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ABSTRACT: Debris surface temperature is a function of debris characteristics and energy fluxes at the debris surface. However,
spatial and temporal variability in debris surface temperature, and the debris properties that control it, are poorly constrained. Here,
near-surface debris temperature (Ts) is reported for 16 sites across the lower elevations of Khumbu Glacier, Nepal Himalaya, for the
2014 monsoon season. The debris layer at all sites was ≥1m thick. We confirm the occurrence of temporal and spatial variability in
Ts over a 67-day period and investigate its controls. Ts was found to exhibit marked temporal fluctuations on diurnal, short-term (1–
8 days) and seasonal timescales. Over the study period, two distinct diurnal patterns in Ts were identified that varied in timing, daily
amplitude and maximum temperature; days in the latter half of the study period (after Day of Year 176) exhibited a lower diurnal
amplitude (mean = 23°C) and reduced maximum temperatures. Days with lower amplitude and minimum Ts were concurrent with
periods of increased seasonal variability in on-glacier air temperature and incoming shortwave radiation, with the increased fre-
quency of these periods attributed to increasing cloud cover as the monsoon progressed. Spatial variability in Ts was manifested
in variability of diurnal amplitude and maximum Ts of 7°C to 47°C between sites. Local slope, debris clast size and lithology were
identified as the most important drivers of spatial variability in Ts, with inclusion of these three variables in the stepwise general linear
models resulting in R2 ≥0.89 for six out of the seven sites. The complexity of surface energy fluxes and their influence on Ts highlight
that assuming a simplified relationship between air temperature and debris surface temperature in glacier melt models, and a direct
relationship between debris surface temperature and debris thickness for calculating supraglacial debris thickness, should be under-
taken with caution. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
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Introduction

Debris-covered glaciers exhibit a continuous mantle of rock
debris over the full width of at least some of their ablation zone
(Kirkbride, 2011). These glaciers are common in mountainous re-
gions across the world, including in the European Alps (Mihalcea
et al., 2006), Andes (Glasser et al., 2016), Southern Alps of New
Zealand (Kirkbride, 2000) and the Himalaya (Scherler et al.,
2011). The presence of a supraglacial debris layer influences gla-
cier ablation, acting as a thermal buffer between the atmosphere
and glacier ice surface, and modifying the energy available for
melt (Jansson and Fredin, 2002; Kirkbride, 2000). The extent to
which a supraglacial debris layer controls ablation is primarily
dependent on the thickness of the debris layer (Clark et al.,
1994; Mattson, 2000; Østrem, 1959). While a thin layer of debris
below a critical thickness causes an increase in ablation due to a

reduction of the surface albedo (Nakawo and Rana 1999),
ablation exponentially decreases with increasing debris thick-
ness above a critical thickness, as the debris layer inhibits glacier
melting by attenuating and reducing thermal energy transfer to
the underlying ice surface (Brock et al., 2010; Mihalcea et al.,
2008a; Nicholson and Benn, 2006; Reid et al., 2012).

Supraglacial debris surface temperature is a function of the
surface energy balance and modulates heat transfer through
the debris layer (Nakawo and Young, 1981). Therefore, debris
surface temperature can provide useful insight into the extent
to which debris properties affect energy transfer at the surface
of and through a debris layer. To date, little focus has been
given to the influence of spatial and temporal variability in sur-
face temperature across supraglacial debris layers, which can
be affected by incoming energy fluxes and debris properties
including albedo, surface roughness, sediment porosity, and
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moisture content (Evatt et al., 2015; Reznichenko et al., 2010;
Rounce et al., 2015).
Nicholson and Benn (2013) highlighted the occurrence of

spatial and temporal variability in supraglacial debris proper-
ties and their influence on surface temperature and tempera-
ture gradients through the debris layer, and therefore glacier
mass balance. However, many of the previous studies con-
cerned with the measurement of debris surface temperature
on glaciers have had limited spatial or temporal extent. For ex-
ample, Nakawo and Young (1982) measured debris surface
temperature at six plots over a 48 h period, while Nicholson
and Benn (2006) measured debris surface temperature at a
maximum of 11 plots on one glacier, but only for a maximum
period of 11 days. Steiner and Pellicciotti (2015) presented
one of the most extensive debris surface temperature data sets
to date, from 13 locations over three ablation seasons on
Lirung Glacier, Nepal. However, the study focused on describ-
ing the relationship between air temperature (Ta) and debris
surface temperature rather than exploring spatial variability
in debris surface temperature. Moreover, Steiner and
Pellicciotti (2015) did not state the thickness of the debris
layer underlying each of the sensors measuring debris surface
temperature, an important factor in the consideration of spa-
tiotemporal variability in debris surface temperature and the
influence of underlying ice (cf. Nicholson and Benn, 2006).
Consequently, the nature of and controls on debris surface
temperature variability remain poorly constrained in glacial
environments.
Conversely, ground surface temperature variability has been

relatively well studied in other cold region environments
(Gubler et al., 2011; Guglielmin, 2006; Romanovsky and
Osterkamp, 2000) where significant spatial variation arises
from localised changes in surface properties and environmental
conditions. These studies have concluded that such variability
influences the accuracy of surface energy balance modelling
in these environments. We therefore contend that such variabil-
ity may also be applicable to numerical modelling of debris-
covered ice ablation and the response of these glaciers to
climate change.
The importance of studies of debris surface temperature on

debris-covered glaciers is manifested in the recent application
of temperature-index models to debris-covered glaciers,
which determine debris surface temperature from Ta (Carenzo
et al., 2016). Furthermore, debris surface temperature has pre-
viously been used to determine debris layer thickness through
two approaches: the use of an empirical relationship between
debris surface temperature and debris layer thickness, based
on field data (Mihalcea et al., 2008a, 2008b; Minora et al.,
2015); and a surface energy balance approach also using
debris surface temperature (Foster et al., 2012; Rounce and
McKinney, 2014). Currently, neither approach has been con-
sidered robust, as the empirical approach is only applicable
for debris layers thinner than 0.5m (Mihalcea et al., 2008a)
and the energy balance approaches exclude consideration
of spatially variable debris properties such as albedo, surface
roughness or moisture content that will affect energy
exchange and therefore surface temperature at the debris
surface (Collier et al., 2014; Evatt et al., 2015; Rounce
et al., 2015). To understand the validity of these methods,
and discern how to develop them further, confirmation of
both the spatiotemporal regime of debris surface temperature
and its controls is needed.
Considering these shortcomings, here we aimed to charac-

terise the spatial and temporal variability in debris surface
temperature on a debris-covered glacier using data collected
from temperature sensors located in the debris near-surface
and distributed over the lower ablation area of Khumbu

Glacier, Nepal, in areas of thick (≥1m) debris cover. The pri-
mary objectives of the study were to: (i) examine the temporal
and spatial variation of debris surface temperature during an
ablation season; and (ii) determine the controlling factors un-
derlying variations in debris surface temperature.

Study area

Khumbu Glacier, Central Himalaya

Khumbu Glacier (27°560N, 86°560E) is ~17 km long and has an
area of ~27 km2 including the detached tributary glaciers,
Changri Nup and Changri Shar (Figure 1: Bolch et al., 2008;
Arendt et al., 2012; Vincent et al., 2016). The glacier flows from
the southwest flanks of Mount Everest at 8230m above sea
level (a.s.l.) descending to 4816ma.s.l. The equilibrium line al-
titude (ELA) is situated at around 5700ma.s.l. within the
Khumbu Icefall (Benn and Lehmkuhl, 2000; Inoue, 1977).
Khumbu Glacier is typical of many large Himalayan debris-
covered glaciers, with a low-gradient (<2°), slow-flowing
(<10m a-1) ablation area (Hambrey et al., 2008; Quincey
et al., 2009). The glacier flows at ~70m a-1 near the base of
the icefall, while the lowermost 3–4 km is thought to flow at ve-
locities below 10m a-1 (Quincey et al., 2009). Khumbu Glacier
is in a state of negative mass balance; Bolch et al. (2011) calcu-
lated a surface change of –0.56 ± 0.13m a-1 between 1956 and
2007, while King et al. (2017) calculated surface change across
the glacier’s ablation area of around –0.81 ± 0.16m a-1 between
2000 and 2014.

The ablation area is almost entirely debris covered below
5400ma.s.l., with the debris layer >2m thick in places (Gades
et al., 2000). The debris-covered ablation area displays a wide
range of clast sizes comprising of granitic and schistose litholo-
gies derived from the surrounding hillslopes (Iwata et al., 1980;
Nuimura et al., 2011). The debris-covered area is topographi-
cally complex and dynamic being characterised by an undu-
lant surface punctuated by numerous supraglacial ponds and
associated ice cliffs, which changes over seasonal and interan-
nual timescales (Nuimura et al., 2011; Watson et al., 2016). The
more stable, lowermost region of the ablation area shows the
early stages of soil formation and is partially vegetated (Kadota
et al., 2000).

Central Himalayan climate

The South Asian Summer Monsoon (hereafter, ‘the monsoon’)
dominates the climate of the Khumbu Glacier catchment, and
the Central Himalaya. The highest annual air temperatures oc-
cur between May and October (Ageta, 1976; Nayava, 1974)
and ~80% of precipitation falls between June and September
(Bookhagen and Burbank, 2010). During the onset and progres-
sion of the monsoon season, high pressure over the Tibetan Pla-
teau results in an increased temperature and pressure gradient
southward towards the Indian subcontinent (Yasunari, 1976).
This pressure gradient produces seasonally variable wind pat-
terns in the Central Himalaya region and localised synoptic
weather systems are dominated by mountain and valley winds,
which vary on sub-diurnal timescales (Bollasina et al., 2002).
As the monsoon season progresses, increases in regional pre-
cipitation frequency, air temperature, relative humidity and in-
coming longwave radiation occur, and are coupled with a
decrease in shortwave radiation attributed to increasing cloud
cover (Salerno et al., 2015; Shea et al., 2015).
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Data acquisition

Near-surface debris temperature

Temperature sensors
Near-surface debris temperature (Ts) was measured as a robust
proxy for true debris surface temperature using Maxim
iButton™ Thermochron temperature sensors (model number
DS1921G: http://datasheets.maximintegrated.com/en/ds/
DS1921G.pdf), which record instantaneous temperature from
–30 to +70°C with a manufacturer-stated accuracy of ±1.0°C.
iButton sensors were chosen due to their low cost, reliability
(Hubbart et al., 2005) and previous successful applications in
a number of environmental settings including permafrost land-
scapes (Gubler et al., 2011). Gemini Tiny Tag™ Plus2 data
loggers (model number TGP-4520) with encapsulated thermis-
tor probes were used for sensor calibration prior to fieldwork
and have a manufacturer–stated accuracy of ±0.4°C. The
iButtons were placed in waterproof polycarbonate plastic con-
tainers to protect from water damage following the method of
Gubler et al. (2011). The effect of polycarbonate plastic water-
proof casing on temperatures recorded was tested in laboratory
conditions prior to fieldwork. In laboratory conditions, temper-
atures recorded by contained and uncontained iButtons in the
same environments varied by <2°C, and more typically by
≤0.5°C, which is within the manufacturer’s stated accuracy
(see Supplementary information; Figure S1).

Field experiment design
Near-surface debris temperature (Ts) was measured at hourly
intervals at 16 sites between the 21 May and 29 July 2014
(Day of Year (DOY) 141 and 210). The first 48 h of each Ts
timeseries were discarded to allow the sensors to equilibrate
with local conditions. For all sites, iButtons were placed in
the immediate near-surface of the debris layer, typically
between 0.01 and 0.05m below the surface, using a single
layer of clasts of representative size for each site from the

immediate surrounding area as a shield from direct solar radia-
tion as is common practice in ground surface temperature
studies (Apaloo et al., 2012; Gisnås et al., 2014). Using a hand-
held Garmin 64 GPS, the iButton temperature sensors were dis-
tributed across the lowermost 2 km2 of Khumbu Glacier’s
ablation area in a gridded pattern (Figure 1(c)). The elevation
of sensor sites varied across the study area by 49m between
4903ma.s.l. and 4952ma.s.l. (±3m due to vertical accuracy
of the handheld GPS) and each site had a unique combination
of site characteristics, varying in slope, aspect, elevation, clast
size, sorting, roundness, and clast lithology (Table I; see also
the section ‘Ancillary data’).

To allow examination of the influence of additional debris
layer properties and incoming energy fluxes on Ts other than
debris layer thickness, all iButton temperature sensors were
installed in locations where the debris layer had a thickness
of ≥1m where the effect of cold propagation from underlying
ice on Ts is insignificant (Foster et al., 2012; Nicholson and
Benn, 2006). Debris thickness was established by excavating
the debris layer adjacent to the iButton location to a depth of
1m; if no ice was present, debris thickness was reported as
>1m. At each site, a textural description of the debris was
made, and digital photographs were taken before and after
emplacement of the sensors (Figure 2). The iButton tempera-
ture sensors at Sites 7 to 13 were placed within a 90 ×
90m area to investigate variability in Ts across an area typical
of the resolution of remotely sensed thermal satellite data
(e.g. ASTER) often used for supraglacial debris thickness
mapping.

On retrieval of the iButton temperature sensors at the end of
the monsoon season, comparison with the initial site photo-
graphs was used to evaluate any surface change at each site.
For all 16 sites reported, the debris showed little or no disrup-
tion after sensor installation, and none of the temperature
sensors were exposed at the time of collection. A further 42
iButton sensors were installed on the glacier surface but, due
to topographic change during the monsoon season, they could
neither be located or retrieved.

Figure 1. Study site location: (a) in a regional context; (b) in relation to Mt Everest, displaying the extent of Khumbu Glacier and location of the me-
teorological stations (Changri Nup and Pyramid) used in this study, including the extent of Changri Nup and Changri Shar (reproduced from Vincent
et al., 2016); (c) the study area and locations of temperature sensors, with corresponding temperature sensor ID, and on-glacier air temperature loca-
tion (TaG). [Colour figure can be viewed at wileyonlinelibrary.com]
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Despite following standard methods for measuring ground
surface temperature (Apaloo et al., 2012; Gisnås et al., 2014),
placing clasts on the contained iButtons to shield them from di-
rect incoming shortwave radiation created an additional source
of uncertainty in the 16 retrieved Ts data. Consequently, our
measurements of Ts do not necessarily reflect absolute debris
surface temperature (Conway and Rasmussen, 2000) as the em-
placement of sensors beneath clasts may mean that the sensors
record temperature below rather than at the debris surface.
Without detailed knowledge of the specific thermal properties
of the debris at each site, more accurate assessment of the un-
certainty between near-surface and true surface temperature
is challenging. However, here we assumed our Ts data were
sound proxies for absolute Ts. To identify any data which were
likely to be less representative of true surface temperature, un-
certainty at each site was estimated using the diurnally-
averaged temperature gradient calculated through a debris
layer by Nicholson and Benn (2006) from data collected on

nearby Ngozumpa Glacier of –10.5°C m-1, and mean clast size
for each site. These uncertainties ranged from 0.03°C to 4.39°C
(Table I). Temperature metrics (mean Ts, maximum Ts, mini-
mum Ts and Ts amplitude) were also regressed against esti-
mated sensor depth. No significant relationship was identified
meaning Ts variability between sites cannot be attributed di-
rectly to sensor depth. Consequently, sites at which the calcu-
lated near-surface to surface temperature difference was
greater than 0.5°C (the assessed uncertainty in our iButton sen-
sor data) were considered to be less reliable in reflecting abso-
lute surface temperature (Sites 1, 2, 9, 11 and 13), and were
therefore either noted or omitted from subsequent analyses to
avoid potential influence of misrepresentative data.

Mean clast size was considered a proxy for sensor burial
depth, although it is probable that clasts covering the sensors
were smaller than the mean clast size as a bias towards the
smaller clasts would have occurred on emplacement. It is
therefore expected the uncertainty calculated using mean clast

Table I. Topographic and debris characteristics for iButton temperature sensor sites. Mean Ts uncertainty calculated for the near-surface placement
of temperature sensors under representative clasts at each location. Rows highlighted in grey are timeseries identified to be less representative of Ts

Sensor ID
Elevation
(m a.s.l.) Debris description

Mean clast
size (m)

Lithology
(% granite)

Slope
(°)

Aspect
(°) Curvature

Roughness
(× 10-2; m)

Mean Ts
uncertainty (°C)

1 4949 Large cobbles with medium sand matrix 0.058 100 10 202 -0.65 0.05 0.87
2 4952 Large cobbles with medium sand matrix 0.099 100 9 100 1.38 0.09 1.49

3 4945
Small to large cobbles with medium to
coarse sand matrix 0.028 50 5 132 -0.82 0.19 0.42

4 4948
Small to large cobbles with coarse sand
matrix 0.020 40 2 321 -1.46 0.09 0.3

5 4947
Large cobbles with medium to coarse
sand matrix 0.029 50 5 285 -1.22 0.14 0.44

6 4952
Medium grained sand with < 5 %
medium granite pebbles 0.002 100 3 173 -1.21 0.04 0.03

7 4949
Medium pebbles to large cobbles with
medium sand matrix 0.020 50 5 224 -0.80 0.20 0.30

8 4903
Very coarse pebbles with medium sand
matrix 0.010 95 12 290 0.17 0.04 0.15

9 4938
Small cobbles to large boulders with
medium to coarse sand matrix 2.930 100 6 86 0.05 0.10 4.39

10 4938
Coarse pebbles to large boulders with
consolidated medium sand matrix 0.027 50 6 266 0.88 0.04 0.41

11 4946
Small to large cobbles with consolidated
medium to coarse sand matrix 0.055 70 5 103 0.57 0.11 0.83

12 4942
Small to large cobbles with medium to
coarse sand matrix 0.016 60 6 125 0.49 0.03 0.24

13 4935
Small cobbles to large boulders with
coarse sandy matrix 2.890 90 6 170 0.33 0.06 4.34

14 4937
Small cobbles to small boulders with
coarse matrix 0.027 60 5 131 -1.15 0.30 0.41

15 4950
Very coarse pebbles to large cobbles
with consolidated medium matrix 0.042 50 7 206 0.03 0.20 0.32

16 4949
Small cobbles to large boulders with
medium to coarse sand matrix 0.030 50 8 274 0.11 0.15 0.30

Figure 2. Site photos before installation of temperature sensors: (a) Site 11: consolidated medium sand with medium pebbles; (b) Site 3: small cob-
bles to large boulders with a medium to coarse sand matrix; and (c) Site 15: small granite and schist cobbles to small boulders with course sand to
medium pebble matrix. [Colour figure can be viewed at wileyonlinelibrary.com]
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size overestimates burial depth, and consequently the uncer-
tainty in temperature with depth is less than estimated. How-
ever, this method of uncertainty calculation does not include
consideration of diurnal variability in temperature gradient
through the debris layers, which may cause mean temperature
differences calculated here to be larger at certain times of day
(as observed by Nicholson and Benn, 2006). The influence of
this diurnal variability on results is discussed in the section
‘Spatial variability in near-surface debris temperature’.

Ancillary data

Clast size and lithology
Clast size at each site was estimated from 18.0 Mpix digital
site photographs acquired using a Canon 550D camera and
processed in ImageJ, v. 1.49 (Rasband, 2008), following the
method outlined by Igathinathane et al. (2009). At all sites,
images covered approximately 1m2 and a known scale in
each photograph was used to define the metre: pixel ratio.
Clasts were selected using a random sampling method. For
each site photo, every clast identified was assigned a number,
and a random number generator was used to subsample 25
clasts for measurement within ImageJ. Assuming from the 2D
imagery that the long and intermediate clast axes were visible,
the intermediate axis length was retrieved and a mean repre-
sentative clast size for each site calculated (Table I). Where
the intermediate axis of a clast was larger than the photo (Sites
9 and 13) the maximum length measurable from the scaled
image was used.
Clast lithology was determined in the field using clast size,

colour and mineral composition. Two major lithologies were
identified; granite and schist. The dominant lithology at each
site (Table I) was determined by manually classifying the lithol-
ogy of all clasts in each of the site photographs in ImageJ and
then calculating the percentage of granite for each site (Solano
et al., 2016).

Local meteorological data
Meteorological data were collected at four locations: on the
debris-covered glacier surface of Khumbu Glacier at an eleva-
tion of 4950ma.s.l. (Figure 1(c)); at the Pyramid Observatory
(Figure 1(b); 27°57032“ N, 86°48’47” E; 5050ma.s.l.) ~1 km
to the northwest of the study area; an automatic weather station
on a debris-covered area of the adjacent Changri Nup Glacier
(Figure 1b; 27°58’55”N, 86°45’52.92” E; 5363ma.s.l.); and at
an automatic weather station 5 km down-valley from the termi-
nus of Khumbu Glacier at Pheriche (27°53’24“ N, 86°49’12” E;
4260ma.s.l.).
Off-glacier air temperature (TaP) was recorded at hourly inter-

vals 2m above the ground surface, using an artificially venti-
lated LSI-Lastem DMA 570 sensor (accuracy ±0.2°C) at the
Pyramid Observatory. On-glacier air temperature (TaG) was
recorded at 30min intervals in a location with schistose debris
lithology (Figure 1(c)) using a Gemini Tiny Tag™ Plus2 data log-
ger (model number TGP–4520) and thermistor probe with a
stated accuracy of ±0.2°C. The on-glacier thermistor probe
was placed in a naturally aspirated radiation shield mounted
on a tripod 1m above the debris surface. TaG was resampled
to give hourly values corresponding to the resolution of the Ts
data. Incoming shortwave (SWin) and longwave (LWin) radia-
tion (Kipp&Zonen CNR4 sensor, 1.0m above debris surface,
stated accuracy ±3%) and relative humidity data (RH: Vaisala
HMP45C sensor, 2.15m above debris surface, stated accuracy
±2%) were recorded at an automatic weather station at the
Changri Nup Glacier. Meteorological data from the Changri
Nup station were collected at 30min intervals and resampled

to 1 h resolution using an hourly mean algorithm. Precipitation
(P) was measured using a Geonor T-200 all-weather rain gauge
at the Pheriche site where summer precipitation predominantly
occurs as rainfall; these data were corrected for undercatch of
solid precipitation using air temperature and wind speed
(Sherpa et al., 2017) and the resultant corrected data have an
estimated accuracy of ±15%.

Local topography
The digital elevation model (DEM) from which slope and
aspect were extracted for each sensor site was derived from a
series of Surface Extraction from Triangulated Irregular Network
Searchspace Minimization (SETSM) DEMs sourced from the
Polar Geospatial Centre (University of Minnesota) at 8m reso-
lution, collected between 8 February and 4 May 2015 (Noh
and Howat, 2015). The DEM correction method is detailed in
King et al. (2017). Due to the complex and dynamic nature of
the glacier surface, topographic parameters at each iButton site
were estimated a posteriori from the DEM and are presented
here as a generalised local proxies rather than absolute, site-
specific values (Table I). Slope (in degrees) and terrain curva-
ture were extracted for the pixels corresponding to the sensor
locations using ESRI’s ArcMap v10.1 Spatial Analyst toolbox.
Relative terrain roughness was derived using the ‘vector rug-
gedness measurement toolbox’, which considers slope and
aspect variability for the nine pixels on and around each site
location (Sappington et al., 2007). Curvature and roughness
metrics both ranged between –1 and +1. In situ observations
of the local aspect of each iButton site, measured relative to
north, were collected in the field using a magnetic compass
with an uncertainty of ± 2°.

Results

Near-surface debris temperature

Daily mean near-surface debris temperature (Ts) for all 16 sites
typically exceeded air temperatures (TaP and TaG) throughout
the monsoon period (Figure 3(a)). Mean Ts for the period of
observations at the 16 sites ranged from 7.0 to 11.6°C. Ts
remained close to 0°C between DOY 146 and 152, which
was coincident with heavy snowfall in Khumbu valley and
the ensuing persistence of a ~0.4m snow layer on the glacier
surface. Following DOY 152, the snow cover melted, with the
rate and timing of the return to Ts >5°C at each site highly
varied. Subsequently, from DOY 156 onwards, all Ts
timeseries exhibited a broadly similar quasi-parallel pattern
of change until the end of the observation period. Ts appeared
to follow a generally rising trend from DOY 156–166, and
then a seasonal decrease of approximately –0.1°C d-1 until
DOY 210. However, these seasonal rising and falling trends
were superimposed with 5 to 8 day cycles in Ts, potentially
reflecting synoptic variations, and intermittent, shorter (1–
3 day) periods with lowered Ts. At all 16 sites, Ts exhibited
marked diurnal variation (Figure 3(b)). Zero amplitudes
persisted during the brief period of snow cover (DOY 147–
151), the highest daily amplitudes of up to 47°C were found
before DOY 170, and progressively declining amplitudes
(reducing to a mean of 15°C) characterised the period follow-
ing DOY 170. Over the monsoon season, the contrasts in Ts
between the sites were greatest at the start of our observations
and between DOY 153 and 170, and declined thereafter, with
the least difference between sites seen during the short periods
of reduced Ts.

2702 M. J. GIBSON ET AL.

© 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. Earth Surf. Process. Landforms, Vol. 43, 2698–2714 (2018)



Meteorology

Mean daily on- and off-glacier air temperature (TaG and TaP)
followed a similar, but subdued, pattern to the Ts data (Fig-
ure 3(a)). Air temperature increases of the order of 3°C occurred
over the entire study period in both TaP and TaG. The seasonal
pattern in TaG and TaP was overlain by a subtle synoptic period-
icity with a 5–8 day recurrence. The diurnal amplitudes seen in
the Ta series were less than those observed for Ts. Daily varia-
tion in amplitude ranged from 2.1 to 10.4°C for TaP, and from
5.4 to 20.2°C for TaG. In both Ta records, diurnal amplitude
was greatest during the period of snow cover, and showed a
general reduction over the course of the observation period al-
beit punctuated by short (1–3 day) variability. Off-glacier TaP
was consistently lower than on-glacier TaG by a mean differ-
ence of 5°C between DOY 145 and 190, and 3°C from DOY
190 onwards.
Mean daily SWin displayed an overall seasonal decrease

from 405Wm2 to ~217Wm2 over the observation period, with
short-term (<5 days) variability of the order of 200Wm2 over
the study period (Figure 3(c)). Between DOY 148 and 149,
SWin was lowest at 123Wm2, which corresponded to snowfall
and a coincident decrease in Ts to 0°C. In contrast, mean daily
LWin increased from 253Wm2 to 320Wm2 from DOY 143 to
210. Total net incoming radiation (NRin) was primarily influ-
enced by the pattern of SWin. All three series of radiative energy
displayed synoptic (3–8 days) and short-term (1–3 day) variabil-
ity. Relative humidity displayed a seasonally increasing trend
from around 60% on DOY 143 to around 95% by the end of
the observation period; this seasonal change was superimposed
with shorter-term variability including a brief increase in rela-
tive humidity (to >80%) between DOY 146 and 150, aligned
with the snowfall and snow cover event (Figure 3(c)). During
the snowfall event, total daily precipitation peaked on DOY

150 at 34mm, but subsequently remained low until DOY 170
and then, as the monsoon progressed further, the magnitude
and frequency of precipitation events increased (Figure 3(d)).
Increases in total daily precipitation were typically concurrent
with decreased SWin and increased LWin and relative humidity.

Timeseries Analyses

A Kolmgorov-Smirnov normality test showed that none of the
temperature timeseries (Ts or Ta) were normally distributed at
95% confidence level. Therefore, non-parametric analyses
were required to interrogate these data further.

Comparison of timeseries

The overall average of mean and standard deviation of Ts for all
timeseries was 9.2 ±1.3°C, or 9.6 ±1.2°C if the data considered
less representative of Ts were excluded. Analytical tests indi-
cated that the mean Ts timeseries was highly correlated with
both TaP (Spearman’s r = 0.85, P < 0.05) and TaG (r = 0.78, P
< 0.05) but was significantly higher than both the two Ta
timeseries.

The broad similarity in the individual Ts timeseries
(Figure 3(a), (b); Figure 4) was highlighted by strong and signif-
icant correlation coefficients for the majority of site pairs
(Table II). The generally high correlation (r ≥ 0.88) between
timeseries indicated that all sites exhibited a broadly similar
general pattern in both periodicity and seasonal trend. How-
ever, further comparison using a Kruskal–Wallis test (which
tests whether samples originate from the same distribution)
showed the Ts populations were significantly different (χ2 =
308.9, or χ2 = 201.1 excluding the timeseries that were less
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Figure 3. (a) Mean diurnal Ts for all temperature sensor sites, alongside on- and off-glacier air temperature timeseries, (b) daily amplitude in Ts at all
sites; (c) mean daily incoming shortwave, longwave and total radiation (SWin, LWin and NRin, respectively); (d) total daily precipitation and mean daily
relative humidity across the study period.
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representative of Ts, both P<< 0.05). To explore the underlying
nature and causes for these differences, we: (i) examined the
temporal variability in the Ts series; (ii) conducted a more de-
tailed assessment of the spatial differences between timeseries;
and (iii) explored any associations between Ts and the local
meteorological and site-specific data. Each of these three sets
of analyses are detailed in the following sections.

Temporal variability in near-surface debris
temperature

The similarity in the daily Ts means and their seasonal pattern,
with the exception of the period of snowfall (DOY 146–152),
was underlain by a marked reduction in the daily amplitude

of variability in Ts at all sites over the study period (Figure 3(b)).
To test this observation further, regression analysis was
employed, with omission of data from the snowfall period. Sites
1, 4, 7, 10, 12 and 16 showed a significant (P < 0.05) decrease
in daily mean Ts over the observation period, while all other
sites showed no such temporal trend (Table III). However, all
sites showed a statistically significant increase in daily mini-
mum Ts during the monsoon season, averaging 0.08°C d-1;
and with the exception of Site 13, all sites also showed a signif-
icant decrease in daily maximum temperature (mean –0.19°C
d-1). The concomitant increase in minimum and decreasing
maximum Ts between timeseries was reinforced by the signifi-
cant decreasing trend in daily amplitude by a mean of –
0.26°C d-1 over the monsoon period at all 16 sites (Table III).
These changes were in contrast to air temperature trends,
where daily minimum and mean TaG increased by 0.1°C d-1

and 0.04°C d-1. No significant trend in mean daily maximum
TaG, was present, although daily amplitudes decreased by –
0.1°C d-1.

To further examine these seasonal trends in Ts amplitude, and
to ascertain if there was systematic change in the diurnal pat-
tern of Ts fluctuation, we adopted the approach commonly
used to analyse synoptic climatology (Brazel et al., 1992; Davis
and Kalkstein, 1990), hydrological timeseries (Hannah et al.,
2000; Irvine-Fynn et al., 2005; Swift et al., 2005) and ground
surface temperature (Lundquist and Cayan, 2007). These previ-
ous published analyses used principal components analysis
(PCA) to classify patterns of change or modes of variation in
diurnally fluctuating timeseries. Here, rather than analyse all
16 Ts timeseries, and given the high correlation between all
sites (excluding timeseries less representative of Ts) (Table II),
a ‘representative’ timeseries from the data set was used. The
most representative Ts timeseries was identified using a Nash-
Sutcliffe efficiency coefficient (E) typically used to determine
the fit of modelled to observed data (Krause et al., 2005;
Legates and McCabe, 1999). E was calculated for each Ts pair
and then summed and averaged for each individual site
(Table II). The timeseries with the highest similarity to all other
Ts series was from Site 14 (∑E = 12.4, mean E = 0.83), and
was therefore considered representative.
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Figure 4. Box plots of mean, interquartile range, maximum and min-
imum near-surface debris temperature for each of the timeseries. Red
box plots are the timeseries identified as timeseries less representative
of Ts, greyed plots are timeseries identified as significantly different from
the statistically representative Site 14. Outliers are considered to be
values outside of the range between the 25th and 75th percentiles.
[Colour figure can be viewed at wileyonlinelibrary.com]

Table II. A matrix of Spearman rank correlation coefficient (r) and Nash–Sutcliffe efficiency coefficient (E) for each pair of raw (hourly) Ts timeseries.
All correlations displayed P < 0.05. The greyed rows (Sites 1, 2, 9, 11 and 13) are those identified as being less representative of debris surface
temperature due to site clast size. Correlation between each raw Ts series and the mean Ts is shown, along with the sum and average E for each

Spearman’s correlation coefficient (r)

Sensor ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Mean Ts

Ef
fic

ie
nc

y
cr
ite

ri
o
n
ðE
Þ

1 0.96 0.96 0.98 0.97 0.97 0.97 0.92 0.94 0.96 0.95 0.97 0.96 0.97 0.94 0.98 0.98
2 0.30 0.96 0.95 0.97 0.94 0.95 0.88 0.97 0.95 0.97 0.96 0.96 0.98 0.98 0.97 0.97
3 0.93 0.69 0.97 0.94 0.97 0.98 0.95 0.92 0.98 0.99 0.98 0.92 0.99 0.96 0.97 0.99
4 0.91 0.52 0.92 0.95 0.97 0.97 0.95 0.91 0.97 0.96 0.98 0.94 0.97 0.93 0.97 0.99
5 0.93 0.80 0.84 0.63 0.95 0.96 0.88 0.95 0.94 0.93 0.96 0.94 0.96 0.96 0.98 0.96
6 0.80 0.81 0.75 0.39 0.87 0.99 0.95 0.9 0.98 0.96 0.99 0.9 0.97 0.94 0.97 0.99
7 0.91 0.63 0.94 0.91 0.86 0.82 0.95 0.91 0.98 0.96 0.99 0.92 0.98 0.95 0.98 0.99
8 0.82 0.57 0.84 0.75 0.77 0.80 0.79 0.84 0.96 0.93 0.95 0.86 0.93 0.89 0.91 0.96
9 -0.12 0.65 -0.17 -0.36 -0.42 -0.04 -0.28 -0.19 0.92 0.93 0.92 0.95 0.94 0.94 0.93 0.93

10 0.92 0.72 0.94 0.81 0.90 0.89 0.87 0.87 0.53 0.97 0.99 0.92 0.98 0.95 0.97 0.99
11 0.66 0.90 0.68 0.16 0.77 0.84 0.35 0.45 0.70 0.75 0.97 0.93 0.98 0.97 0.96 0.98
12 0.90 0.66 0.94 0.91 0.86 0.80 0.96 0.81 0.44 0.93 0.77 0.93 0.99 0.96 0.98 1.00

13 0.37 0.86 0.20 -0.48 0.58 0.60 -0.33 -0.11 0.75 0.35 0.81 -0.20 0.94 0.92 0.94 0.94
14 0.87 0.84 0.90 0.66 0.91 0.88 0.80 0.66 0.60 0.90 0.91 0.85 0.80 0.98 0.98 0.99
15 0.65 0.92 0.65 0.13 0.83 0.84 0.40 0.32 0.71 0.70 0.92 0.47 0.80 0.89 0.97 0.96
16 0.90 0.65 0.94 0.89 0.86 0.78 0.92 0.70 0.41 0.88 0.75 0.94 0.64 0.91 0.78 0.99
∑E 10.75 10.52 10.99 7.75 10.99 10.83 9.55 8.85 3.21 11.96 10.42 11.04 5.64 12.38 10.01 11.95
Mean E 0.72 0.7 0.73 0.52 0.73 0.72 0.64 0.59 0.21 0.8 0.69 0.74 0.38 0.83 0.67 0.8
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Debris temperature data from Site 14 were divided into
individual diurnal periods of 24 measurements commencing
at midnight (00:00). Diurnal periods in which Ts was consis-
tently 0°C (DOY 146 to 152) due to lying snow cover were
omitted from the analysis. The resultant 61 diurnal data series
were reduced and simplified into a number of ‘modes’ of
variation, or principal components (PCs), using PCA without
rotation. The first two PCs provided the primary modes of
diurnal variation in Ts (Figure 5(a)). PC1 accounted for 81.3%
of the variance and PC2 for 8.8%. The remaining PCs were
discounted as ‘noise’ because they represented less than 10%
of the total variance in the data set (Hannah et al., 2000;
Irvine-Fynn et al., 2005). Although absolute loadings were
relatively weak (<0.5) for both PCs, a total of 30 days were
described best by PC1 and 19days associated with PC2. A total
of 11 days were very weakly related to either PC1 or PC2
(absolute loadings of < 0.09), and were considered to have
an undefined diurnal Ts cycle (Figure 5(b), (c)). Of note were
the 11 days described by negative loadings on PC2, which
contrasted with the consistently positive loadings for PC1, and
were suggestive of lagged relationships between the mode of
variation and true diurnal Ts pattern. Days associated with
PC1 predominantly occurred during the former half of the

observation period (76% before DOY 176), while 78% of days
associated with PC2 and 90% of days with an undefined cycle
both occurred following DOY 176 (Figure 5(c)).

