

the holder’s original processor). In addition, as shown in the

analysis from Section III, for any resource-requesting task τx,

it can incur a different amount of spin delay upon each access

to a resource so that its migration targets can also be different

during each resource access. Thus, the migration cost should

be computed by each individual access to each resource. We

firstly identify the set of migration targets for a given task τx.

Theorem 3. In τx’s n-th access to rk within a duration l,
the set of migration targets for τx is mtkx(l)(n) , {Pm|Pm 6=
P (τx) ∧NSk

x,m(l)− n+ 1 > 0} ∪ P (τx).

Proof. A remote processor m is a valid migration target for

τx’s n-th access to rk only if there exists a request to rk from

processor m that is not already accounted for during l (i.e.,

NSk
x,m(l) − n + 1 > 0 from equation 5). In addition, τx’s

original processor should be included as τx may migrate back

to P (τx) when it is preempted on a remote processor.

When τx incurs arrival blocking by a low priority task,

the blocking task may also incur migration cost, which in

turn delays τx. The migration targets of the low priority task

can be identified by the set αk
x (the set of remote processors

with requests that can cause τx to incur arrival blocking) in

equation 8.

As the resource accessing task inherits the resource ceiling

when accessing the resource, the potential preemptors on

each migration target can be identified. With a given set of

migration targets (denoted by mt) and a resource rk, the

migration targets with preemptors mtp(mt, rk) is:

mtp(mt, rk) , {Pm|Pm ∈ mt ∧ hpt(rk, Pm) 6= ∅} (9)

where hpt(rk, Pm) gives a set of tasks on processor m that

have a priority higher than the resource ceiling of rk on Pm.

Note mtp(mt, rk) is a subset of the given migration targets

mt and can be empty.

As presented above, migration targets are identified based

on whether there will be a request from the remote processor.

Thus, on each migration target, there exists one request issued

to the resource and they share the same set of migration targets.

To bound the migration overhead a task τx can incur when

accessing a resource, we examine the migration cost of each

request issued from the migration targets. Let Nmig be the

number of potential migrations. We summarise the following

observations where a limited number of migrations can be

triggered when a request is issued from processor Pm to

resource rk with a given set of migration targets mt:

Lemma 1. Nmig = 0 if Pm /∈ mtp(mt, rk).

Proof. The request issued from processor Pm incurs no mi-

grations if there exists no preemptors on that processor.

Lemma 2. Nmig = 0 if {Pm} = mt.

Proof. No matter how many times the request from Pm can

be preempted on its processor, there will be no migrations if

there exists no other migration targets.

Lemma 3. Nmig = 2 if {Pm} = mtp(mt, rk) ∧ |mt| > 1.

Proof. In the case where the request can only be preempted

on its original processor Pm, the requesting task can migrate

to other migration targets without further preemptions. Once

the task releases the resource, it migrates back to Pm.

In a more general case where there exist more than one

migration targets with potential preemptors, the number of

migrations have to be bounded by the release of all potential

preemptors. Unfortunately, we are not able to track the state of

the current processor of the resource holder constantly as no

assumption can be made about the migration destination. Thus,



we have to assume that each release of the high priority task

can cause a preemption with a subsequent migration. Because

of this, our analysis provides a safe upper bound of the migra-

tion cost rather than a precise worst-case bounding. However,

by applying the NP section and by identifying the exact set of

migration targets, the pessimism of the analysis can be largely

reduced, as shown in experiment (d) in Section V-B.
In the case where the resource-requesting task’s processor

Pm ∈ mtp(mt, rk)∧|mt| > 1, the migration cost of that single

request is bounded by the releases of high priority tasks on

each migration target, denoted by Mhp(mt, rk), where mig
denotes the overheads of one migration.

Mhp(mt, rk) = mig·
( ∑

Pm∈mtp(mt,rk)

( ∑

τh∈hpt(rk,Pm)

⌈
ck +Mhp(mt, rk)

Th

⌉ )
+ 1

)

(10)

The equation accounts for the total number of releases of all

the potential preemptors on each migration targets within the

duration of one resource computation time with migration cost

considered ck+Mhp(mt, rk). Through iteration, the equation

can give a fixed migration cost that the requesting task can

incur based on the given set of migration targets. To cope

with the situation where the next holder needs to wait for

the current holder to migrate away before it can acquire the

resource, one extra migration is included.
On the other hand, with the NP section adopted, the

migration cost in a single access can also be bounded by the

length of the NP sections, denoted by Mnpk (equation 11),

where Cnp represents the length of the NP section. Note that in

our analysis we assume the length of NP section as a positive

integer value (by default Cnp = b̂)

Mnpk = mig · (

⌈
ck

Cnp

⌉
+ 1) (11)

In the case where the holder can be preempted frequently, this

equation can give a more acceptable number of migrations

a holder can incur. Unlike equation 10, this equation does

not rely on iterations as the NP section is for the resource

execution only and does not include the cost of migrations.

