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XDense is a novel wired 2D-mesh grid sensor network system for application scenarios that benefit from

densely deployed sensing (e.g. thousands of sensors per square meter). It was conceived for cyber-physical

systems (CPS) that require real-time sensing and actuation, like active flow control (AFC) on aircraft wing

surfaces. XDense communication and distributed processing capabilities are designed to enable complex

feature extraction within bounded time and in a responsive manner. In this paper we tackle the issue of

deterministic behavior of XDense. We present a methodology that uses traffic shaping heuristics to guarantee

bounded communication delays and the fulfillment of memory requirements. We evaluate the model for varied

network configurations and workload, and present a comparative performance analysis in terms of on link

utilization, queue size and execution time. With the proposed traffic shaping heuristics, we endow XDense

with the capabilities required for real-time applications.
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1 INTRODUCTION

As Moore’s law remains valid, single embedded computers equipped with sensing, processing and
communication capabilities are tending to be minimally priced. This makes it economically feasible
to densely deploy sensor networks with very large quantities of computing nodes. Accordingly, it is
possible to take very large number of sensor readings from the physical world, perform computation
on sensed quantities and make decisions from the results. Very dense networks offer information
about the physical world with greater resolution and therefore offer better opportunities in detecting
the occurrence of an event; this is of paramount importance for a number of applications with
high-spatial sensing (and actuation) resolution requirements.
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Fig. 1. Conceptual deployment of XDense for active flow control.

Such densely instrumented systems pose however huge challenges in terms of interconnectivity
and timely data processing. It is important to note that the need for high spatial and temporal
resolutions are often contradictory requirements, which are often not easily simultaneously fulfilled.
To further motivate our approach, let us consider an aerospace application scenario that may

benefit from such dense CPS. The drastic increase in demand for air transportation, naturally
motivates measures to reduce its environmental impact. The reduction of fuel consumption is
important regarding both environmental effects and cost efficiency. It is known from the Breguet
range equation [2] that improvements in aerodynamics, engines, and structure have major impor-
tance, and efforts in that direction aim at reducing aircraft drag and weight of the aircraft. In fact
aerodynamic drag due to skin friction is known to be one of the relevant factors contributing to
increased aircraft fuel consumption, that constitutes approximately one half of the total drag for a
typical long range aircraft at cruise conditions [38].

A significant part of this skin friction is due to turbulent1 airflow over the wing [28]. Turbulence
can be highly undesirable, as it increases drag and noise. Additionally, it causes loss of energy [4],
and an important goal is to minimize this loss. Figure 1 exhibits an example in which homogeneous
laminar airflow transits to turbulent along the wing.
Several solutions have been proposed already to reduce turbulence. Cattafesta et al. [5] have

surveyed the state-of-the-art actuation mechanisms used to reduce turbulent skin friction. A
promising approach is based on a concept known as Synthetic Jet Actuators (SJAs). SJAs are
actuators that run at key positions on the wing and continuously energize the airflow to avoid the
formation of turbulence [39]. The recent advances in miniaturization and materials technology
enable the development of a (thin) smart skin feasible, and hence SJAs are becoming an achievable
technology [33]. The weakness of SJAs is to not use sensors to detect and trace the turbulent flows
and hence offer only open loop actuation. This compromises the efficiency of active flow control
(AFC), leading to waste of energy resources when there is no turbulent flow or when the turbulence
lies outside the actuators’ control field.
Therefore, implementing closed-loop AFC implies that physical quantities are tracked through

sensors (for example, pressure, temperature and vibration sensors), which are deployed with some
high density (eventually a few centimeters apart). Figure 1 shows an envisioned deployment of such
sensing/detecting infrastructure on a wing surface to detect the occurrence of turbulent airflows.

XDense was developed to deal with the key challenges related to eXtremely Dense deployments
of sensors [20]. XDense has a network architecture composed of regular structures (nodes) in-
terconnected in a 2D-mesh network (see Figure 2(a)). This resembles common Network-on-Chip

1 Turbulent airflow is composed of coherent structures of chaotic temporal evolution, such as vortices. Turbulent airflow

causes an increase in interaction between the air and the wing (and the fuselage, in general), and consequently an increase

in the total skin friction [29].
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(NoC) architectures [14] and there are also similarities in routing schemes and distributed comput-
ing capabilities [16]. XDense exploits low-cost local communication and distributed processing
strategies to enable distributed feature detection/extraction.

Even though we focus on AFC as the application scenario in this work, we believe XDense can
be useful for other applications that require fast response times and dense networks of sensors. To
mention a few: (i) aerodynamic tests [26]; (ii) structural monitoring [30]; (iii) biomedical devices
for electroencephalogram [37]; (iv) robotic e-skins [31]; (v) health monitoring wearable sensor
networks [25].
To investigate benefits of performing distributed processing, we take into account the nature

of the input data. This because the efficacy of data processing algorithm are tightly related to the
nature of the input data, in the sense that data clustering strategies and feature detection algorithms
must be developed to fit specific scenarios. As well, the spatial and temporal granularity of the
input data provides the necessary information to take decisions on the density of the deployment
and minimum sampling rate requirements and consequently network load. For example, in [20],
targeting AFC, we proposed algorithms to enable distributed turbulent air flow detection using
computational fluid dynamics (CFD) data as our input.

However, the practicality of XDense for efficient feature detection and extraction is a necessary
but not sufficient condition. We also need to provide execution time guarantees and bounds on
the resource utilization for real-time applications like AFC, for which timeliness guarantees are
essential to achieve closed loop actuation. Providing bounds on resource utilization is also crucial
to correctly dimension the nodes, to avoid overload and consequent data loss. These are factors
that have great influence on hardware requirements, cost and consequently on the applicability
XDense. These two properties are therefore the focus of this paper.

Contribution

In this work, we extend XDense with real-time capabilities, by implementing traffic shapers in every
node such that the network traffic is predictable and analyzable. Further, we propose an analysis
framework to accurately model the network in terms of communication delay characteristics and
memory requirements. Specifically, the paper makes the following two contributions: (i) propose
three heuristics to shape the traffic in the network; (ii) develop a mathematical framework to model
and analyze the application and network and provide upper-bounds on communication delays,
application execution time, and maximum buffer requirements.
In extension to the work presented in [18], in this work we evaluate the heuristics proposed

using homogeneous and heterogeneous traffic sources and compare it with the best effort approach.
The remainder of this paper is organized as follows. Section 2 introduces the basics of the XDense

architecture; Section 3 formalizes our XDense model for real-time applications; Section 4 evaluates
the model; Section 5 discusses the related works and Section 6 concludes the paper along with
comments on potential future research directions.

2 XDENSE ARCHITECTURE AND PRINCIPLES OF OPERATION

2.1 Architecture and topology of XDense

XDense is a 2-D mesh network whose topology and node architecture are inspired from traditional
Network-on-Chip (NoC) designs. Despite its similarities with NoCs, XDense differs in its size and
node count. XDense is meant to be deployed on large surfaces (like aircraft wings) and deliver high-
precision and high granularity measurements, thereby requiring a high number of sensors/nodes
(in contrast to the few tens of interconnected nodes in modern NoCs).

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Fig. 2. (a) The XDense 2-D mesh network; (b) nodes use four bidirectional links to connect with neighbors
located in the four cardinal directions (North, South, East, West); (c) node internals: processor (P), router (R),
net-device (ND) and sensor (S); (d) net-device architecture. Output port includes a queue (Q) and a traffic
shaper (TS).

Figure 2 illustrates the components of an XDense network at different levels of abstraction. Each
node is composed of a sensor (S), a processor (P) and a router (R) and is connected to its neighboring
nodes located in the four cardinal directions using bidirectional communication ports; termed
networking devices (ND). Because they are bidirectional ports, we refer to their input and output
independently as the input ports and the output ports.

The sensor is specified according to the nature of the phenomena to be monitored. For example,
to enable high-precision AFC, pressure and temperature sensors can jointly provide better sensing
of the airflow [13].

The processor runs the application layer. It interfaces with the sensor and implements high level
application-specific protocols for data sharing and processing. The router arbitrates the exchange of
data. It can receive and transmit packets in parallel, from/to the processor and networking devices.
Networking devices are full-duplex serial communication ports. We use serial links as they are
widely available in COTS micro-controllers and provide low complexity and low footprint at low
cost (compared to parallel links found in NoC[14]). For example, in [8] the authors show that the
utilization of parallel links beyond 2 millimeters represent up to 150% larger on-chip area utilization
and up to 30% increase in power consumption when compared to high performance serial links.
Their results clearly show that serial links present overall better performance compared to parallel
links larger than a few milliliters. Thus, we believe that serial links are more appropriate to the
deployment scales we envision.
Each one has a queue (Q) and a traffic shaper (TS) (see Figure 2(d)). Input packets are directly

delivered to the router whereas output packets are first queued (in FIFO order) at the target output
port before they are dequeued by the traffic shaper to be then transmitted serially over the network.
All network transfers are non-preemptive and packet-switched, and all packets have a fixed and
equal size.

The purpose of the traffic shaper is to provide determinism to the output traffic, and consequently
make it amenable to real-time analysis. Its function is two-fold: it implements a release offset to the
output packets and makes the transmission periodic. Shaping the traffic enables us to formulate the
output traffic as a linear cumulative function of the input traffic. We will discuss our traffic shaping
techniques in detail in Section 3.

It is important to remark that for this work, we ignore the internal delays of the nodes and focus
exclusively on the communication delays. Also, all temporal units are normalized and quantified in
terms of Transmission Times Slots (TTS), which is the time required to transmit a single packet.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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2.2 Hardware implementation
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Fig. 3. (a) node’s schematic showing each major components of the system. (b) Node prototype. (c) 3×3
network.

For realizing the above design of XDense, a custom design integrated circuit (IC) provides the
best-fit solution; But this reduces design flexibility and might become a single application solution.
For this reason, we use a microcontroller (µC) and other COTS to prototype the XDense node and
network. The rest of this section provides context to this discussion with a short overview of the
prototype that we have developed, shown in Figure 3.
To implement XDense, we chose the Atmel ATSAM4N8A µC. It is based on the 32-bit ARM

Cortex-M4 RISC processor, which is a mid-range general purpose µC, that runs at up to 100 MHz
and provides a good balance between power consumption and processing power. It has a small 48
pin footprint, with five high speed UART ports, each with dedicated DMA channels that allows
efficient communication. We use the FreeRTOS[3] real-time operational system (RTOS) in our
nodes. It provides device drivers and additional high level abstractions for context switching and
multi tasking.

The schematics, prototype node and a 3x3 network deployment is shown in Figure 3. We placed
four sensors on the top of the board for: motion sensing with 9 degrees-of-freedom; pressure;
temperature, and visual-range light sensing. We have presented more details on the hardware
prototype using COTS in [19].

2.3 AFC application scenario

We now revisit the AFC application discussed in the introduction. While not used as input in the
analysis ahead, the focus being to prove the realtime nature of XDense, it is useful to understand
how XDense fits into the AFC application workflow.

As shown in Figure 1, XDense is positioned on the wing of the aircraft to collect the environment
data. Experimentally, a wind tunnel would be desired to pose the aerodynamic conditions over a
wing surface embedded with an XDense network. Computational Fluid Dynamics (CFD) simulation
allows us to simulate airflow over a wing and collect this information by a virtual deployment of
XDense. This is a well studied area in aerodynamic research and one important test case is for the
ONERA M6 wing in viscous flow [32].2

2The ONERA M6 wing was designed for studying three-dimensional, high Reynolds number flows with complex flow

phenomena (transonic shocks, shock-boundary layer interaction, separated flow). It has become a classic validation case for

CFD codes due to its simple geometry, complicated flow physics, and availability of experimental data.
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Fig. 4. (a) Pressure distribution over a wing’s surface. (b) Data of a single time-frame, from Computational
Fluid Dynamics (CFD) simulation, as input for XDense. (c) Sensors displacement; (d) Normalized data, as
seen by each sensor.

We have integrated this CFD simulator into our workflow for simulation of XDense inputs. Now,
the AFC input simulation workflow consists of the following steps:

(i) Generatewingmodel:A3Dmesh of awing is generated and imported into the CFD simulator
(Figure 4(a));

(ii) Simulate wing performance: The CFD simulator is run to simulate a pitching wing flowing
through high speed air flow. Temporal pressure and temperature data of the surface of the
wing are produced. (Figure 4(b));

(iii) Extract sensor data: These temporal pressure and temperature data are extracted, but only
from the points in space that correspond to the XDense node deployment. Figures 4(c) and 4(d)
illustrate sensor deployment and sensor data, respectively.

More specifically, the sensor data is generated and imported using the SU2 simulator for multi-
physics [24]. SU2 is a reliable open-source CFD simulator which is widely used in aerodynamics
research.

Even though we integrate our simulation model and the SU2 CFD simulator, note that the input
data is indifferent to the network operation, as the analysis pertains to the communication aspects
only. Therefore not influencing in any way the results presented in this paper.

2.4 Principles of XDense Operation

Consider the AFC use case depicted in Figure 1 as a working example. The objective is to col-
lect information on the nature of the airflow and identify whether it is laminar or turbulent by
quantifying its characteristics along the wingspan.
A naive solution to this problem is to request each node to continuously sense information

about the airflow and send it back to a sink. The information collected from the sink can then be
used to compute the airflow’s properties. Clearly, this approach generates a tremendous load on
the network, requires large buffers in each node, and leads to significant delays between the time
at which the information is requested and the time at which it is eventually processed (sensed
information may have a maximum lifetime).
Instead, we use XDense to efficiently build a global picture of the airflow by organizing the

nodes in clusters and perform local data processing. In each cluster, one node serves as the cluster

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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(d)

(b)

(c)(a)

Input flow Output flow

Fig. 5. Example 45 × 45 network, with a single central sink. In this case, with nradius = 2. Application phases:
(a) ϕ1 ś Sink requests data from cluster-heads; (b) ϕ2 ś Cluster heads in turn send a multicast request to
nodes in their cluster; (c) ϕ3 ś Nodes send sensor data back to their respective cluster-head; (d) ϕ4 ś Cluster
heads process received data and send result to sink.

head node. It performs data aggregation within its cluster and is responsible for processing (and/or
compressing) the data locally to send only meaningful information to the sink. Another example
of utilization is to program the cluster heads to inform the sink only upon the occurrence of
meaningful events (e.g., airflow changes from laminar to turbulent and conversely).

The routing protocols elected should ideally exploit the network topology to avoid congestion. It
is also required to define application protocols to allow coordination of clusters by the sink.

To tackle the challenge of analyzing and computing upper-bounds on the application execution
time and the buffer requirements of the nodes through distributed processing, XDense uses three
operative principles: (1) the nodes are clustered and one node in each cluster (cluster head) is in
charge of aggregating and pre-processing the data; (2) the execution of the application is divided
logically in subsequent phases; (3) the network implements routing schemes which guarantees
spatial isolation between the clusters.

2.4.1 Clustering nodes. The reason for grouping the nodes into clusters is to reduce the load on
the network by performing in-cluster data pre-processing at the selected cluster heads. Our tested
solution implements non-overlapping łsquarež clusters ś the network topology being a 2D grid
of X times Y nodes, all clusters are non-overlapping and of size nsize × nsize, with nsize ≤ X and
nsize ≤ Y . nsize must be a positive odd number and the cluster head is the node located at the łcenterž
of the square. The cluster size nsize is defined through the system parameter nradius that denotes the
maximum distance from the cluster head to the farthest node in the cluster (considering rectilinear
distance, a.k.a. Manhattan distance). Figure 5 shows a scenario with nradius = 2. Thus, the resulting
total number of nodes in each cluster is a function of the nradius given by (2 × nradius + 1)

2.
Nodes arbitrate their role on the network at run time (to act either as cluster head or normal

node). They do this on reception of a packet from the sink containing the packet origin and the
nradius parameter. Each node then calculates, based on its position in the network relative to the
sink, if it is supposed to act as a cluster head or as a normal node.

As discussed earlier, the purpose of local in-cluster processing is to extract high level aerodynamic
information of the airflow, which is transmitted in a smaller number of packets (when compared to
the number of packets required to transmit the raw data). The pre-processing and compression
algorithms to be used are application-specific and are not in the scope of this paper. We have though

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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discussed application specific data processing issues in previous works (see [20] for a discussion on
this topic).

2.4.2 Executing application in phases. The execution of the application is logically divided into
a set of four consecutive phases ϕ1,ϕ2,ϕ3 and ϕ4. The first phase is started by the sink, when it
requests data from the cluster heads. Specifically, the four phases are:

• Phase ϕ1. The sink requests the cluster heads of all clusters to send the processed data;
• Phase ϕ2. On receiving the request from the sink, the cluster heads in turn request the nodes
of their respective clusters to send their data;
• Phase ϕ3. Every node of each cluster transmits its sensed data to its cluster head;
• Phase ϕ4. The cluster heads process the received data and transmit the result back to the sink.

Note that the clusters may not always be in sync with respect to the phase of their execution.
The second phase (ϕ2) for instance, start in each cluster with a different time offset; This offset
being proportional to the distance between the cluster head of each cluster and the sink. We assume
cluster heads’ clock are synchronized during ϕ1, at the time they receive the request from the sink.
The same applies to sensor node’s clock, which are synchronized during ϕ2, at the time they receive
the request from their cluster head. That is, all nodes co-participating on a phase (in the same
cluster) have a common time basis, which is an important assumption for the proposed heuristics
to work. We believe this is a reasonable assumption, since nodes synchronization point happen
just before synchronism is required, providing a momentary synchronism during a given phase,
even when there is considerable clock skews between nodes.
Despite their special role, the sink and cluster heads sense as any other node. The sink is the

only node to act as the gateway with the outside world and has a backhaul link (for example, a
wireless link). Figures 5(a) to 5(d) show the four phases in a chronological order.

2.4.3 Spatial isolation through routing schemes. The four phases described above require spatial
isolation so that packets do not compete with each other for network resources when traversing
it. We use the well-known dimension-order routing algorithms known as X-Y and Y-X routing
protocols [14]. In X-Y routing (resp, Y-X), packets are first routed along the X (resp, Y) dimension
and then along the Y (resp, X) dimension. These protocols always find the shortest path between
the source and destination nodes (again, in terms of the Manhattan distance) and are proven to be
deadlock-free [11].

Phases ϕ1 to ϕ3 use one of the following two routing algorithms, sometimes called Counterclock-
wise Dimension Routing (see Figures 5(a)-(c)). The starting dimension (X or Y) depends on the
quadrant in which the destination node is, relatively to the origin of the packet. For phase ϕ4 we
propose another routing protocol hereafter referred to as Shifted Clockwise Dimension Routing.
This protocol adds an initial change in dimension on the first hop and then uses a regular clockwise
routing (see Figure 5(d)).

The nodes aligned with the sink are not part of any cluster. They provide an exclusive route for
packets of ϕ4, sent by the cluster head to the sink. This routing scheme results in flows from phase
ϕ4 to travel orthogonal to the flows from phases ϕ1,ϕ2 and ϕ3 and therefore they do not compete
for the same output port at any node on the way. This enables spatial isolation between the flows
from the different phases.

3 EXTENDING XDENSE WITH REAL-TIME APPLICATION CAPABILITIES

We endow XDense with real-time capabilities by shaping the traffic at every output port of every

node in the network. In simple terms, by controlling how and when packets are sent by each node,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Fig. 6. Traffic shaper example scenario: two input flows shaped by an intermediate node as an output flow.
Parameters for the input flows are f1 = {O = 2.5, β = 1,σ = 10} and f2 = {O = 1, β = 1

5 ,σ = 3}. The resulting

flow is f3 = {O = 2, β = 1
2 ,σ = 13}.

we are able to compute the maximum buffer requirement and determine precise upper-bounds on
the application execution time.

3.1 Networking model

The real-time application deployed on the network is characterized by a set Φ = {ϕ1,ϕ2, . . . ,ϕn } of
n consecutive event-triggered phases (communication and processing primitives) that constitute
the logical part of the application execution. In this work, we assume n = 4 (as explained in the
previous section) but the approach can be extended to any arbitrary number n of phases. Every
phase ϕi ∈ Φ, with i ∈ [1,n], is characterized by a set Fi ofmi ≥ 1 communication traffic flows
exchanged between the nodes involved in phase ϕi . Each flow fi, j ∈ Fi , with j ∈ [1,mi ], consisting
of one or more packets, has an unique source node from which the communication is initiated, and
may have multiple destination nodes. Formally, a flow fi, j is modeled as:

fi, j = {Oi, j , σi, j , βi, j } (1)

The offset Oi, j is a constant delay before the sending of the first packet of flow fi, j . The message
size σi, j is the number of packets that are sent in each flow fi, j and the burstiness βi, j ∈ [0, 1]
represents the rate at which those packets are released. A burstiness of 0 means that no packets
are transmitted, and a burstiness of x ∈ ]0, 1] means that a packet is transmitted every 1

x
TTS.

These three parameters together describe a finite constant-rate flow with an initial offset. The flow
parameters σ and β were conceived to couple the application sampling requirements with the
communication model, in the sense that they allow modeling application scenarios with different
data sampling requirements. A few example flows are illustrated below.

Example 3.1 (9 Degrees of Freedom (DOF) motion sensor). Consider a 9 DOF motion sensor whose
data has to be transmitted as nine separate packets in a single flow (one packet for each degree of
freedom). In this case, we want the data to be transmitted together. Therefore, we set β = 1 with
σ = 9 for that flow.

Example 3.2 (Pressure sampling). Consider a use-case in which ten samples of pressure data need
to be transmitted, using one packet per sample. We are interested in having periodic sampling,
equally distributed in time. By setting the burstiness to 1

5 for instance, one packet will be sent every

5 TTS. Therefore, for that flow we set β = 1
5 and σ = 10.

3.2 Shaping flows and traffic throughout the network

As discussed above, the sending of all packets by the source node of the corresponding flow f is
done according to its parameters (O,σ , β); these three parameters allow for a precise timing and
sending rate at the source node of f . Note that for simplicity, we shall use hereafter the symbol
f to denote a flow. We will mention the indexes i and j that indicate the phase and flow indexes
respectively only if necessary.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.
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Although the flows are shaped at their source, whenmultiple flows (say, f in1 , f
in
2 , . . . , f

in
k
) traverse

the network at the same time, pass through the same router, and compete for the same output port,
the resulting output flow f out at that port is a superposition of all these competing flows. As such,
f out may present an irregular packet transmission pattern and a rate that can no longer be modeled
using the three parameters (O,σ , β).

For example, let us look at Figure 6, which illustrates two input flows f in1 and f in2 competing for a

same output port of a node. Each of these flows f in
k

starts at time Ok and has a duration defined as

ℓk =
σk
βk
. That is, flow fk sends all its packets after ℓk TTS, at t = Ok + ℓk . In this example, thanks

to the traffic shaper TS, the interference of these two input flows lead to an output flow f out3 that is
not a superposition of the two input flows, but rather it preset deterministic patterns that can be
modeled using the three parameters (O,σ , β).
That is, to make the network amenable to timing analysis, we shape the traffic at every output

port of every node and make it fit the linear model (O,σ , β). For that, we first identify the set of
input flows f in

k
(with k = 1, 2, . . .) at every output port of every node in the network, and based on

the respective parameters (Ok ,σk , βk ) of these flows, we compute the parameters (Oout,σ out, βout)
that are used to shape the resulting output flow at that output port.
In Figure 7, we present a more detailed example to illustrate how the traffic shaping is done.

Figure 7(a) shows packet arrivals curve S (t ) due to four incoming flows f in1 , f
in
2 , f

in
3 and f in4 (see

Figure 7(b)). The arrival curve correspond to the incoming flows that define the number of packets
to be sent over time from the output port, that depends on the starting time and duration of all the
competing input flows. Three possible resulting flows f out are computed and shown in Figure 7(c),
each with its corresponding departure curve in Figure 7(a).
The computation of (Oout,σ out, βout) is therefore performed at every output port of every node

in the network interactively, starting at the source node of every flow and iterating, one port at
the time, throughout the network until a shaper is defined for all the output ports. 3 We make two
important assumptions regarding the flows and their routing.
Assumption 1. During phases ϕ3 and ϕ4, in every node, all the packets entering by a given

input port are assumed to exit through a single output port.
Assumption 2. There are no circular dependency between the flows. For any output port, say

p1, the computation of the parameters of its traffic shaper requires each of its competing input
flows to be modeled already by the three parameters (O,σ , β). If any of these input flows, say
f in
k
, comes from the output port (say p2) of an upstream router, it is required that the parameters

(O in
k
,σ in

k
, β in

k
) of the shaper of that upstream output port p2 have been computed already. Similarly,

this requirement must be satisfied for all the input flows competing for p2, and interactively it
must be satisfied as well for all the output ports of the upstream routers till the traffic shaper at the
source nodes of all the interfering flows. Therefore, computing traffic shaping parameters is an
iterative process that must be executed until (Oout,σ out, βout) is calculated for all nodes. In simple
terms, there cannot be a flow f1 competing for an output port with a flow f2 that competes for an
output port with a flow f3, and so on until reaching a flow fk that competes for an output port with
f1.
Assuming no cyclic dependencies between the flows, the parameters (Oout,σ out, βout) of every

traffic shaper may be computed in many different ways for a same set of interfering input flows. In
the next section, we propose three different methods of computation.

3Note that it has been proven in [35] that to calculate optimal shaping parameters in a multihop scenario can be computa-

tionally intractable, and thus finding optimal solution at runtime is not feasible.
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Fig. 7. Traffic shaping heuristics: (a) input, and output flows using the proposed heuristics; time-line showing
offset and duration of (b) arriving flows and (c) departure flows.

3.3 Shaping output traffic at a single output port

We propose three heuristics to compute the parameters (Oout,σ out, βout) of the shaper used at a
given output port. Let F in denote the set of input flows that compete for the output port under
analysis. Every f in

k
∈ F in is characterized by the three parameters (O in

k
,σ in

k
, β in

k
). For each f in

k
∈ F in,

we define the function S in
k
(t ) as

S ink (t ) =



0 t ≤ O in
k

β in
k
× (t −O in

k
) O in

k
< t < O in

k
+ ℓk

σ in
k

t ≥ O in
k
+ ℓk

(2)

Broadly speaking, every function S in
k
(t ) represents the number of packets sent by the flow f in

k
at a

given time t (TTS). When t is earlier than the starting instant O in
k
of the flow, the function returns

0 since the flow has not sent a packet yet; For t larger than the finishing time of the flow (O in
k
+ ℓk ),

the function returns the total number σ in
k

of packets sent by f in
k
, with ℓk being the duration of the

flow; Between the two bounds O in
k
and O in

k
+ ℓk , the function increases steadily from 0 to σ in

k
with

a constant slope of β in
k
.

Let S (t ) =
∑

f in
k
∈F in S ink (t ) be the sum of the functions S in

k
(t ) of all the input flows f in

k
. This

function S (t ) is depicted in Figure 7(a). Informally, S (t ) gives the number of packets that arrive at the
considered input port in a time window of length t (TTS). We further denote by T = {t1, t2, . . . , tm }
the finite set of time-instants (sorted in chronological order) corresponding to the discontinuity
points of the function S (t ). These discontinuity points are denoted asp1,p2, . . . ,pm in Figure 7. With
these new notations, we can introduce our three heuristics for the computation of the parameters
(Oout,σ out, βout) of the shaper used at the analyzed output port.
For a given shaper (Oout,σ out, βout) represented by a straight line Lout of slope βout and passing

through the point (Oout, 0), the vertical distance dvoutj between a point (tj , S (tj )) ∈ S (t ), ∀tj ∈ T ,

and the line Lout represents the number of packets being buffered at time t at that output port. The
horizontal distance dhoutj between a point (tj , S (tj )) ∈ S (t ), ∀tj ∈ T and Lout represents the delay
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(induced by the shaper) that all the packets that have arrived at that output port at time tj will
incur because of the shaper.

We start by computing the output flow size σ out that is the same for all the heuristics proposed.
Since the shaper is not allowed to drop any packet, it is naturally the sum of the size of all the input
flows f in

k
, i.e.

σ out
=

∑

f in
k
∈F in

σ in
k

In the remainder of this section we discuss the intuition behind each heuristic and explain how
they derive the two other flow parameters, Oout and βout.

3.3.1 Minimum offset (Min-O). This first heuristic aims at avoiding bursty traffic while coping
as much as possible with the bandwidth demand of the input flows. This traffic shaper forwards the
first packet as soon as it can, i.e. one TTS after the packet has arrived, at time Oout

= t1 + 1 TTS,
and forwards all the subsequent packets at the highest admissible rate; that is, with the highest
burstiness βout such that the number of packets sent at any time t ≥ Oout never exceeds S (t ).
This burstiness corresponds to the highest slope among the slopes of all the lines passing through
the point (t1 + 1, 0) such that, for every tj ∈ T , the point of x-coordinate tj in the line has an
y-coordinate ≤ S (t ) ś In simple terms, the line is łbelowž the function S (t ), ∀t ≥ 0. This slope is
simply given by

βout =

[
min
tj ∈T

(

S (tj )

tj − (t1 + 1)

)]1

0

where [x]zy = max(min(x , z),y). Note that by definition of t1, we have t1 = minf in
k
∈F in (O in

k
). Fig-

ure 7(a) shows Min-O departure curve with βout as βMin-O.

3.3.2 Maximum slope (Max-S). The second heuristic aims at not consuming any bandwidth for
as much time as possible and then send all the packets in a burst. Similarly to the Min-O heuristic,
the Max-S approach selects one łanchorž point of S (t ) and computes the maximum slope βout such
that the line with slope βout passing through the selected point is łbelowž the function S (t ). In
Min-O, we selected the anchor point (t1 + 1, 0) whereas Max-S selects the point (tm , S (tm )). The
maximum admissible slope such that the line remains below S (t ) is given by:

βout = max
tj ∈T

(

S (tm ) − S (tj )

tm − tj

)

(3)

Figure 7(a) shows Max-S departure curve with βout as βMax-S. The offset O
out in Max-S is simply

set to the X-intercept of the line of slope βout and passing through the anchor point (tm , S (tm )) to
which we add 1 TTS, to make sure that packets are not forwarded before the first packet arrives
(like we did in Min-O), i.e.

Oout
= tm −

S (tm )

βout
+ 1

After computing the offset Oout, it is now safe to readjust the slope as βout =
[

βout
]1
0 to model the

fact that the shaper cannot forward a negative number of packets and neither it can forward more
than one packet at a time. Note that this re-adjustment must be performed after computing Oout as
doing it before would in some cases allow a packet to be forwarded before it even arrived, that is,
the line would not be completely below the function S (t ).
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Figure 7(a) shows the departure line of Max-S, initially calculated with a slope > 1 as a result
of Equation 3. That slope is then adjusted to βout = 1 as depicted on that Figure. As seen, after
adjusting its slope, the line corresponding to the parameters of the Max-S traffic shaper does not
intersect with the function S (t ) ś It seems to be łtoo much shifted to the rightž. An easy patch to
reduce this gap between S (t ) and the shaper is to set its offset to the minimum offset such that the
line remains below all the points of S (t ). That is,

Oout
= min

t ≥0


t such that βout ≤ min

tj ∈T

tj>t

(

S (t ) − S (tj )

t − tj

)
(4)

Note that this value of Oout can be computed easily by positioning the line of slope βout on every
point (tj , S (tj )), ∀tj ∈ T , and retaining the maximum X-intercept of all these lines.

3.3.3 Least-square regression (LQ). The intuition behind this third heuristic is to minimize both
the queue size and the delay by finding the line Lout that minimizes the distance between every
point (tj , S (tj )) ∈ S (t ), ∀tj ∈ T and Lout. This line is commonly known as the regression line of the
points (tj , S (tj )) ∈ S (t ). Using the least-squares method, which is the most common method for
fitting a regression line, the slope of that line is given by

βout = r ×

√

1

m

∑

tj ∈T

(S (tj ) − S̄ )2

√

1

m

∑

tj ∈T

(tj − t̄ )2

(5)

where

t̄ =

1

m

∑

tj ∈T

tj

S̄ =

1

m

∑

tj ∈T

S (tj )

and r is the correlation coefficient computed as

r =

∑

tj ∈T

(tj − t̄ ) (S (tj ) − S̄ )

√

∑

tj ∈T

(tj − t̄ )2
∑

tj ∈T

(S (tj ) − S̄ )2

Once we have computed the slope, we choose the smallest offset Oout such that the line of slope
βout and passing through (Oout, 0) is never above any point (t , S (t )), ∀t ≥ 0. This is done using
Equation 4.

3.4 Worst-case per-hop delays and maximum queue sizes

Having stated the heuristics, we can now apply them to all the phases of the application. We
perform this in a hop-by-hop strategy, starting from the output ports of the nodes for which the
parameters (O in

k
,σ in

k
, β in

k
) of all the interfering flows f in

k
are known. For each such output port, the

resulting output flow f out is shaped using the same model (Oout,σ out, βout) that is then propagated
as the input flow in the next hop. The process continues until the parameters of the shaper of
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every output port of all the nodes of the network are defined (the output ports that no flows ever
traverse and that are thus unused are naturally ignored). As mentioned earlier, we assume that
there are no cyclic dependencies between the flows at any output port, which implies that the
process eventually terminates.

After that step, we can now compute at each output port the maximum transmission delay caused
by its traffic shaper (Oout,σ out, βout), as well as its maximum queue size. To ease the explanation,
we shall use the same visual representation as that used in the previous section for the shaper and
the function S (t ). The shaper is represented by a straight line of slope βout that intersects with the
x-axis at the point (Oout, 0). We denote this line Lout and write its equation as

Lout (t ) = βoutt − βoutOout (6)

We define S (t ) as in the previous section and keep the notations T = {t1, t2, . . . , tm } to express the
finite set of time-instants (sorted in chronological order) corresponding to the discontinuity points
of the function S (t ).

As explained previously, the number of packets buffered at the output port at any time-instant t
is given by the vertical distance dvoutj between the point (t , S (t )) and the point (t ,Lout (t )) on the

line Lout. This vertical distance is simply equal to

dvoutj = S (t ) − Lout (t )

and thus the maximum number MaxQueue of packets buffered at that output port is given by

MaxQueue = max
t ≥0

(

S (t ) − Lout (t )
)

Since S (t ) is a continuous piecewise function for which every sub-function is linear, it can easily
be showed that the maximum of the previous equation can be found by looking only at the
time-instants tj ∈ T rather than at all t ≥ 0, i.e.,

MaxQueue = max
tj ∈T

(

S (tj ) − L
out (tj )

)

(7)

This holds true because every sub-function of S (t ) is a segment that is either:

• parallel to Lout. In this case, all the points on that segment are at the same distance from Lout,
including its two extremities that are discontinuity points with an x-coordinate included in
T .
• converging towards Lout. In this case, the leftmost point on the segment (whose x-coordinate
is an instant tj ∈ T ) is the furthest to Lout.
• diverging from Lout. In this case, the rightmost point on the segment (whose x-coordinate is
an instant tj ∈ T ) is the furthest to Lout.

Similarly, the transmission delay at any time-instant t is given by the horizontal distance dhoutj

between the point (t , S (t )) and the point of y-coordinate S (t ) on the line Lout. According to Equa-
tion 6, that point of y-coordinate S (t ) ∈ Lout has an x-coordinate x such that S (t ) = βoutx − βoutOout

and thus x =
S (t )
β out +O

out. The horizontal distance is then simply given by:

dhoutj =
S (t )

βout
+Oout − t

and thus the maximum delay MaxDelay at that output port is:

MaxDelay = max
t ≥0

(

S (t )

βout
+Oout − t

)
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Fig. 8. Cumulative arrival/departure curves for a single node, using (a)Min-O, (b)Max-S and (c) LQ heuristics.

For the same reasons as those mentioned for MaxQueue, the maximum delay MaxDelay can be
computed by looking only at the points tj ∈ T , i.e.,

MaxDelay = max
tj ∈T

(

S (tj )

βout
+Oout − tj

)

(8)

Note that the transmission delay is an interesting parameter to analyze the end-to-end delay
or per-hop delays of individual packets. However, in this paper we rather focus on estimating
upper-bounds on the execution time of the phases and thus of the overall real-time application.
To compute the execution time of a given phase, we must know exactly when the phase start

and when it ends. However, phases may overlap in time and happen simultaneously. For instance,
for the application scenario considered in this paper, a cluster head located close to the sink may
enter phase ϕ2 long before a cluster head that is far from the sink (since it receives the request from
phase ϕ1 sooner). For simplicity, we assume in this work that a phase ends when a given node has
received all the packets sent to it. For example, the time at which all the cluster heads have received
their requested data marks the end of phase ϕ3 and the time at which the sink has received all the
processed data marks the end of phase ϕ4. As such, we compute the execution time of a phase as
the relative time-instant at which all the four input flows of that given node ś a cluster head for
phase ϕ3 and the sink for phase ϕ4 ś terminate, i.e. the four flows coming from the north, south,
east, and west input ports of that node. The execution time of a phase is thus given by

ExecTime = max
card∈[↑,↓,→,←]

(

O in
+

σ in

β in

)

(9)

where for each cardinal direction ↑, ↓, →, and ← (north, south, east, and west), the flow f in

characterized by (O in,σ in, β in) is the input flow coming from that cardinal direction.

3.5 Validation example

To validate our theoretical model we compare it with simulation. For that, we define the following
scenario: a single node receives an arbitrary number of known input flows, which are shaped into
an output flow (using any of the proposed heuristics) We compare the arrival/departure curves
calculated using our model, against the curves obtained in simulation.
Figure 8(a-c) shows the cumulative arrival/departure curves due to three input flows, and the

resulting output flow obtained using each of the three heuristics proposed. The input flows char-
acteristics were chosen in order to emphasize the effect of each shaping heuristic on the output
flow.
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We use the same input flows in all three scenarios, which are Fx = [f in1 , f
in
2 , f

in
3 ], where f in1 =

{O = 0,σ = 3, β = 0.5}, f in2 = {O = 10,σ = 3, β = 0.5} and f in3 = {O = 12,σ = 3, β = 0.5}. The
resulting output flows are different for each heuristic, which are f out

Min−O
= {O = 1,σ = 9, β = 0.3},

f out
Max−S

= {O = 8.2,σ = 9, β = 0.83} and f out
LQ
= {O = 4.8,σ = 9, β = 0.49}.

The arrival curves obtained through simulation (common to the three cases) is a stair function
that presents the superposition of all the arriving flows. Because the output flow is shaped, the
corresponding departure curve is a homogeneous stair function. As expected, the arrival/departure
curves calculated using our model precede the simulated ones in every point. It also shows the
queue size and delay calculated at every point in which the arrival and/or departure curves start,
finish or change its slope.

For the given Fx , from Figure 8(a), Min-O performs badly compared to the other heuristics, as it
adds large delays between the arrivals and departures, which leads to equally large queues and
long execution time. We notice from Figure 8(b) that the departure curve obtained with Max-S
approaches maximally the arrival curve at its tip (1 TTS far), leading to the optimal execution time
with the cost of larger queues from 0 to 10 TTS. On the other hand, LQ heuristic leads to smaller
queues, with a slightly longer execution time.
Although these results provide an intuition on the trade-offs between the heuristics proposed,

they do not depict the results of multi-hop communication, in which case the effects may differ.
Therefore, a more complete evaluation is provided in the next section to understand how each
heuristic performs through multiple hops.

4 EVALUATION OF TRAFFIC SHAPING HEURISTICS

Application use-case: To evaluate the proposed heuristics, we consider the application scenario
introduced in Section 2. Remember that the execution of this application is divided logically in
four consecutive phases ϕ1,ϕ2,ϕ3 and ϕ4. In the first phase ϕ1, the unique sink node requests all
the cluster heads to send their data; in phase ϕ2, the cluster heads performs another request to all
the nodes of their respective cluster; in phase ϕ3, the nodes reply to the cluster heads by sending
them the sensed data; and in phase ϕ4, the cluster heads process the data received and transmit
the result back to the sink. Since there is no network congestion in phases ϕ1 and ϕ2 ś because all
the packets sent from the sink to the cluster heads and then from the cluster heads to the sensing
nodes have their own private route to their destination ś these two phases are neither affected
by a modification of the cluster size, nor by changing the number of clusters, nor by altering
the burstiness of the flows generated during phases ϕ3 and ϕ4. We shall therefore focus only on
phases ϕ3 and ϕ4 in which network congestion does occur and for which a modification of the
aforementioned parameters has an impact on the performance.
Network setup: The network is organized as a square grid of 45 × 45 = 2025 nodes with an

unique sink located at the center of the grid. Figure 5 depicts a closeup on the sink. In that figure
we can also see the overall cluster organization, the routes taken by the flows in the different
phases and the central row and central column of nodes in the middle that are dedicated only to
the communication between the cluster heads and the sink. Based on an integer parameter nradius
that we vary in our experiments, we define every cluster as a square grid of (2nradius + 1)

2 nodes
with the cluster head at the center of the grid. As such, nradius defines both the cluster size and
the number of clusters (the smaller the clusters, the more clusters in the network, and reversely).
Because of our routing algorithms and network symmetry assumptions (position of sink in the
center of the network and cluster-head in the center of their cluster), the workload observed in
each quadrant around the sink or cluster-heads will be identical. This makes it sufficient to analyze
a single quadrant of the network or cluster.
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Shaping heuristics: We evaluate the performance of the three proposed heuristics Min-O,
Max-S, and LQ against the performance of a cycle-accurate network simulator that we call BE. The
simulator does not implement any traffic shaper and thus it delivers the best effort (BE) performance
overall.
Simulator: The simulator consists of a module for XDense on top of Network-Simulator-3

(NS-3). It is scalable to simulate very large network deployment scenarios with low computational
cost. This is because we use packets, routing algorithms and addressing schemes with low overhead,
tailored to this kind of network.
The general nature of the design and implementation of configurable links, packets, communi-

cation ports, router and applications, also makes our module suitable to other 2D mesh network
architectures as well (NoCs for example). This is because the different abstraction levels can be
implemented independently, as a set of intermediate models, each one with its specific objectives.
For example, the traffic shapers theorized in this work were actually implemented in our simulator
as an independent application layer, so we could study its practical viability, and for debugging
purposes. 4

Evaluation criteria and methodology: For each of the three heuristics Min-O, Max-S, LQ, we
evaluate the maximum queue sizes and the end-to-end execution time of the phases ϕ3 and ϕ4. For
BE, maximum queue sizes and phases execution time are measured in the simulator. We do so for
different cluster sizes, flow burstiness and network load distribution. Because there is no source
of nondeterminism in our simulation model, each runs gives the exact same results for the same
input parameters. Thus, we are only required to run our experiments once for each scenario, for as
long as all four phases last.

To understand the impact of varying the network load, we analyze both homogeneous and het-
erogeneous flow scenarios in phases ϕ3 and ϕ4 (that is, the phases when the actual data transmission
happens). We define a homogeneous flow scenario as one in which all nodes generate flows with
equal burstiness and message size. A scenario with random message sizes and burstiness is defined
as a heterogeneous flow scenario.

We analyze the homogeneous scenario by varying the burstiness β of flows from phases ϕ3 and
ϕ4 from 0.02 to 1 by step of 0.02, for different cluster sizes.

The message size σ differs for each phase. For phases ϕ1 and ϕ2, a single packet is generated
at the sink and cluster head (σ = 1). In phase ϕ3, each node outputs a flow with message size
σ = 4. At the end of ϕ3, the cluster head receives in total four packets per each node on its cluster.
Subsequently, each cluster head outputs a flow with message size σ , as the sum of all these packets
plus 4 packets of its own sensed data, times ⌈1 − CR⌉. The term CR aims at reproducing the effect
of data compression by the cluster head. For this work we define this as a fixed value equal to
CR = 80%, which was shown in previous work [20] to be a reasonable ratio in some air flow
scenarios. The number of packets originated by each cluster vary with cluster size, whereas the
number of clusters is inversely proportional to the cluster size. This trade off has a compensatory
effect on the overall number of packets transmitted to the sink.

In the heterogeneous flow scenario, flows generated at phases ϕ3 and ϕ4 have random message
sizes. We use a uniform distribution function with σ = rand (0, 10) and burstiness β = rand (0.02, 1).
A message size of zero signifies that a node does not have an output flow.

In our results, we compare the performance of both heterogeneous and homogeneous scenarios.
In order to do this fairly, we guarantee that for both homogeneous (HO) and heterogeneous (HE)
network load distribution, the sum of burstiness of all flows, as well as the sum of all message sizes,

4The simulator source code used in the simulation this paper for the simulator, pre and post processing tools, example

scenarios and implementation of the traffic shaping heuristics are available at: https://bitbucket.org/joaofl/noc
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(a) ϕ3, nradius = 1
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(b) ϕ3, nradius = 3
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(c) ϕ3, nradius = 5
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(d) ϕ4, nradius = 1
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Fig. 9. Homogeneous flow scenario: Maximum queue size for traffic shaping heuristics against simulation.
Results are for phases ϕ3 and ϕ4 and nradius set to 1, 3 and 5.

(a) BE, ϕ4, nradius = 5 (b) LQ, ϕ4, nradius = 5

Cluster head

Sink

Cluster

Fig. 10. Queue size density map of the top-right quadrant of the network (17×7 nodes), for heuristics (a) LQ
and (b) BE. X and Y axis are nodes coordinates relative to the sink.

are equal. That is,
∑

βHO
=

∑

βHE and
∑

σHO
=

∑

σHE . This guarantees that the total network
load remains the same for both scenarios, even if individual load distribution varies.

For both scenarios, the offset remains the same; and equal to their distance from the sink/cluster
head (since it is meant to model the minimum time required for a node to reply to a request).

4.1 Maximum queue size with homogeneous load distribution

For each of the three heuristics Min-O, Max-S and LQ, we first derive the parameters (O,σ , β ) of
all the traffic shapers in the network. Then we use Equation 7 on every shaper to compute the
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(f) ϕ4, nradius = 5

Fig. 11. Homogeneous flow scenario: Link utilization for traffic shaping heuristics against simulation. Results
are for phases ϕ3 and ϕ4 and nradius set to 1, 3 and 5.

maximum queue size of the corresponding node and finally, we retain the maximum queue size of
all the nodes in the network.
As we can see in Figures 9(a) and 9(b), in phase ϕ3 the queues are smaller for smaller clusters

(nradius). This is expected since smaller clusters contain less nodes and therefore there are less
packets exchanged within each cluster, and thus less congestion. The opposite scenario would be
expected for phase ϕ4 since using smaller clusters means more clusters in the network, and thus
more cluster heads transmitting packets to the sink. Yet, this is not observed in Figure 9(d) and 9(e).
That is, smaller clusters do not imply longer queues. The reason for this counter-intuitive result can
be unveiled by looking at the utilization of the four input links of the sink.

We define the link utilization as the average utilization of a given link of a node during a given
phase. It is calculated as the number of packets sent on that link in a given phase (here, phase ϕ4)
divided by the time (number of TTS) it takes for all those packets to traverse it. An utilization of 1
means that the link is never idle during the considered phase whereas an utilization of 0 means that
the link is not used. As seen in Figure 11(d), smaller clusters yield a better utilization of the input
links of the sink. This is because the sum of packets sent to the sink does not depend only on the
cluster size. With more (and smaller) clusters, there will be more clusters and more cluster-heads
transmitting to the sink from shorter distances. Thus, its input links will spent less time idle waiting
for the packets to arrive from longer distances. In other words, with fewer (but bigger) clusters,
cluster heads are farther from the sink and thus its input links spend more time idle waiting for
the packets to traverse the intermediate hops. Greater utilization, for the same number of packets
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received by the sink, shows that there is less congestion in the network and thus smaller queue at
individual hops.

It is worth noticing that in some scenarios, the maximum queue size obtained when using traffic
shaping is smaller than the maximum queue size without traffic shaping. This is experienced for
example in ϕ4 for nradius = 3 and 5, shown in Figure 9(e) and 9(f), for β ∈ [0.4, 0.6]. In this window,
the maximum queue size of Max-S and LQ are smaller than that of BE. This result is due to the offset
O imposed by the traffic shapers in the initial hops. In these cases, the offsets act on distributing in
time the load on the network, and thus decreasing the maximum congestion.
However, in cases with lower link utilization and burstiness, BE yields shorter queue sizes. In

these cases the network is underutilized, such that BE still does not lead to excessive load on the
network. On the other hand, performing traffic shaping imputes on unnecessary buffering by nodes,
and consequently greater queues.
The aforementioned effect is shown in Figure 10. It shows the queue size density map of the

top-right quadrant of the network, with nradius = 5. The sink is located at the bottom-left corner.
Flows are routed using shifted clockwise routing as previously shown in Figure 5; hence, right
to left in this map. The left most nodes in the network are usually where the bottleneck happens.
Using BE for example, in Figure 10(a), the node located at coordinates (x ,y) = (0, 5) gets up to 18
packets queued, since it is located at a conjunction of flows coming from cluster heads on its right
and top. Because of the offset O calculated using LQ, we can see from Figure 10(b) that by shaping
and queuing the flows originating at the right side of the network (by the node located at (6, 5))
has the effect of delaying the reception of those packets by the left most node located at (0, 5);
Thus, reducing the maximum queue size at the nodes aligned with the sink. Comparatively, from
18 packets using BE, to 13 using LQ.

Another interesting observation occurs during ϕ4 for the method Min-O. The maximum queue
size gets smaller with increased burstiness. This is very counter-intuitive since we would expect that
by injecting more traffic in the network, the congestion would increase. However, this phenomena
can be easily explained mathematically: it is due to the way the method Min-O is defined. Looking
at Figure 7, the flows duration defined as σ

β
are longer for lower burstiness β and thus for low

values of β , the first points ∈ T (depicted by p1, p2, etc.) are farther from the origin. Since Min-O
selects a point close to the origin as łanchorž point, its slope must be small so that the line remains
below the function S (t ). With a low slope, it is likely that the vertical distance between the function
S (t ) and the line will be high (in particular if S (t ) increases quickly). These phenomena can be
observed, to a limited extent, in Figure 7.

4.2 Phase execution time for homogeneous load distribution

We compare the execution time of the phases ϕ3 and ϕ4 in Figure 12, again for the cluster sizes
defined by nradius = 1, 3 and 5 and varying the burstiness of the initial flows from 0.02 to 1 by step
of 0.02. The execution times are computed by using Equation 9. As seen in all graphics of Figure 12,
increasing the burstiness considerably reduces the execution time of the phases (note that the
plots are in logarithmic scale) which remains constant after a point. This point is reached only
for high burstiness in Figure 12(a) whereas it is reached almost immediately in Figure 12(b). This
threshold beyond which the execution time cannot be further reduced can be explained by looking
at the utilization of input link of cluster heads (for phase ϕ3) and the sink (for phase ϕ4). Those
thresholds correspond to specific values of the burstiness for which the links saturate and therefore,
any further increase in burstiness only results in longer queues but not in reduced execution time.

From the above results, we observe that the LQ heuristic performs better overall. We vary nradius
from 1 to 5, with β varying as before, for both ϕ3 and ϕ4. The results are shown in Figure 13.
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(f) ϕ4, nradius = 5

Fig. 12. Homogeneous flow scenario: Execution time of phases ϕ3 and ϕ4 for traffic shaping heuristics against
simulation.

Figures 13(b) and 13(e) show the inverse relationship with nradius. In ϕ3, smaller the nradius, the
smaller the clusters, and hence reduced traffic. In ϕ4, there are more clusters transmitting to the
sink, and consequently more traffic and link utilization.
It is also worth noticing that the increase/decrease on the link utilization changes non-linearly

with nradius. This is because the number of nodes in each cluster grows with the square of the nradius.
By looking at Figures 13(a) and 13(c) we can observe a property of the LQ heuristic (this also

occurs for the other heuristics which are not shown for brevity). For all values of nradius, both
maximum queue size and total execution time remain constant (from β > 0.4). So even when link
utilization is saturated, an increase in burstiness at flows’ sources does not lead to worst queues and
total time. We explain this phenomenon in Section 4.1. The same behavior can mostly be observed
also during ϕ4 in Figures 13(d) and 13(f).

4.3 Maximum queue size with heterogeneous load distribution

The results for maximum queue sizes for heterogeneous loads (see Figure 14) while tending to
show the same trends as for homogeneous loads, present more chaotic behavior. BE performance is
degraded. This implies that in more scenarios, applying traffic shaping is enough to reduce queue
sizes compared to the case with homogeneous loads.
Also, in Figure 15, one can see that the link utilization due to heterogeneous load distribution,

presents similar overall behavior when compared to the homogeneous scenario. This was expected,
since the network load was intentionally designed to be approximately the same. But apart from
that, we can see that the Max-S heuristic performs better than before, specially during phase ϕ4
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Fig. 13. LQ heuristic - (a) maximum queue size and, (b) link utilization and (c) total execution time, with
varying burstiness and nradius = [1, 2, 3, 4, 5].

(Figures 15(d) to 15(f)), in which it provides higher link utilization when compared to LQ (in most
cases for β < 0.6), while keeping queue size and total execution time approximately the same.

4.4 Phase execution time for heterogeneous load distribution

Total execution time again present the same results, since the total number of packets and average
burstiness among nodes is the same for both scenarios. This is shown in Figure 16.
Once again, we take a closer look at the LQ heuristic alone, to understand the impact of nradius.

These results are show in Figure 17 for phases ϕ3 and ϕ4. There is a clear drop in performance in all
metrics for this specific heuristic. The same drop is not observed for Max-S heuristic, that betters
BE performance for heterogeneous flow sources.
To summarize, the heuristics Max-S and LQ, in both homogeneous and heterogeneous flow

sources, perform close to that of BE that does not use traffic shaping. This means that by applying
our heuristics for traffic shaping we are able to provide timing and resource usage determinism,
and yet impose very little loss in terms of performance as compared to a best-effort solution.

5 RELATED WORK

In this section, we briefly discuss the differences between XDense and other sensor networks
tailored to dense sensing and we go through a few systems that use similar mesh-grid network
architectures. Then, we discuss some seminal works on real-time communication in multi-hop
networks and traffic shaping to provide communication bounds for real-time applications.
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Fig. 14. Heterogeneous flow scenario: Maximum queue size for traffic shaping heuristics against simulation.
Results are for phases ϕ3 and ϕ4 and nradius set to 1, 3 and 5.

A multi-modal sensor network was proposed in [17], as a scalable sensor network with up to
hundreds of nodes per square meter. However, due to the wireless nature of the links (infrared),
contentions and collisions substantially increase the cost of communication. Their research leans
more towards wireless sensor networks whose performance does not suit the application scenarios
we focus on. