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ARTICLE

Parameter uncertainty of a dynamic multispecies size
spectrum model1
Michael A. Spence, Paul G. Blackwell, and Julia L. Blanchard

Abstract:Dynamic size spectrummodels have been recognized as an effective way of describing how size-based interactions can
give rise to the size structure of aquatic communities. They are intermediate-complexity ecological models that are solutions to
partial differential equations driven by the size-dependent processes of predation, growth, mortality, and reproduction in a
community of interacting species and sizes. To be useful for quantitative fisheries management these models need to be
developed further in a formal statistical framework. Previous work has used time-averaged data to “calibrate” the model using
optimization methods with the disadvantage of losing detailed time-series information. Using a published multispecies size
spectrum model parameterized for the North Sea comprising 12 interacting fish species and a background resource, we fit the
model to time-series data using a Bayesian framework for the first time.We capture the 1967–2010 period using annual estimates
of fishing mortality rates as input to the model and time series of fisheries landings data to fit the model to output. We estimate
38 key parameters representing the carrying capacity of each species and background resource, as well as initial inputs of the
dynamical system and errors on the model output. We then forecast the model forward to evaluate how uncertainty propagates
through to population- and community-level indicators under alternative management strategies.

Résumé : Les modèles de spectres de tailles dynamiques sont reconnus comme offrant une approche efficace pour décrire
comment les interactions basées sur la taille peuvent donner lieu à une structure de taille dans les communautés aquatiques. Ce
sont des modèles écologiques de complexité moyenne représentant des solutions à des équations différentielles partielles
déterminées par les processus dépendant de la taille que sont la prédation, la croissance, lamortalité et la reproduction dans une
communauté d’espèces et de tailles interagissant entre elles. Pour être utiles dans la gestion quantitative des pêches, cesmodèles
doivent être approfondis dans un cadre statistique formel. Des travaux antérieurs ont fait appel à des valeursmoyennes de séries
temporelles pour « étalonner » le modèle en utilisant des méthodes d’optimisation, ce qui a le désavantage d’occulter de
l’information détaillée contenue dans les séries chronologiques. En utilisant unmodèle publié de spectre de tailles multi-espèce
paramétré pour la mer du Nord et comptant 12 espèces de poissons interagissant entre elles et les ressources de référence, nous
avons calé le modèle sur des données de séries chronologiques en utilisant un cadre bayésien pour la première fois. Nous
capturons la période de 1967 à 2010 en employant des estimations annuelles des taux de mortalité par pêche comme entrées au
modèle et des séries chronologiques de données de débarquement de pêche pour caler le modèle sur les données de sortie. Nous
estimons 38 paramètres clés représentant la capacité de charge de chaque espèce et les ressources de référence, ainsi que les
entrées initiales du système dynamique et les erreurs sur les valeurs de sortie dumodèle. Nous projetons ensuite le modèle dans
le futur pour évaluer comment l’incertitude se propage par l’entremise d’indicateurs au niveau de la population et de la
communauté pour différentes stratégies de gestion. [Traduit par la Rédaction]

1. Introduction

There are a number of ecological models that can be applied to
answer marine management questions (Plagányi et al. 2014). An
emerging class ofmarine ecosystemmodels is size spectrummod-
els (Benoît and Rochet 2004; Law et al. 2009; Blanchard et al. 2009).
Size spectrummodels are models of intermediate complexity and
are formulated around the McKendrick von Foerster partial dif-
ferential equation. Conceptually, they are based on very simple
ecological assumptions (Andersen and Pedersen 2009) about how
the role of individual body size in a food web (“big individuals eat
small individuals”) gives rise to community abundance (and bio-
mass) size spectra (Hartvig et al. 2011). Size-based predation leads

to growth and mortality, which drive changes in the abundance
of organisms along the size spectrum. Maturation is also size-
dependent, and once an individual reaches maturation size, it
produces offspring (Hartvig et al. 2011) that enter the model at
the smaller sizes. Food for the smallest sized organisms is pro-
vided by a background community (representing phytoplankton,
zooplankton, and benthos), which is modeled as an external size-
structured resource that is not driven by predation but instead
follows semi-chemostat logistic growth (Andersen and Pedersen
2009; De Roos et al. 2008).

Size spectrum models are increasingly being used to help us
understand the structure of marine ecosystems and establish
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abundance baselines of marine communities and their responses
to the potential effects of fishing and climate change (Benoît and
Rochet 2004; Blanchard et al. 2009, 2012; Law et al. 2009; Jacobsen
et al. 2013; Maury and Poggiale 2013; Woodworth-Jefcoats et al.
2013; Law et al. 2015). Several approaches exist spanning a wide
range of model complexity: simple community models, trait-based
models, and more detailed multispecies models (Scott et al. 2014).
The generic community- and trait-based models have been used to
develop theory (Benoît and Rochet 2004; Andersen and Pedersen
2009; Hartvig et al. 2011), to examine the community responses to
fishing mortality and selectivity, and as a test-bed for evaluating
indicators of the ecosystemeffects offishing (Rochet andBenoît 2011;
Zhang et al. 2014; Law et al. 2015; Jacobsen et al. 2013).

Both size and species identity are important for fisheries man-
agement, and the development of methods to parameterize trait-
based models for real multispecies fish communities has been a
recent focus of research, particularly for testing indicators and
management strategies at both population and community levels.
Blanchard et al (2014) parameterized and calibrated a trait-based
model for 12 species in the North Sea using fisheries survey data
and stock assessment data to determine whether meeting man-
agement targets for exploited North Sea populations would be
sufficient tomeet proposed Marine Strategy Framework Directive
targets for biodiversity and food web functioning (including the
“large fish indicator”).

Although trait-based models can be parameterized for real sys-
tems based on either the literature or statistical analyses of fisheries
datasets, there are inevitablyparameters that areuncertain andhave
to be estimated by fitting themodel to data. Formultispeciesmodels
to be useful for tacticalmanagement, they need to be developed and
tested in a formal statistical framework (Plagányi et al. 2014). Uncer-
tain parameters for the Blanchard et al. (2014)multispecies size spec-
trum model included Rmax, the maximum recruitment for each
species, and �, the background food resource’s carrying capacity. To
estimate these parameters, the model was “calibrated” to time-
averaged spawning stock biomass (SSB) and landings data using
time-averagedfishingmortality from1985 to 1995byminimizing the
sum of squared errors between the model and the data to find a
single best parameter set. Themodelwas cross-validatedwith survey
data and then forced with time-varying fishing mortalities and sce-
narios to evaluate whether single-species FMSY management targets
(the fishing mortality that leads to the maximum sustainable yield)
would lead to recovery in food webs and biodiversity in the North
Sea. Stochasticity was incorporated in the recruitment stage. Al-
though the model produced realistic growth rates and species size
distributions, some of the time series fits to SSB and landings were
poor. This is partially due to the fact that time-series data were not
fully used to calibrate the model. An ideal calibration approach
would enable time-series data to be more fully utilized, combined
with a formal statistical framework for uncertainty.

It is important to report uncertainty associated with model-
derived research findings when used for advising policy makers
and environmental managers (Harwood and Stokes 2003). Uncer-
tainty can be separated into four main types: parameter uncer-
tainty, structural or model uncertainty, residual variation, and
data uncertainty. Parameter uncertainty comes from uncertain
knowledge about parameters (Li and Wu 2006); structural uncer-
tainty is uncertainty associated with the model itself caused by
simplifications, uncertain processes, or even numerical approxi-
mations; residual variation is the uncertainty caused by demo-
graphic and environmental stochasticity (Kennedy and O’Hagan
2001; Vernon et al. 2010), and data uncertainty is often referred to
as measurement or observation error. This can be transferred to
the parameters but can be propagated through to the model out-

put and can be caused by sampling biases or errors in data collec-
tion (Harwood and Stokes 2003).

Parameter uncertainty has not been formally explored in dynamic
size spectrum models, although some work has been done with a
length-based multispecies model (Thorpe et al. 2015) and an age-
basedmodel (Tsehaye et al. 2014). To improve the utility ofmultispe-
cies size spectrummodels for supporting fisheriesmanagement, the
parameter, model, and data uncertainty need to be quantified. Here
we further investigate the model of Blanchard et al. (2014) (for the
model description, see the Supplementary material2) using a Bayes-
ian framework, a more realistic error model, and an improved esti-
mation strategy to assess uncertainty from parameters and the data
and demonstrate how this uncertainty can be included in evaluating
multispecies effects of fisheries management scenarios.

2. Methods

In this section, we describe the model parameters, their prior
distributions, and how the model outputs can be related to the
observed data in a probabilistic way. We then describe the steps
used to sample from the posterior distributions using a Markov
chain Monte Carlo (MCMC) algorithm (Gelman et al. 2013) (see the
Supplementary material2 for details).

Uncertain parameters
In the multispecies model, there are a number of uncertain

parameters to estimate. For the inputs Rmax.i, where i represents
the species as described in Table 1, we specify priors in terms of
�i = logRmax.i for i = 1, …, 12 and �0 = log� taking �i � U(·|�i, �i),
where �i < �i. So the prior densities for Rmax.i and � are p(Rmax.i|�i, �i)
and p(�|�0, �0), respectively, where

p(x|�,�) � �exp(x)
� � �

if exp(�) ≤ x ≤ exp(�)

0 otherwise

For the present analysis, we represent identical priors for each
species by �i = 0 and �i = 50 for i = 0, …, 12, which means that they
are not very constraining.

The dynamic model requires a “spin-up” period in which the
fishing mortality, Fi, is fixed, so that the model reaches a steady
state before the fishing mortality is varied and output is collected
in 1967, the first year of the empirical time series. It is not obvious
what the fishing mortality should be while the model is in the
spin-up period so we have added the spin-up fishing mortality as
an additional parameter to estimate for each of the 12 species,

2Supplementary material is available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2015-0022.

Table 1. The species used in the model and their data sets used to
estimate the parameters, as well as the fishingmortality in 2010 (F2010)
and at the maximum sustainable yield (FMSY), as shown in Blanchard
et al (2014).

i Species Name Landings F2010 FMSY

1 Sprattus sprattus Sprat 1967–2010 0.31 0.2
2 Ammodytes marinus Sandeel 1983–2010 0.36 0.2
3 Trisopterus esmarkii Norway pout 1983–2010 0.42 0.2
4 Limanda limanda Dab 1967–2010 0.14 0.2
5 Clupea harengus Herring 1967–2010 0.12 0.25
6 Eutrigla gurnardus Gurnard 1967–2010 0.10 0.2
7 Solea solea Sole 1967–2010 0.34 0.22
8 Merlangius merlangus Whiting 1990–2010 0.27 0.2
9 Pleuronectes platessa Plaice 1967–2010 0.24 0.25
10 Melanogrammus aeglefinus Haddock 1967–2010 0.23 0.3
11 Pollachius virens Saithe 1967–2010 0.38 0.19
12 Gadus morhua Cod 1967–2010 0.68 0.3
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�Fi�i�1
12

. The spin-up period is used to run the model into the
best-fitting stationary states before the fishingmortality is varied.
It does not make sense for Fi to be negative so we decided on

Fi � Half-normal(·|0, (1.824)2)

for i = 1, …, 12.
We used the same fishing mortalities as Blanchard et al. (2014)

based on stock assessments (www.ices.dk) for the 12 species from
1967 to 2010. According to these inputs, the fishing mortality for
Norway pout in 2005 was 0. This is inconsistent with the fact that
there were landings in that year. To estimate this, we have added
the fishing mortality of Norway pout in 2005 as another parameter,
�.We assumed that the zero valuewas likely due to a rounding error
for Norway pout so we used an informative prior on � such that

� � exp�·	 1
0.34�

We elicited (see e.g., O’Hagan et al. 2006) these values using expert
knowledge from JLB by examining the 50th percentiles of the distri-
butions and then confirming the priors graphically. Table 2 summa-
rizes the uncertain parameters and their prior distributions.

Likelihood
The model was fit to landings data, Y (in tonnes), from stock

assessments (www.ices.dk) for the years shown in Table 1 using a
Bayesian framework. For an introduction to Bayesian statistics,
see McCarthy (2007); for a more detailed review of the area, see
Gelman et al. (2013). If the modeled landings, assumed to be the
same as the catches (i.e., discards are ignored), were expressed as
M(�), where the unknown parameters are defined as � and the
other inputs are implicit in M(·), then we assumed

log Y � log M(�) 
 �

1

2�

where �’s off-diagonal elements are 0 and diagonal elements are
�i
2 (i = 1, …, 12) and � is a vector of standard normals (Nielsen and

Berg 2014; Tsehaye et al. 2014).
All of the variance parameters, �i

2, had independent inverse-
gamma prior distributions defined as

�i
2 � Inv-Gamma(·|0.0001, 0.0001)

for i = 1, …, 12.
The simulation model is a solution of partial differential equa-

tions (PDEs) that is intractable and is approximated by discretiz-
ing both time and size (Hartvig et al. 2011). The year is divided into
intervals of length (� t), and the PDEs are estimated at these points.
Initially we experimented with � t = 1, the same value used by
Blanchard et al (2014), i.e., the PDEs were estimated every year,
and we found that the likelihood surface was very unstable and
that often made a large difference to the model output. As � t

decreases, the numerical estimation becomes more accurate.
Changing � t, we found that the estimate stabilized at around � t =
1/4. However, as we decreased � t, the model took longer to run so
we had the classic problem of efficiency versus accuracy.

Exploration of the parameter space

Themodel output,M(�), from the 26-dimensional input space is
not smooth, even with a low value of � t. It contains many local
minima that anMCMC chainwould get stuck in, and the quality of
the fit, as measured by likelihood or posterior density, varies by
many orders of magnitude. Thus a standard MCMC algorithm
would be unable to fully explore the parameter space in any
reasonable time. To overcome this, our strategy involved first
carrying out an extensive search of the space, followed by local
optimization, and then a parallel tempering algorithm (Swendsen
and Wang 1986).

Our initial search could have been carried out by selecting com-
pletely random points in the parameter space. However, in view
of the computational costs, we instead used a more efficient de-
sign for the selection of the points, Latin hypercube sampling
(LHS) (McKay et al. 1979). For efficiency, we also carried out these
exploratory runs with � t = 1/2.

In the first round, we used LHS to sample 50 000 parameter sets
and evaluated the model at each of these, setting all of the �2s
to 1, which is effectively using the sum of squared errors as a
measure of how good a parameter set was.

We then performed a second round of LHS around each of the
10 best points found in round 1. For each top-ten point (1, …, 26),
we applied LHS on the Cartesian product, j = 1, …, 26, of the
parameter intervals

	Pj
�1(max{Pj(j) � �, 0}), Pj

�1(min{Pj(j) 
 �, 1})


where Pj(·) is the prior cumulative distribution function of pa-
rameter j, and we took � = 0.025.

From the best 49 points from the second round, plus the point
representing the parameters that Blanchard et al (2014) found, we
then optimized using a Nelder–Mead algorithm (Nelder and
Mead 1965) to find 50 high local maxima, capping the number of
model runs to keep the computational effort down. This gave us
50 candidate points, fitting the data much better than randomly
selected starting points, and we applied the Metropolis-within-
Gibbs algorithm described in the Supplementary material,2 run-
ning 50 chains starting from these local maxima, to explore their
neighborhoods in the parameter space, using � t = 1/4 for accuracy
and allowing �1:12

2 to vary.
We took the best five points and performed parallel tempering

starting from these points (see the Supplementary material2 for
details). From the parallel tempering, we found that two of these
Metropolis-within-Gibbs runs identified a region fitting so much
better than any others that effectively all of the posterior proba-
bility was associated with these two runs. The quality of the fit,
and the posterior probability, associated with each of the other
regions of the parameter space was so low in comparison that
they had essentially no effect on the parameter estimates or un-

Table 2. The uncertain parameters.

Parameters Also Units Prior Notes

�1:12 log Rmax log(m−3·g−1·year−1) U(·|0, 50) Log of the maximum recruitment for each species
�0 log � log(g�−1·vol−1) U(·|0, 50) Log of carrying capacity of resource spectrum
F1:12 year−1 Half-normal(·|0, (1.824)2) Fishing mortality during the spin-up period

for each species
� year−1 exp(·|1/0.34) Fishing mortality for Norway pout in 2005
�1:12
2 Unitless Inv-Gamma(·|0.0001, 0.0001) Standard deviation of the error on the log landing

Note: �0:12, F1:12, and � are needed to run the model, and �2 is the error between the model output and the observed landings.
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certainties. The fit is also, of course, very much better than would
be found by a naïve random search; some further detail is given in
the Discussion.

To explore the consequences of alternative management strat-
egies, we sampled 2500 parameter sets from the posterior distri-
bution, and for each set, we ran the model until 2010 and then
projected themodel to 2050 under two contrasting scenarios: (1) a
status-quo scenario in which each species fishingmortality is held
at 2010 levels, F2010, and (2) a single-species FMSY scenario sug-
gested by ICES using the values shown in Table 1. To evaluate the
uncertainty associated with population, we estimated

BFscenario

BF0

where B is the total spawner biomass with the fishing mortality
set to either FMSY or F2010 divided by the SSB at the baseline, F0,
where the fishing mortality is 0 for the whole of the simulation
(including the spin-up period). We also estimated the large fish
indicator (LFI), the proportion of biomass of demersal fish that
are >40 cm in length, for each of the three fishing scenarios and
the slope of the community size spectrum for demersal fish as
described in the Supplementary material.2

3. Results

The results in this section are based on running the final MCMC
chain from the previous section for 60 000 iterations and discard-
ing the first 10 000 as burn-in.