Therefore,
⌈

ck

Cnp

⌉
provides an safe bounding on number of

migrations with NP section applied. Combing equations 10

and 11, gives the following lemma, where the request is issued

from processor m:

Lemma 4. Nmig = min{Mhp(mt, rk),Mnpk} if Pm ∈
mtp(mt, rk) ∧ |mtp(mt, rk)| > 1.

Proof. In the case where Mnpk < Mhp(mt, rk), the resource

holder is protected by the NP section while some of the

preemptions are delayed so that Nmig = Mnpk. In contrast

(where Mhp(mt, rk) ≤ Mnpk) the holder often can execute

for an amount of time longer than Cnp after migrations without

the effect of NP sections. Thus, Nmig = Mhp(mt, rk).

Combining Lemma 1 to 4, we give the total migration cost

a task can incur. In the worst-case, the task has to cope with

the migration cost of all the requests in the FIFO queue. Let

Mig(mt, rk) be the total migration cost that a task can incur

for accessing rk with a given set of migration targets mt:

Mig(mt, rk) =
∑

Pm∈mt



0, if Pm /∈ mtp(mt, rk) ∨ {Pm} = mt

2 ·mig, if {Pm} = mtp(mt, rk) ∧ |mt| > 1

min{Mhp(mt, rk),Mnpk}, otherwise

(12)

With the migration cost analysis constructed, we integrate

this with the analysis presented in Section III to form a

complete MrsP schedulability analysis. Firstly, the migration

cost should be integrated into the equation that bounds the spin

delay (see equations 4 and 13). The set of migration targets

are identified previously by mtkx(l)(n).

ekx(l, µ) =

Nk
x (l,µ)∑

n=1

(ekx(l)(n) +Mig(mtkx(l)(n), r
k)) (13)

In addition, the migration cost needs to be accounted for

in equation 7, where the arrival blocking is bounded. The set

of migration targets here are given by αk
i . Equation 14 gives

the arrival blocking with migration cost accounted for. In the

case where rk is a local resource, Mig(αk
i , r

k) = 0 as αk
i =

{P (τi)}.

êi = max{|αk
i | · c

k +Mig(αk
i , r

k)|rk ∈ FA(τi)} (14)

Finally, as we adopt the NP-section, an extra blocking effect

should be accounted for. If the length of the NP section is

configured as the maximum NP section length in the hosting

operating system (̂b), no further modifications to the equations

are required. Otherwise (where Cnp > b̂), for any given task

τi, it has the risk to incur such a blocking (denoted by n̂pi) as

long as it has a priority equal or higher than the lowest ceiling

priority of global resources on its processor:

n̂pi =

{
Cnp, if Pri(τi) ≥ min{rk is global}Pri(rk, P (τi))

0, otherwise
(15)

Same with the arrival blocking, such a blocking happens be-

fore the execution of τi and can only happen once, equation 6

should be modified to reflect this extra blocking.

Bi = max{êi, n̂pi, b̂} (16)

This concludes the work of MrsP Schedulability Analysis.

In next section, a set of evaluations are performed to investi-

gate the schedulability of MrsP.

V. EVALUATION

In this section, we performed a set of experiments to

compare the schedulability between MrsP and other FIFO

spin lock-based protocols (both preemptive or non-preemptive

models) with different configurations (e.g., work load and

critical section length). We first investigate the theoretical

schedulability and do not consider any overheads resulting



from the protocols. Thus, analysis in Section III is applied

when evaluating MrsP with other protocols by assuming the

migration cost is 0. We then study the impact of migration cost

and compare the efficiency (and therefore the resulting schedu-

lability) of the MrsP helping mechanism with (and without)

the NP-section by the analysis created in Section IV-B.

The code for the evaluations performed in this section can be

accessed via https://github.com/RTSYork/MrsPAnalysisTest.

In this work, the new MrsP Response-Time Analysis presented

in Section III and the complete schedulability test described in

Section IV are implemented. In addition, a system generation

tool is developed to generate systems with different tasks and

resource usage configurations. To compare the schedulability

of MrsP with other protocols, we integrate the implementation

of the ILP-based analysis from the SchedCAT project [1] via

JNI to provide the analysis of other FIFO spin locks.

A. System Setting

We consider platforms with m = [2, 16] processors. On each

processor, there can be up to 10 tasks, where n = [1, 10]. As

we focus on fully partitioned systems, the tasks are generated

on each individual processor without the need of partitioning.

Periods of tasks on each processor are randomly chosen

between [1ms, 1000ms] in a log-uniform distribution fashion.

In this evaluation, we assume that the deadline of the tasks

are equal to their periods (D = T ). The utilisation of each

task is computed based on the UUnifast-Discard algorithm

proposed by Bini and Buttazzo [5] and hence the execution

time with resources (Ĉ) for each task can be computed. The

system supports 1000 priority levels. The priority of each task

in a processor is given using the rate-monotonic policy [25].

A wide range of critical section length (L): [1µs, 15µs],
[15µs, 50µs], [50µs, 100µs], [100µs, 200µs] and

[200µs, 300µs] is supported. Then a real value parameter κ is

introduced to specify the number of tasks on each processor

that can access to resources (i.e., ⌊κ · n⌋), where κ ∈ [0.0,1.0].

A task will issue requests to a number of randomly chosen

resources (but limited by [1,m]). The number of requests is

randomly decided between [1, A], where A = [1, 41]. Let Cr
x

be the total resource computation time of τx. For a given task

τx, with its resource usage generated, the pure computation

time Cx can be computed, where Cx = Ĉx −Cr
x. We enforce

that Ĉx − Cr
x ≥ 0.

In practice, modern operating systems and hardware (with

a typical three-level cache topology) usually have a migration

cost less than 10µs, where the scheduling and context switch

procedure will be invoked with the need for updating run-

queue structure and cache. As observed by [13], the cost of

one migration is 6000 ns in LITMUSRT [12], [8] and is 5000

ns in RTEMS [23] on an Intel Quad Core i7-2670QM with

2.2GHz and a three-level cache memory. In this work we set

the cost of one migration as 6000 ns (i.e., mig = 6µs).

B. Schedulability Evaluation

We investigate the schedulability of MrsP and other FIFO

spin protocols under systems with various (a) work load on

each processor n; (b) parallelism m; (c) critical section length

L and (d) resource contention A. We focus on the FIFO spin

locks to provide a view of how MrsP performs compared

to the spin locks with similar features. The schedulability

tests implement the following analysis: the original MrsP

analysis [11] (MrsP-original); the original MSRP analysis [16]

(MSRP); the ILP-based MSRP analysis [29] (FIFO-NP), the

ILP-based FIFO preemptive spin locks analysis (FIFO-P) [29]

and our new MrsP Response-Time Analysis (MrsP-new) from

Section III. Each system setting is tested by 1000 systems.

(a) Varying n and m: With a low resource contention

(A = 2, κ = 0.4) and short critical section length (L =
[1µs, 15µs]), MrsP does not have an obvious schedulability

difference between other spin locks, as shown in Figure 2. By

incrementing n, the original analysis for MrsP (and MSRP)

gives a much lower schedulability than that of our new analysis

(and the FIFO-NP analysis). When further incrementing n,

MrsP shows a slightly better schedulability than both FIFO-

NP and FIFO-P do. A similar trend between MrsP and FIFO-

NP is observed when increasing m (see Figure 3). However,

FIFO-P in this experiment offers the best schedulability when

m ∈ {8, 10, 12, 14} due its relatively low arrival blocking. Yet

with a further increasing of m , both MrsP and FIFO-NP give

a better schedulability than that of FIFO-P (when m ≥ 16) as

the spin delay can be bounded to m.
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Fig. 2: Schedulability for m = 16, U = 0.1n, κ = 0.4, A = 2,

L = [1µs, 15µs], and m shared resources.
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Fig. 3: Schedulability for n = 5, U = 0.1n, κ = 0.4, A = 2,

L = [1µs, 15µs], and m shared resources.

(b) Varying A: As shown in Figure 4, FIFO-P has the best

schedulability and FIFO-NP is worse than MrsP and FIFO-P

in the case where A = 1, as tasks incur limited preemptions

within a short resource accessing time and such a cost is
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Fig. 4: Schedulability for m = 16, n = 5, U = 0.1n, κ = 0.4,

L = [1µs, 15µs], and m shared resources.

more likely to be less than the arrival blocking that tasks

under FIFO-NP or MrsP can suffer. However, with a further

increment (and an increased risk to be preempted), FIFO-P

becomes the worst with a observable difference compared to

the other two protocols.

(c) Varying L: With an increasing length of critical sections,

we observed the schedulability of FIFO-NP locks decreases

dramatically while MrsP provides the best schedulability

among all tested locks (see Figure 5). With FIFO-NP, the

highest priority tasks have to cope with the largest arrival

blocking, and hence, can easily miss their deadlines if long

critical sections are adopted. In contrast, although with a

longer spin delay, FIFO-P locks only incur a local blocking

so that can offer a higher schedulability than that of FIFO-

NP. Under MrsP, tasks can incur a limited amount of arrival

blocking due to the ceiling facility and can have a shorter

spin delay than that of FIFO-P. Thus, MrsP can offer a better

schedulability with long critical sections than both FIFO-NP

and FIFO-P can achieve.
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Fig. 5: Schedulability for m = 16, n = 4, U = 0.1n, κ = 0.4,

A = 3 and m shared resources.

(d) Migration Cost Analysis: Now we study the impact of

accounting for the overheads of migrations on the theoretical

schedulability with the analysis in Section IV under various

critical section length. In addition, we present evidence of

an improved efficiency of MrsP by the controlled migration

behaviour with the NP section adopted. The analysis used

in this experiment is (1) the analysis without migration cost

(“MrsP-new”); (2) the ILP-based FIFO-NP analysis; (3) the

ILP-based FIFO-P analysis; (4) the migration cost analysis

with the NP section adopted (“MrsP-np”) and (5) the migration
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Fig. 6: Schedulability for m = 16, n = 4, U = 0.1n, κ = 0.4,

A = 3 and m shared resources.

cost analysis without NP sections (“MrsP-mig”). The analysis

MrsP-mig is modified from the analysis in Section IV by

taking Mnpk and n̂pi out of equations 12 and 16 respectively.

When MrsP-np is in use, the length of the NP sections are

set differently based on the system settings, and hence is not

presented. As described for, this length can be tuned for each

individual system to achieve the best schedulability.

Compared to FIFO-NP and FIFO-P, MrsP with migration

cost accounted for seems to be less favourable when applied to

short critical sections (e.g., 15µs) as one single migration costs

6µs in our case. This is proved by Figure 6, where MrsP-np

provides a low schedulability with L ∈ [1µs, 50µs]. However,

when L > 50µs, MrsP-np shows a better schedulability

than both FIFO-NP and FIFO-P can achieve, which again

proves that MrsP works better with long critical sections. In

addition, we observe that with migration cost accounted for,

there exist an obvious difference between the schedulability

of MrsP-new and MrsP-np, which reveals the necessity to

include such a cost into the schedulability analysis. Further, as

observed, MrsP-mig (without the protection of NP sections)

has a lower schedulability than that of MrsP-np (the one

with NP sections applied) in all cases, which demonstrates

an improved efficiency by integrating a short NP section into

MrsP protocol.

C. Summary

From the experiments we observed that theoretically MrsP

offers a better (at least identical) schedulability than MSRP

in all cases because both protocols have an identical spin

delay but MrsP guarantees a shorter arrival blocking at most

times. In addition, as observed, both FIFO-NP and MrsP

are less efficient than FIFO-P in systems with low resource

contention or less partitions due to adopting either the non-

preemptive accessing or the resource ceiling facility approach.

With migration cost accounted for, the schedulability analysis

of MrsP is significantly reduced and can be outperformed

by protocols with no migrations. However, with long critical

sections in use, both the theoretical RTA or the migration-

cost-aware schedulability test provide clear evidence that MrsP

outperforms both FIFO-NP and FIFO-P protocols.

Admittedly, one can argue that for long critical sections

suspension-based locks should be applied. However, as re-



vealed by the experiments, both the FIFO-P and MrsP proto-

cols can be considered applicable to long critical sections by

offering an acceptable schedulability ratio, where MrsP gives

a better schedulability.

VI. CONCLUSION

In this paper we developed a new Response-Time Analysis

for MrsP that incorporates more knowledge of an application’s

behaviour than that previously assumed in the original work.

The new analysis achieves an identical degree of pessimism

as the ILP-based analysis does, which similarly requires such

knowledge. Our new analysis is more in keeping with the

original MrsP philosophy but without the need for the poten-

tially expensive ILP techniques. Theoretically, the new MrsP

analysis offers better (at least identical) schedulability than

the FIFO non-preemptive spin-based locking protocol, and can

outperformed FIFO preemptive spin locks under systems with

an intensive resource contention.

This paper has also developed analysis to include the impact

of migrations. Although MrsP’s helping mechanism theoreti-

cally increases schedulability, our evaluation shows that this

increase may be negated when the overheads of migration are

taken into account. To mitigate this, we have modified the

MrsP protocol to introduce a NP section following migration.

This ensures that a preempted resource holding tasks can

make progress and can only incur limited migrations. Our

experiment reveals direct impact on the schedulability of MrsP

with the migration cost considered and an improved efficiency

with the integration of the NP sections. Most importantly,

we demonstrate that with migration cost, MrsP may be less

favourable for short critical sections but can offer a strong

schedulability under long critical sections, where traditional

FIFO spin locks have low schedulability.

Our future work will address non-uniform resource access

times and migration-aware nested requests. In addition, we

aim to explore and develop a technique to provide a more

precise bounding for the migration cost analysis. For instance,

migrations are not worth performing where the migration cost

is bigger than the interference from a preemptor. Further,

a study of the priority assignment rule and task allocation

scheme that can benefit MrsP will be investigated.
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