The contrast between the days assigned to the two main PCs
and the undefined diurnal cycles were illustrated through a
comparison of descriptive statistics (Table IV). The mean diur-
nal Ts was greatest for those days defined by PC1 at 10.9°C,
while the mean maximum temperature and diurnal amplitude
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Figure 5. (a) The two modes of variability in Ts for Site 14, described by PC1 and PC2; (b) plot to identify days described by PCs 1 or 2, filled circles
identify days with a negative or lagged relationship to PC2 and greyed circles mark days not described by either dominant PC; (c) Ts timeseries for Site
14 highlighting each day’s mode of variation.

Table III. Results of regression analyses to identify seasonal trends in minimum, mean, maximum Ts and the associated daily amplitude. Seasonal
trend slope (b, in °C d-1) is given with the associated P-value, and statistically significant slopes are indicated in italic. The greyed rows are those
identified as timeseries less representative of Ts

Daily minimum Ts Daily mean Ts Daily maximum Ts Daily amplitude Ts

Sensor ID b p b p b p b p

1 0.06 << 0.05 -0.03 < 0.03 -0.22 << 0.05 -0.28 << 0.05
2 0.07 << 0.05 -0.01 0.53 -0.11 << 0.05 -0.18 << 0.05

3 0.08 << 0.05 -0.03 0.06 -0.22 << 0.05 -0.30 << 0.05
4 0.08 << 0.05 -0.05 < 0.05 -0.28 << 0.05 -0.36 << 0.05
5 0.07 << 0.05 -0.02 0.07 -0.20 << 0.05 -0.27 << 0.05
6 0.08 << 0.05 -0.01 0.60 -0.19 << 0.05 -0.27 << 0.05
7 0.10 << 0.05 -0.06 << 0.05 -0.37 << 0.05 -0.47 << 0.05
8 0.10 << 0.05 -0.01 0.55 -0.17 << 0.05 -0.27 << 0.05
9 0.03 << 0.05 0.00 0.62 -0.09 << 0.05 -0.12 << 0.05
10 0.06 << 0.05 -0.04 < 0.05 -0.18 << 0.05 -0.24 << 0.05
11 0.08 << 0.05 0.00 0.80 -0.10 < 0.05 -0.18 << 0.05
12 0.10 << 0.05 -0.04 < 0.05 -0.26 << 0.05 -0.36 << 0.05
13 0.05 << 0.05 -0.01 0.61 -0.03 0.11 -0.09 << 0.05

14 0.08 << 0.05 -0.03 0.06 -0.18 << 0.05 -0.27 << 0.05
15 0.08 << 0.05 0.00 0.92 -0.11 < 0.05 -0.19 << 0.05
16 0.08 << 0.05 -0.05 < 0.05 -0.28 << 0.05 -0.36 << 0.05
Mean 0.08 - -0.02 - -0.19 - -0.26 -

Table IV. Descriptive statistics for groups of days corresponding to
each of the key principal components (PCs) and undefined diurnal
cycles, identified through PCA. Standard deviations are given in
brackets

Descriptor PC 1 PC 2 Undefined

Number of days
represented by PC 30 19 11

Mean daily Ts (°C) 10.9 (1.9) 9.5 (1.8) 7.9 (1.5)
Mean maximum Ts (°C) 29.8 (3.6) 23.3 (6.0) 16.8 (4.4)
Mean minimum Ts (°C) 0.9 (2.5) 3.3 (1.4) 3.4 (1.4)
Mean Ts amplitude (°C) 28.9 (4.1) 20.1 (6.7) 13.5 (4.1)
Mean time of peak Ts (h) 13:06 (±1:12) 13:24 (±1:06) 13:12 (±1:42)
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was highest compared with days with an undefined Ts variation
and those associated with PC2. Days that were best described
by PC2 exhibited relatively low mean daily amplitude, and
mean and maximum diurnal temperatures. The 11 days that
were less well defined by PCs had lowest mean, maximum
and amplitude in Ts. Days described by PC1 were characterised
by a lower mean minimum Ts (0.9°C) while all other days expe-
rienced similar minimum values of Ts. The mean time at which
Ts peaked for each group of days associated with the PCs varied
by less than one hour (Table IV).
Subtle variation in diurnal patterns was present in the Ts

timeseries. There was a clear progressive shift during the
monsoon season towards Ts exhibiting a lower daily mean,
maximum and amplitude, but with a seasonal increase in the
minimum Ts. The combination of E and PCA analyses explored
this further, showing that all sites displayed a regular diurnal pat-
tern of Ts during the former part of the monsoon, while there was
a systematic shift to more variable and delayed diurnal cycles in
the latter half of the observation period. These shifts in magni-
tude of Ts were aligned with the observed seasonal changes in
meteorological conditions, specifically with increased precipi-
tation, relative humidity and LWin from around DOY 180.

Spatial variability in debris surface temperature

With evidence of spatial variability between sites most clearly
evidenced by the differences in diurnal amplitude between
the Ts timeseries, further exploration of the spatial contrasts
was undertaken. Following the identification of significant dif-
ference by a Kruskal–Wallace test, a signed rank pairwise
Wilcoxon test provided further detail on spatial variations by
comparing pairs of timeseries populations. The representative
series from Site 14 was the most similar to all other timeseries,
being statistically dissimilar to only Sites 1, 3, 4 and 16
(Table II). Removal of the timeseries considered as less repre-
sentative of Ts made relatively minimal difference to the analy-
sis, suggesting that even the outlying data (Sites 2, 9, 11, 13)
were broadly similar to the remaining Ts despite the uncertainty
arising from varying depth of sensors. A further set of Wilcoxon
tests were undertaken on the positively skewed distribution se-
ries of maximum, minimum and mean diurnal amplitude of Ts.
The results of the site comparison data showed 86% and 89%
of site pairs had significantly different diurnal amplitudes and

maximum Ts from one another (P < 0.05), while 39% of the site
pairs displayed significantly different minimum Ts (P < 0.05).

Daily mean minimum Ts for all timeseries varied by –1°C to –
4°C between sites, while daily mean maximum Ts varied
between 10°C and 17°C. While non-parametric correlation
coefficients (r) suggested minimal variability between sites with
86% of correlations displaying r ≥0.90 (Table II), such correla-
tions only reveal similarity in timeseries patterns rather than
magnitude (Borradaile, 2013). Consequently, notwithstanding
the sensitivity of the efficiency criterion (Krause et al., 2005),
E was used to compare the strength of each relationship with
regards to similarity in both value and pattern for the Ts
timeseries (Table II). The E values displayed high variability
and ranged from –0.42 (Sites 5 and 9) to 0.96 (Sites 7 and
12). The timeseries less representative of Ts displayed predom-
inantly lower E values, particularly in their relationships with
each other. Spatial variability between the sites appeared rela-
tively small with 84% of E values ≥0.75, suggesting a good sim-
ilarity in pattern and magnitude between pairs of Ts timeseries.
For sites located in close proximity to one another (Sites 7–13,
omitting those that were less representative of Ts) all the site
pairs displayed r ≥0.87 and 80% of these site pairs displayed
an E value ≥0.81. However, the contrast in E between
timeseries suggests subtle spatial variability in Ts did exist
between study sites. The correlations between Ts remained
high (>0.87) even when they were detrended to remove diur-
nal cycles (following Kristoufek, 2014). This further shows that
Ts exhibited similar short-term and seasonal variations despite
varying sensor locations.

Cross-correlation between the detrended timeseries was
used to identify any lag between Ts (Table V). Lag times were
present for Sites 1 and 2 and a number of other different sites,
and with both Sites 8 and 15 for a number of sites. All sites
lagged the timeseries at Site 8 by 1 or 2 h, while Site 15
displayed a 1 h lag with 7 sites. Site 8 and 15 were located un-
der 0.010m and 0.042m of debris, neither of which are sites
where mean clast size, and therefore burial depth, were
greatest, and neither sites had been identified as less represen-
tative of Ts or statistically dissimilar. With regards to the site
characteristics, Site 8 was placed in the most northerly aspect
and lowest elevation of all iButton locations, while Site 15
had one of the highest elevations and roughness metrics
(Table II). Despite a broad statistical similarity in the Ts data,
there were a number of contrasts in the magnitude, distribution

Table V. Correlation coefficient and lag time for pairs of detrended Ts timeseries for which the persistent 24-h diurnal cycles have been removed. The
grey rows are those identified as being less representative of debris surface temperature due to site clast size

Correlation coefficient (r)

Ts1 Ts2 Ts3 Ts4 Ts5 Ts6 Ts7 Ts8 Ts9 Ts10 Ts11 Ts12 Ts13 Ts14 Ts15 Ts16

Ts1 0.95 0.98 0.99 0.99 0.98 0.98 0.94 0.95 0.98 0.96 0.98 0.93 -0.97 0.95 0.97
Ts2 -1 0.96 0.94 0.96 0.93 0.93 0.84 0.98 0.94 0.98 0.96 0.97 0.98 0.99 0.97
Ts3 0 0 0.99 0.98 0.99 0.98 0.94 0.94 0.99 0.98 0.99 0.92 0.98 0.97 0.98
Ts4 0 1 0 0.98 0.99 0.98 0.95 0.94 0.99 0.96 0.98 0.92 0.97 0.94 0.97
Ts5 0 0 0 0 0.98 0.98 0.92 0.97 0.98 0.97 0.98 0.94 0.98 0.97 0.98
Ts6 0 1 0 0 0 0.99 0.96 0.92 0.99 0.95 0.98 0.89 0.96 0.94 0.97
Ts7 0 1 0 0 0 0 0.95 0.92 0.99 0.96 0.99 0.87 0.97 0.95 0.98
Ts8 1 2 1 1 1 1 1 0.85 0.96 0.90 0.94 0.82 0.89 0.86 0.90
Ts9 0 0 0 -1 0 0 0 -1 0.93 0.96 0.94 0.97 0.96 0.96 0.95
Ts10 0 1 0 0 0 0 0 -1 0 0.97 0.99 0.91 0.97 0.95 0.97
Ts11 0 0 0 0 0 0 0 -1 0 0 0.98 0.95 0.99 0.98 0.97
Ts12 0 0 0 0 0 0 0 -1 0 0 0 0.92 0.99 0.97 0.99
Ts13 0 0 0 0 0 0 0 -1 0 0 0 0 0.94 0.94 0.93
Ts14 0 0 0 0 0 0 0 -1 0 0 0 0 0 0.99 0.99
Ts15 -1 0 -1 -1 -1 -1 -1 -2 0 -1 0 0 0 0 0.98
Ts16 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

Lag time (hours)
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and timing between timeseries. The analysis of the Ts data sug-
gested subtle spatial variability in Ts was primarily manifested
in variability in diurnal Ts amplitude, which was principally
controlled by variability in maximum Ts between sites.

Controls on temporal and spatial variability in
near-surface debris temperature

To investigate whether meteorological conditions and site char-
acteristics were associated with controlling Ts, and particularly
maximum Ts, assessment of the influence of meteorological
drives and site-specific traits was undertaken using multivariate
analysis techniques.

Controls on temporal variability in near-surface debris
temperature
Controls on temporal variability in Ts over the monsoon season
were investigated for all hourly timeseries, omitting the period
of sustained 0°C in Ts in which the debris surface was snow
covered. Analysis was undertaken using stepwise multilinear
regression (SMR), with meteorological timeseries as predictor
variables, to determine the control and combined control of
meteorological variables on Ts. SMR iteratively adds and
removes variables included in the model based on their statisti-
cal significance in regression (Draper and Smith, 1998), there-
fore enabling the relative importance of meteorological
variables to be identified. This method is superior to simply
regressing individual variables against Ts as it can give insight
into the extent to which different combinations of meteorolog-
ical variables control Ts. Assessment of the meteorological data
demonstrated that none of the timeseries were normally distrib-
uted, as for all Ts and Ta data. Consequently, to transform the Ts
and meteorological variables to more approximately normal
distributions, a simple natural logarithmic conversion was
applied. The multivariate models described *Ts (where * re-
flects a log-transform) as a function of *SWin, *LWin, *TaG,
*RH (relative humidity) and *P (precipitation). The output from
the primary SMR is detailed in Table VI highlighting the relative
strength of the relationships between Ts and each of the meteo-
rological variables between sites. *TaG was ranked as the most
influential predictor of *Ts for all sites, with coefficients of deter-
mination between R2 = 0.44 and R2 = 0.67. The addition of
*SWin, *LWin, *RH and *P resulted in only minimal incremental
increases in the strength of the correlation between predictor
variables and *Ts, in all cases resulting in an increase in R2 of
≤ 0.1. In all cases, *RH was only the third or fourth most signif-
icant predictor variable. *P was not significant in terms of con-
tributing to improving prediction of *Ts for any site, and was
therefore omitted from the model and not included in the first
set of results (SMR1) in Table VI. Typically, the sites with the
weakest SMR model were those classed as less representative
of Ts, although Site 16 had similarly low results relative to all sites.

One of the potential weaknesses in the first pass SMR models
is the collinearity between variables, particularly SWin and Ta,
for which r = 0.84 (P << 0.05). There is typically a positive
relationship between incident solar radiation and Ta, due to
the direct influence SWin has on Ts (Hock, 2003), and the strong
covariant relationship present between Ts and Ta (Foster et al.,
2012; Shaw et al., 2016). Consequently, the SMR analyses were
re-run with *TaG removed from the model to explore whether
additional variables influence Ts independent of TaG (Table VI:
SMR 2). Results highlighted that, in the absence of TaG, all
models exhibited *SWin as the dominant predictor for Ts, but
with coefficients of determination much reduced (0.17 ≤ R2 ≤
0.40). Inclusion of the other meteorological variables, while in-
creasing the models’ performance (with R2 increasing to ≤0.49)Ta
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maintained less than 50% efficacy in predicting Ts (Table VI).
Collinearity between P and RH, or between LWin and RH
may also be present but due to the minimal influence of these
predictor variables on the SMR results identifying whether such
collinearity existed here would be challenging, and so has not
been considered further. Conflating the radiation terms (SWin

and LWin) into ‘net incident radiation’ (NRin) and continuing
the omission of TaG in a third set of SMR analyses (SMR 3)
yielded similar results to SMR 2, with *NRin being the dominant
predictor variable; moreover, opting for inclusion of ‘rate of
change in TaG’ (dTa) for the preceding hour, and cumulative
radiation variables (∑SWin and ∑LWin) and ‘time since precip-
itation’ (tP) as potential drivers for Ts in SMR 3 showed similarly
incremental improvements but only to R2 = 0.51. In all cases in
SMR 3, dTa was the second most significant predictor variable.
A final SMR model (SMR 4) excluded all radiation terms and
utilised *RH, *P and tP. Despite the close association between
incident radiation and Ta, the multivariate models using SWin,
LWin and NRin were less effective in describing Ts change over
the monsoon season.
To gain a deeper understanding of the extent to which Ts and

TaG were related, and whether the two parameters have a vary-
ing temporal relationship, Ts and TaG were also investigated for
daytime (06:00–17:00) and night-time (18:00–05:00) periods
separately. A number of previous studies have investigated
the seasonal and diurnal variability of TaG (Brock et al., 2010;
Steiner and Pellicciotti, 2015), and in some cases its relation-
ship to Ts (Fujita and Sakai, 2000). As elsewhere, days when
Ts was consistently 0°C (DOY 145–153) were excluded from
the correlation analysis. The relationship between Ts and TaG
varied across the study period for both day and night (Figure 6).
The relationship between Ts and TaG was predominantly stron-
ger at night (r = 0.86) than in the day (r = 0.75). Daytime Ts–TaG
correlations varied between r = –0.01 (DOY 190) and r = 0.97,
while night-time correlations varied between r = 0.48 (DOY
188) and r = 0.99 (DOY 199). The seasonal and diurnal varia-
tion in the relationship between Ts and TaG therefore suggests
that TaG was the dominant driver of Ts but that the strength of
this relationship varied across a diurnal period and seasonally,
due to diurnal and seasonal variation in additional incident or
outgoing energy fluxes that also influence Ts.

Controls on spatial variability in near-surface debris
temperature
To determine whether statistically significant relationships be-
tween site characteristics and between timeseries existed, as
suggested by contrasting diurnal amplitudes and the lags be-
tween Ts timeseries, a two-step process of analysis was under-
taken. Initially, stepwise generalised linear models (SGLMs)
were explored to investigate possible controls on variability in
Ts. SGLMs were undertaken rather than SMR due to the small
sample size, and therefore the need to relax the assumptions
of normal distribution of each timeseries. The SGLMs examined
debris temperature metrics that included means for daily mean
Ts, maximum Ts, minimum Ts and the daily mean amplitude of
Ts for each site as the dependent variables. Site characteristics
were used as predictor variables, including elevation, slope,
aspect, mean clast size, lithology, terrain curvature and terrain
roughness. A simple linear model was used, and potential inter-
actions between site characteristics were not included. The
less-representative timeseries (1, 2, 9, 11, 13) were omitted
from the SGLMs, and 5% significance levels were used to elim-
inate weaker predictors. Second, following identification of the
possible important predictor variables influencing Ts identified
by the SGLM, linear bivariate regression (LBR) analysis was un-
dertaken between Ts variables and the debris variables identi-
fied as important in the SGLMs. While the SGLM results give
an insight into the combinations of debris characteristics that
control the temperature variables, the LBR analysis enable the
relationship between the predictor and Ts variables to be
analysed in isolation.

Results of the SGLMs are given in Table VII, which includes
variables that were identified as statistically significant in
prediction of Ts. None of the models were improved through in-
clusion of site curvature or roughness, which may be due to the
resolution of the DEM causing specific site metrics to be less
than exact. The combination of clast size, lithology and slope
played significant roles in the SGLMs, with coefficients of deter-
mination of around 0.9 for mean, maximum and amplitude Ts.
Aspect was only considered important for predictions of mini-
mum Ts, in which elevation was also critical. The LBR analysis
results (Table VIII) show that the relationship between Ts
variables and debris characteristics identified as influential in
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Figure 6. The correlation coefficient values (r) for the relationship between on-glacier air temperature (TaG) and near-surface debris temperature (Ts),
for (a) each daytime cycle (06:00–18:00) and (b) night-time cycle (18:00–06:00) over the study period; (c) presents the across-sites mean r-values for
day and night.
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the SGLMs were not statistically significant in isolation. The
exception was minimum Ts and elevation, which had an R2

of 0.44 (P = 0.02).
Consequently, although clast size, lithology and slope influ-

ence Ts metrics in conjunction with one another, they have
little influence on Ts independently. Specifically, debris size
and lithology are considered to have an impact on the absorp-
tion and transfer of solar radiation through a debris layer
through their influence on albedo, porosity and moisture con-
tent, while slope is a critical factor influencing solar radiation
receipt. The southerly aspect of the majority of the sites
reported here may undermine identification of the merit in
describing Ts metrics using aspect. In addition, the lack of
prediction of minimum Ts by the debris variables except for
elevation suggests that minimum Ts may be independent of
the majority of variables considered, but may be most appropri-
ate for identification using a lapse rate. While the sample set
was relatively small, the SGLMs illustrated the potential for
physical site characteristics to modulate Ts, the importance of
considering a suite of debris characteristics and their combined
influence in control of Ts.

Discussion

The timeseries analyses detailed above identified a number of
key aspects in the variability in Ts for thick (>1m) debris on
the debris-covered ablation area of Khumbu Glacier. A sea-
sonal trend of decreasing maximum and mean Ts was identified
at the majority of sites, while an increase in minimum Ts was in
contrast to seasonal changes in Ta. A systematic shift from a
dominant smooth diurnal cycle in Ts early in the monsoon sea-
son to a lagged cycle as the monsoon progressed occurred,
alongside which meteorological conditions became more
varied. In terms of spatial contrasts, there was evidence of sub-
tle differences between sites, illustrated by disparities in how
closely the Ts timeseries paralleled each other, and short term
(≤2 h) lags in Ts between sites. Exploring these differences
through consideration of meteorological drivers and potential
site characteristic controls enabled identification of a dominant
association between Ta and Ts and the influential role of clast
size, lithology and slope on Ts metrics at each site. Here, we
discuss the processes that may underlie the observed variability
in Ts on a debris-covered glacier.

Temporal variability in near-surface debris
temperature

The near-surface debris temperature (Ts) timeseries were nota-
bly perturbed between DOY 145 and 153, during which a
period of sustained 0°C occurred following an observed major
snowfall event. Following the period of 0°C, short-term vari-
ability on timescales of around 3–8 days and a seasonal trend
in decreasing maximum Ts were observed in all Ts timeseries.
The timing of short-term variability in Ts and SWin, LWin, RH
and precipitation was simultaneous, while the seasonal
decrease in maximum Ts occurred alongside a trend of decreas-
ing SWin, increasing Ta, LWin and RH, and increased frequency
of precipitation (Figure 3). The coincidence of the seasonal
trends in meteorological variables provide a strong indication
of increased cloudiness over the study period (Mölg et al.,
2009; Sicart et al., 2006; Van Den Broeke et al., 2006).

Increasing cloud cover results in a decreasing amount of
SWin reaching the debris surface, causing maximum Ts to
decrease, which occurs in all timeseries presented here, and a
delay in the time at which maximum Ts is achieved as the
incoming energy flux to the debris surface is reduced and the
debris therefore takes longer to heat up. Consequently, such
an increase in cloudiness over the study period would have
resulted in the decrease in the diurnal amplitude of Ts, and a
delay in the timing of peak diurnal Ts, both of which are
observed in changing modes of variation in Ts identified in
the PCA (Figure 4). An additional control on decreasing SWin

would be that following midsummer (DOY 172) regional SWin

and solar angle would decrease, reducing the intensity and
duration of SWin a debris surface would receive. However,
the decrease in SWin was initiated before DOY 172, suggesting
this trend was primarily dependent on increasing cloud cover.

A seasonal increase in cloud cover, relative humidity and the
frequency of precipitation would also increase the moisture
content of the debris layer. Moisture content of the debris layer
has the potential to affect Ts considerably (Collier et al., 2014),
but is challenging to quantify and not reported here. The pres-
ence of moisture in a debris layer affects its effective thermal
conductivity and therefore the energy needed to increase bulk
temperature. An increased amount of energy would therefore
be needed to heat water-filled pores to the same temperature
as air-filled pores within the debris layer (Collier et al., 2014;
Evatt et al., 2015). Consequently, as incoming energy to the

Table VII. Stepwise generalised linear models (SGLMs) for describing debris temperature metrics based on environmental variables for the iButton
sensor sites. Models detail the coefficients for each significant (P < 0.05) predictor variable, and summarise the model performance using the
coefficient of determination and root mean square error (R2, RMSE)

Ts metric K (constant) Elevation (m) Clast size (m) Lithology (% granite) Slope (°) Aspect (°) R2 RMSE

Min. Ts –106.460 0.022 0.004 0.58 0.292
Mean Ts 19.590 –165.260 –0.111 0.259 0.82 0.514
Max. Ts 55.461 –566.370 –0.354 1.087 0.93 0.969
Amplitude Ts 50.819 –555.460 –0.342 1.185 0.93 0.992

Table VIII. Linear bivariate regression (LBR) analysis results (R2) for debris metrics and debris characteristics for iButton sensor sites, excluding the
less representative sites. All P values were >0.05 and so were not statistically significant, except for minimum Ts and elevation (P = 0.02)

Ts metric Elevation (m) Clast size (m) Lithology (% granite) Slope (°) Aspect (°)

Min. Ts 0.44 0.01
Mean Ts 0.05 <0.01 0.05
Max. Ts 0.07 <0.01 0.10
Amplitude Ts 0.07 <0.01 0.12
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debris surface decreased during the monsoon season, and the
amount of energy needed to maintain debris layer temperature
would increase due to presence of moisture-filled rather than
air-filled pores, and mean Ts would decrease. In addition, an in-
creasingly moist debris layer would have decreased Ts due to
enhanced latent heat exchange and subsequent loss of heat
through evaporation in the debris surface layer (Cuffey and
Paterson, 2010; Takeuchi et al., 2000). These trends in Ts are
observed in the timeseries presented here, and alongside the
precipitation timeseries, suggest debris moisture content may
have been a factor in controlling Ts. However, direct collection
of data for moisture content is needed to confirm the link
between Ts and debris moisture content.
While the 1–3 day cycles are considered to be the passing of

localised weather systems in the Khumbu valley, the 5–8 day
cyclic perturbations of Ts were synchronous with periods of
markedly lower SWin, higher LWin and relative humidity, and
higher P. These perturbations suggest the intensity of cloud
cover was also temporally variable, resulting in periods of Ts
with decreased diurnal amplitude and lower maximum Ts. The
perturbations of Ts were increasingly frequent in the latter half
of the study period, evidenced by the majority of days loaded
to PC2 present in this period. These perturbations suggest that
alongside seasonal increase in cloud cover due to progression
of the monsoon, more localised weather patterns still contribute
to variability in meteorological parameters that also affect Ts.

Spatial variability in near-surface debris
temperature

Despite the period of asynchronous snow melt and subsequent
spatial variation in Ts between sites for the period DOY 145–
153, all Ts data displayed strong similarity for the majority of
the study period, evidenced in the r and E values for the raw
data and the r values for the detrended timeseries. E values
suggested subtle variability did exist between sites, which was
primarily manifested in the amplitude and magnitude of tem-
perature recorded at each site rather than the pattern of Ts.
Variability in sensor depth may have caused some variability

in E between site pairs. Although sensor depth variability was
accounted for using the temperature gradient through a debris
layer, which was calculated by Nicholson and Benn (2006),
their gradients were means of a day (24 h) period. As men-
tioned previously, applying a daily gradient to determine uncer-
tainty in Ts due to depth does not reflect the diurnal variability
of temperature with depth, which would affect the magnitude
and pattern of Ts recorded between sites (Nicholson and Benn
2006). However, after the sites identified as less representative
of Ts were omitted, sensor depth varied by <0.03m, which
would have produced a maximum uncertainty of 0.44°C
between sites (excluding less representative sites) even for the
steepest gradients previously identified (at 13:00 by Nicholson
and Benn 2006). Variability of Ts between sites reached 10°C
throughout the study period, which exceeds discrepancies
exclusively due to sensor depth and so instead suggests other
drivers of spatial variability in Ts between sites.

Controls on variability in near-surface debris
temperature

Coincident trends in Ts and meteorological variables suggest a
high level of interconnection between meteorological variables
and Ts. TaG explained the majority of the relationship identified
between meteorological variables and Ts through SMR for all

sites (Petersen et al., 2013), while the other meteorological
variables identified to be statistically significant in the SMR1
model (SWin, LWin and RH) were less effective as predictors
(Table VI). Omission of TaG in SMR models identified SWin,
LWin and RH as contributory drivers of Ts, and thus reiterates
the complexity of the energy balance at a debris-covered
surface where all of the meteorological parameters play some
role in controlling Ts. However, within the SMR models, the
strongest relationship between TaG and Ts was R2 = 0.67, and
inclusion of additional variables only improved model perfor-
mance to a maximum R2 of 0.68 (Table VI), suggesting TaG is
the most important driver of Ts, and that temperature-index melt
models that calculate Ts from TaG will account for at least two-
thirds of temporal variability in energy input to the debris sur-
face. Consequently, these results suggest that when debris sur-
face temperature is being modelled at a daily time step, a
temperature-index model using only the relationship between
TaG and Ts is considered appropriate, as the incorporation of
additional parameters such as SWin and NRin would provide
minimal improvement in model performance. However, varia-
tion in the relationship between TaG and Ts over a diurnal cycle
(e.g. Figure 6) suggests the strength of this relationship would
be less applicable when modelling Ts on sub-daily time steps.

Unravelling the relationship between TaG and Ts is complex,
as the two variables are interdependent on one another (Shaw
et al., 2016), particularly when Ta is collected below the stan-
dard height of 2m above the glacier surface in the surface
boundary layer (Reid et al., 2012; Wagnon et al., 1999). Criti-
cally, here, TaP and TaG were highly correlated (r = 0.72, P <
0.05), but accounting for the elevation difference using a lapse
rate of –0.0046°C m-1 appropriate for the monsoon season on
Khumbu Glacier (Shea et al., 2015) and a standard lapse rate
of –0.0065°C m-1, exhibited mean residuals between TaP and
TaG of –1.9°C and –1.3°C, evidencing the observation that
TaG was consistently significantly higher than TaP. This on-/off-
glacier contrast is due to heat loss from the thick supraglacial
debris layer to the near-surface atmosphere through turbulent
heat exchange (Takeuchi et al., 2000). Our results mirror those
of Steiner and Pellicciotti (2015) where TaP from equivalent el-
evations was consistently lower than TaG over a debris-covered
surface, highlighting the need to use off-glacier temperature
records with caution when driving numerical models of glacier
ablation, and wherever possible use on-glacier measurements.

The influence of specific meteorological controls of Ts was
also spatially variable (Table VI). Although a difference in
elevation between the Ts sensors and the Ta sensor existed, var-
iability in the relationship between TaG and Ts is predominately
attributed to spatial variability between the sites at which Ts
was recorded. The maximum elevation variation between Ts
and TaG sensors was 47m, which, using the range of lapse rates
described above, would result in variations in TaG of up to
0.3°C across the study site, which is below the TaG sensor un-
certainty. Differences between Ta and Ts were greater than
0.3°C for all sites. The spatial variability in Ts is therefore attrib-
uted to variation in a combination of slope, lithology and clast
size between sites, variables found to be important for variabil-
ity in maximum Ts between sites, which would result in varying
effective thermal conductivity between sites.

The results of the SGLM analysis support previous work on
debris-free and debris-covered glaciers, and in permafrost envi-
ronments, where topographic controls including aspect, slope
(Gao et al., 2017; Gubler et al., 2011; Guglielmin et al.,
2012; Hock and Holmgren, 1996; Strasser et al., 2004), albedo
and surface roughness (considered a factor due to the impor-
tance of clast size; Brock et al., 2000; Mölg and Hardy, 2004)
were found to influence spatial variability in the incoming
energy flux to the ground surface, and would therefore be
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anticipated to control Ts. The most dominant variables describ-
ing Ts metrics from each site on Khumbu Glacier were slope,
clast size and lithology. These variables would be expected to
control incident radiation receipt through solar geometry and
albedo, moisture content and evaporation, and affect local
thermal conductance. However, these debris properties were
only found to influence Ts metrics in conjunction with one an-
other and were not found to independently control Ts. Without
further data such as site-specific moisture content and SWin

values for each site, the exact controls on such variability can-
not be identified. In addition, elevation and aspect were only
found to influence minimum Ts. The majority of sites reported
here were south facing and therefore provide a systematic bias,
hindering ultimate identification of the influence of this vari-
able. However, the relatively strong, and statistically signifi-
cant, relationship between the elevation and minimum Ts
suggests estimation of minimum Ts using lapse rates, and poten-
tially night time temperatures when Ts is at its minimum, to es-
timate spatial variability in Ts would be appropriate.
The diurnal and seasonal variability in the relationship

between TaG and Ts identified here builds on the conclusions
of Steiner and Pellicciotti (2015), who identified a variation in
relationship between the two parameters between night and
day and with differing climatic conditions. The occurrence of
a seasonal influence in this variable relationship is attributed
to variability in meteorological parameters, with decreased
strength of the relationship between TaG and Ts occurring
concurrently with perturbations in SWin, and peaks in LWin

and RH (e.g. around DOY 173). Such variability is attributed
to differences in the capacity of air and debris to hold thermal
energy, and the addition of moisture in either or both environ-
ments, causing the relationship to vary between TaG and Ts sea-
sonally as well as diurnally. Understanding the importance of
the high RH values and precipitation is also important for
understanding the effect of turbulent heat flux on glacier abla-
tion for these monsoon-influenced debris-covered glaciers
(Suzuki et al., 2007). The correlation coefficients for the Ts–TaG
relationship presented here also reinforce the findings of Steiner
and Pellicciotti (2015), displaying stronger relationships at night
due to Ts increasing at a greater rate and magnitude than TaG.
Consequently, temperature-index melt models with a sub-daily
time, which rely on the relationship between TaG and Ts, need to
consider additional controls on Ts such as diurnal and seasonal
fluctuations in incoming radiative fluxes, particularly for
monsoon-influenced debris-covered glaciers that experience
large variability in seasonal weather patterns. However, further
investigation into the relationship between meteorological
variables, TaG and Ts over diurnal cycles is needed to quantify
the relative influence of radiative fluxes on Ts.

Implications of variability in near-surface debris
temperature

While the results of this study provide an interesting insight into
the extent of temporal and spatial variability in Ts for thick
(>1m) supraglacial debris layers, there is a need to carry out
a similar study on thinner debris layers as debris-covered gla-
ciers exist in a range of climatic conditions. Following such
studies, a development of surface energy balance models to in-
corporate spatiotemporal variations in debris properties would
be appropriate for modelling mass balance, and also for
constraining surface energy balance models used for estimating
debris thickness (Foster et al., 2012; Rounce and McKinney,
2014). Our findings advocate the use of a surface energy bal-
ance approach for calculating debris layer thickness rather than

a direct empirical relationship between Ts and debris layer
thickness as used by Mihalcea et al. (2008a, 2008b) and
Minora et al. (2015). The latter of these approaches oversim-
plifies the relationship between Ts and debris thickness, and
omits additional factors such as the influential relationship be-
tween SWin and Ts, and spatial variability of Ts due to varying
slope, lithology and clast size of the debris layer. This study
suggests that inclusion of site characteristics such as slope
and aspect and debris characteristics such as moisture content,
porosity, lithology and thermal conductivity would increase the
accuracy of results using the surface energy balance approach.
Further investigation into the extent of spatial variations in site
and debris properties on a glacier scale and the influence of
these characteristics on debris surface temperature is therefore
needed to constrain such model development. In the mean-
time, application of either method for estimation of debris
thickness (empirical and energy-balanced methods) should ac-
knowledge the possible uncertainty involved in disregarding
spatial variability in debris properties and compare their debris
thickness estimates with direct field measurements of debris
thickness. For energy balance models that calculate glacier
mass balance, temporal variation in debris properties, specifi-
cally moisture content, have the potential to influence energy
exchange at a supraglacial debris surface and through a debris
layer, and therefore ablation that occurs under a supraglacial
debris layer. However, as highlighted in this study, little is
known about such temporal variation in debris properties and
so constraining this variability should be the focus of future
investigations into supraglacial debris properties.

Conclusions

This study presents the most comprehensive analysis of near-
surface debris temperature (Ts) data for a Himalayan debris-
covered glacier to date. The timeseries presented extend be-
yond describing the influence of debris layer thickness on
near-surface debris temperature, and confirm both temporal
and spatial variability in Ts on Khumbu Glacier. Sixteen sites
across Khumbu Glacier’s debris-covered ablation area
displayed a marked daily cycle in Ts, overlying seasonal,
short-term and spatial variation in maximum Ts and diurnal
amplitude. A clear transition in the mode of diurnal variation
was associated with increasing cloud cover and precipitation;
the latter considered to control debris moisture content. Differ-
ences in the magnitude and range of variation in Ts were appar-
ent between sites, and were indicative of contrasts in response
of Ts to meteorological or environmental variables. A close
association between on-glacier air temperature (TaG) and Ts
was evident while radiative energy had a lesser influence on
Ts. Analyses of these timeseries also demonstrated the role that
the site characteristics slope, lithology and clast size hold in
controlling spatial variability in Ts when in conjunction with
one another, but have little controlling influence on spatial
variability of maximum Ts in isolation, and that minimum Ts is
influenced by elevation and aspect. Consequently, this study
specifically identified the variables controlling temporal and
spatial variability in Ts for debris-covered glacier surface with
a debris layer thickness of over 1m.

Our results reinforce the complexity and interconnected
nature of the surface energy balance at a supraglacial debris
surface, identifying that energy fluxes such as ambient air
temperature and incoming radiative flux at the debris surface,
as well as debris characteristics such as lithology and clast size
to a degree, regulate debris surface temperature but are not
independent of one another. Hence, these results suggest that,
although temperature-index melt models can be useful for
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estimating supraglacial debris thickness or ablation for daily
time steps, these models should follow an enhanced approach
in which additional aspects of energy exchange such as incom-
ing solar radiation are included when modelling at a sub-daily
(e.g. hourly) resolution (Carenzo et al., 2016). These models
also need to consider spatial and temporal variation in the con-
trolling variables used (e.g. air temperature and incoming solar
radiation), and use on-glacier air temperature to reduce uncer-
tainties in estimates of ablation. Studies that simulate ablation
or derive debris thickness should consider including spatial var-
iability in Ts and debris thickness in model calibrations, and
consider the influence of variability in site characteristics on
these results, in particular with regards to their influence on
bulk effective thermal conductivity of the debris layer. Finally,
the data presented here were limited to debris layers >1m
thick, and future studies should assess the role of debris charac-
teristics and local topography in defining the energy exchange
and Ts across thinner debris layers to enable the variability of
and controls on surface temperature to be understood across
an entire debris-covered glacier surface.
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Figure S1: Temperature differences recorded by free and
contained iButton sensors (black), and Tinytag sensors (grey),
for (a) air, (b) water and (c) ice in laboratory conditions.
Appendix S1: Temperature sensor assessment.
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