Posterior distributions
We found that the marginal posteriors for the recruitment

parameters are unimodal; summaries are shown in Fig. 1 using
violin plots (Hintze and Nelson 1998) and in Table 3.

Many of the posterior distributions of the fishing mortality
parameters, F1:12, were not too dissimilar to their respective prior
distributions, others were more concentrated (see the Supple-
mentary material2).

The variance parameters describe the estimated distribution of
the error around the observed landings. These were close to zero
(Fig. 1), suggesting that the modeled landings captured the ob-
served landings reasonably well on average. This was particularly
the case for sole, whiting, plaice, and saithe. The model was
particularly poor at estimating gurnard landings; the error pa-
rameter for gurnard is omitted from Fig. 1 because it is too big to
plot on the same scale.

The posterior mean fishing effort for Norway pout in 2005 was
about 0.019, confirming our suspicion that there may have been a
rounding error in either the landings or fishing mortality for that
species.

Time-series model output
A comparison of the observed time series of the landings to the

model output (Fig. 2) showed that themodel does a reasonable job
of fitting the dynamics of the data. We more formally assessed
howwell themodel fit the dynamics of the landings by calculating
the values of �i

2 relative to the variabilities of their respective
landings. Figure 3 shows the posterior distribution of �i

2/�i, with �i
being the unbiased estimate of the variance of the landings,

1
n � 1 �

t�1967

2010

	Yi
(t)

� Yī

2

where Yī is themean landings for species i.We found lowest values
of relative variance (meaning best fit) for sprat, Norway pout, and
plaice. Higher values of relative variances were for gurnard and
dab, implying poorer fits. Figure 4 shows themodel output for SSB
for nine of the species and compared it with single-species stock
assessments (www.ices.dk). This comparison is not intended to
evaluate goodness of fit but rather to examine differences be-
tween our model predictions with the single-species model out-
puts. We found lower SSB for most of the species except for
sandeel, Norway pout, and herring compared with single-species
assessments. The temporal trends in SSB were broadly similar.

Scenarios
We simulated the model forward to 2050 under the two scenar-

ios described in theMethods, but themodel was almost in a steady
state by 2020. The results of these forecasts are shown in Fig. 5.

Under the status-quo scenario, sprat, sandeel, and cod were the
most depleted, with the spawner biomass of sandeel and sprat

Fig. 1. (a) The marginal posterior distribution for �0:12 with the
estimates from Blanchard et al. (2014) being the points. The units
are m–3·g–1·year–1 for �1:12 and g�–1·vol–1 for �0. (b) The estimates of
the error parameters for all of the parameters except Gurnard,
which is very uncertain and has a mean of 3.05 and variance of 0.75.
The order of the species is that of their asymptotic size.

Table 3. Themeans and standard errors (SE) of themarginal posterior
distributions of �0:12 and �1:12

2 rounded to three decimal places.

� �2

Species Mean SE Mean SE

Sprat 26.659 0.124 0.236 0.070
Sandeel 26.008 0.091 0.208 0.062
Norway pout 30.684 0.326 0.212 0.085
Dab 23.108 0.126 0.304 0.071
Herring 26.556 0.145 0.355 0.084
Gurnard 25.381 0.422 3.049 0.861
Sole 22.948 0.087 0.059 0.14
Whiting 26.034 0.158 0.099 0.035
Plaice 30.562 0.307 0.046 0.011
Haddock 28.375 0.252 0.269 0.067
Saithe 26.920 0.177 0.078 0.019
Cod 22.767 0.125 0.268 0.065
Background resource 25.210 0.056
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ranging from 0.368 to 0.394 and from 0.307 to 0.317 of their re-
spective unexploited spawner biomasses. Cod is the most de-
pleted, ranging from 0.133 to 0.094, with a 0.02 probability of
being less than 0.1 of its unexploited biomass, which has been
used as a threshold for collapse. Several species have a high
chance of being higher than unexploited biomass due to the
much lowered biomass of cod resulting in prey release. Under the
single-species FMSY scenario, these species have higher probability
of being closer to their unexploited values. Plaice, saithe, and cod
were the most depleted, ranging from 0.324 to 0.496, 0.438 to
0.476, and 0.486 to 0.514 of their respective unexploited values.

The uncertainty is higher for some species such as haddock
under the status-quo (standard error is 0.155) and plaice under
FMSY (standard error is 0.028) than others such as sandeel under
the status-quo (standard error is 0.002) and cod under FMSY (stan-
dard error is 0.004). Consistentwith the findings of Blanchard et al
(2014), the LFI did not differ under the two fishing scenarios (the
median is 0.385 and 0.380 under the status-quo and FMSY, respec-
tively), whereas the FMSY scenario gave a much shallower size
spectrum slope (the median is about –2.12) than the status-quo
(the median is about –2.35) for all parameter sets.

4. Discussion

An ecosystem approach to fisheries management requires tools
that can evaluate the risks of fisheries management actions on
both target and nontarget species. Although extensive work on
model uncertainty has been carried out through simulation ap-
proaches such as management strategy evaluation, a wide range
of ecosystem and multispecies models being used to support eco-
system advice rely on projections from single best-fitting param-

eter sets, ignoring parameter uncertainty, and are considered to
be strategic or “big picture” rather than of tactical use to support
management decision (Plagányi et al. 2014). Robust estimates of
uncertainty inmodel parameters are also important for reporting
results of management scenarios to policy makers (Harwood and
Stokes 2003). Few attempts have been made to explicitly address
parameter uncertainty in more complex models (Thorpe et al.
2015), and this study is the first to develop such a framework for
multispecies size spectrum models. Multispecies size spectrum
models are still in their infancy in fisheries and fall into the stra-
tegic category. Ourmethods demonstrate how this class ofmodels
can be developed further using a Bayesian framework. The key
advantage, as illustrated here through two simple fisheries sce-
narios, is that it is possible to make probabilistic statements of
scenario outcomes that enable more informed assessments of
risk.

Fisheries landings data are often assumed to not contain error
but in reality contain high uncertainty due to misreporting and
discarding. Here, we treated the landings data as uncertain, as-
suming the model and data uncertainty result in independent
Gaussian errors on the log scale. In addition to quantifying the
uncertainty around the modelled landings, we also estimated
variance parameters of the Gaussian errors for each species in the
model. These parameters take into account the data uncertainty
and the residual variability and can be interpreted as howwell, on
average, the model does at recreating the observations. A small
value of �i

2 means that, on average, the model recreates the land-
ings of species i well. If all of these parameters are the same, then
the likelihood of the observations is related in a simple way to the
sum-of-squares metric used by Blanchard et al. (2014). If the vari-

Fig. 2. Runs of the model with parameters sampled from the posterior distribution. The grey line shows the median model output, the
dashed lines are the 5th and 95th percentiles for the model output, and the thick black line is the observed landings.
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ance parameters are not equal, the appropriate metric becomes
the weighted sum of squares, with a lower value of �i

2 implying
that observations on species i should be more highly weighted.
We found that these variances clearly do differ across species and
may be a possible reason why the points found by Blanchard et al
(2014) are not in the posterior distribution (see Fig. 1). Other rea-
sons may be that Blanchard et al. fitted their model with time-
averaged SSB and landings data, whereas we account for temporal
dynamics over the 1967–2011 period for landings only; we also
fitted the model using � t = 1/4 instead of � t = 1. Blanchard et al.’s
choice of � t = 1 succeeded in fitting the equilibrium behaviour of
the model, which is largely unaffected by � t, to the time-averaged
data; their fitted parameter values were shown to capture time-
averaged size distributions and growth rates from survey data
well. However, for fitting to time-varying data or using time-
varying (fishing mortality) inputs to predict time series, it is nec-
essary to describe the dynamics of the model in more detail and
hence to use a smaller value of � t. This does affect the likelihood
surface and potentially the parameter estimates. Our experiments

with fitting to SSB as well as landings (Spence 2015) did not give
parameters close to Blanchard et al.’s (despite starting one of the
MCMC chains there). Blanchard et al. also used a penalty function
for species that went extinct when fishing mortality was zero;
however, because all of the species coexist with both fitted param-
eter sets, this is unlikely to have a substantial effect on the precise
parameter estimates. Overall, it seems that the differences in spe-
cies weighting, (i.e., value of �2) and the choice of � t are most
likely to account for the parameter differences.

In spite of these differences, the consequences of the two fish-
eries scenarios explored resulted in similar qualitative outcomes.
Under the status-quo scenario, bothmodels showed agreement in
cod being themost heavily depletedwith the same smaller bodied
species (herring, whiting, plaice, and haddock) having biomasses
higher than their unexploited biomass. The latter is a feature that
would not emerge from single-species models that ignore food
web interactions. Under the FMSY scenario, bothmodels also show
that cod biomass and the community size spectrum slope return
closer to their unexploited levels, whereas the large fish indicator

Fig. 3. The posterior distribution for �i
2/�i, where �i is an unbiased estimate of the variance of the observed log landings for species i.
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does not. Themajor advantage of the approach shown here is that
the scenarios account for the range of likely parameters (as op-
posed to a single parameter set), enabling a probability distribu-
tion of the model outcomes formally linked to the parameter
uncertainty.

Thorpe et al. (2015) use a multispecies length-structured model
and show a stronger correlation between the response of the size
spectrum slope and the large fish indicator than reported here.
There are a few reasons that could explain this difference. First,
the Thorpe et al. (2015) model differs from ours in terms of the
dynamics. The model used here contains more complex dynami-
cal feedbacks; the growth process is food-dependent and the dy-
namics are governed by a system of partial differential equations,
whereas growth is nondynamic and with discrete time dynamics
in the models used in Thorpe et al. (2015). It is worth noting that
Thorpe et al. (2015) reported higher power of the size spectrum
slope to detect a change over a 5- or 15-year fishing scenario com-
paredwith the LFI. Second, the species composition betweenmod-
els and inclusion in the calculation of the community metrics
differed. Here, demersal species only were used to calculate com-
munity metrics (in keeping with empirical analyses; Fung et al.
(2012)), and from further experiments, we found that the LFI is
more sensitive to species subsetting than the slope of the commu-
nity size spectrum.

We are not limited to forecasting the SSB, LFI, and size spec-
trum but can make forecasts, with robust measures of uncer-
tainty, of any indicator that the model is able to predict. In Fig. 4,
we compared the model output and the SSB from single-species
stock assessments. Stock assessments use landings and survey
data to estimate fishing mortalities and predict SSBs for each
species separately, with different underlying assumptions across
models. We used fishing mortalities from stock assessments as
inputs to the multispecies model and fitted it to landings data.
Because of the fundamental differences between single- and

Fig. 4. Log spawning stock biomass (SSB) of the model with parameters sampled from the posterior distribution. The grey line shows the
median output, the dashed lines are the 5th and 95th percentiles for the model output, and the think black line is the log SSB estimates from
stock assessments.

Fig. 5. The forecast for 2020: (a) the spawning stock biomass (B)
with the fishing mortality at that of 2010 (F2010; grey) and at maximum
sustainable yield (FMSY; black) divided by the spawning stock
biomass when the fishing mortality is 0 (F0) for the whole of the
simulation; (b) the large fish indicator (LFI) for the fishing mortality
equal to 0 (F0; white), maximum sustainable yield (FMSY; black), and
that of 2010 (F2010; grey); (c) the same but for the community size
spectrum slope.
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multi-species models, we a priori expected SSB predictions to dif-
fer from single-species SSB estimates. Themultispeciesmodel pre-
dicts an overall higher SSB for sandeel than the single-species
model, reflecting the need to meet predation requirements of
larger fish in themodel.With the exception of herring, lower SSBs
were evident for several species, which is a result of the higher
and explicit dynamically changing predationmortality present in
the multispecies model.

In reality, the North Sea was not in a steady state in 1967, which
could be a reason why we do not fit the dynamics of the landings
well for all of the species (as indicated by larger values of �i

2/�i).
Instead of restricting the spin-up period to the set of steady states,
we could look at all possible states of themodel before the dynam-
ical fishing mortality was added to the model. This may be diffi-
cult to do in practice. Another possible reason for some of the
poorer fits is that we are assuming that landings and catches are
equivalent. For some species, there is likely to be a systematic
difference between these two due to discards, e.g., gurnard.

The trend of the model simulations is the same for most of the
possible parameter values that make up the posterior distribu-
tion, i.e., throughout the posterior, we overestimate the landings
at one time and always underestimate the landings at another.
Further experiments (for details, see Spence 2015) show that this is
a feature of the model and is not sensitive to the parameter esti-
mates. However, rather than assuming that the errors are inde-
pendent and identically distributed, we could re-model the error
structure so that the errors are correlated through time, possibly
using an autoregressive model of order 1 (AR1; see, for example,
Brockwell and Davis (2002)). We believe that this would improve
the representation of the errors.

Figure 1 and Table 3 show no systematic pattern between the
estimated maximum recruitment and asymptotic size as sug-
gested in Andersen and Pedersen (2009) and Andersen and Beyer
(2015). It is believed that Rmax changes over time, possibly due to
changes in habitat and temperature that have occurred in the
North Sea (Bigg et al. 2008). We could include dynamic changes in
Rmax by including it as the hidden state in a state–space model
(see, e.g., Rabiner 1989). This approach could also be used to esti-
mate other useful parameters and even the model inputs (such as
the fishing mortality) for each year.

We have used a carefully designed strategy involving Latin hy-
percube sampling, numerical optimization, and parallel temper-
ing methods to explore a complex likelihood surface over a large
parameter space as thoroughly and efficiently as possible. The
high dimension of the space means that naïve methods would
perform very poorly or be completely infeasible. For example, a
simple systematic search with all combinations of two levels of
each parameterwould require 226 or 67 108 864 runs of themodel,
and numerical integration over the parameter space would re-
quire even more. Numerical optimisation, with or without deriv-
ative information, and MCMC applied in isolation would be
hampered by the many local maxima, although it is worth noting
that our MCMC algorithm performs well locally, and so there is
little to be gained by varying the details of the sampler. Oneway of
improving the posterior distribution would be to use more infor-
mative priors. This could be done by eliciting the parameters
(O’Hagan et al. 2006) or using simpler, more tractable models to
produce priors (e.g., the single-species model of Andersen and
Beyer (2015)).

As it stands, our overall strategy gives an enormous improve-
ment over the results of even a relatively efficient single-stage
Latin hypercube search. The best point out of the 50 000 sampled
in the first round of our search had a log-likelihood of –13 790.19,
and in the MCMC round, the best point from the sampled poste-
rior had a log-likelihood of –322.08. Thus the likelihood itself is
higher by a factor greater than 105000. As an informal interpreta-
tion, this means that the latter point represents a model that,

using a simplemodel selection criterion such as the AIC, would be
preferred statistically even if it involved thousands of extra pa-
rameters (whereas in fact it uses none). This leads us to believe
that the method described here gives a good estimate of the pos-
terior distribution and certainlymuch better parameter estimates
and uncertainties than in previous work (Blanchard et al. 2014) or
in what would be obtained with standard methods.

Our analysis allows for parameter uncertainty and for obser-
vation error. As it stands, it does not allow for the effects of
structural uncertainty due to imperfections or limitations of
the model itself. That could be handled by adding a discrepancy
term, �(·), (Kennedy and O’Hagan 2001) to the formulation under
“Likelihood”

log Y � log M(�) 
 �(�) 
 �

1

2�

Note that this is likely to have a similar effect to allowing for
autocorrelation in the observation errors, as outlined above. The
discrepancy term is used to allow for structural uncertainties.
Such uncertainties are often caused by simplifications in the
model, e.g., the dynamicmodel fitted here did notmodel discards.

Another source of uncertainty in predictions is stochasticity in
the model, not addressed here because the model that we use is
deterministic. With a stochastic model such as that of Andersen
and Pedersen (2009), the principles of our approachwould remain
the same, but the details would differ. Instead ofMCMC,wewould
need to use approximate Bayesian computation (ABC) (Tavaré
et al. 1997; Beaumont 2010); the inclusion of observation errors
means that a so-called exact ABC (Wilkinson 2013) or likelihood-
free MCMC (Wilkinson 2010) could be used. This approach would
retain the key advantages of the analysis described here: proper
allowance for parameter and observation and uncertainty, and its
propagation through to predictions. More generally, this Bayesian
predictive framework can be applied to a wide variety of models
and ecosystems. The range of computational tools to permit this
in practice is constantly increasing; Spence (2015) gives some re-
cent examples. As an alternative to formalizing the discrepancy
within a single model, a promising approach is to consider a
number of distinct models collectively, forming a multimodel
ensemble. This can improve understanding of the strengths and
weaknesses of individual models and potentially give better pre-
dictions and assessments of uncertainty overall. We are at present
working on an ensemble that includes the currentmodel as one of
its members by considering discrepancy shared between models
and specific to each model as used in climate modelling (e.g.,
Chandler 2013).

Further work on model uncertainty with size spectrum and
other ecosystem models will enable multispecies forecasts to be
reported to decision makers in a manner that is comparable to
single-species decision tables. This would help further develop the
use of formal risk assessment in ecosystem approaches to fisher-
ies management, which has been fairly limited to date but is a
burgeoning area of research (Plagányi et al. 2014).
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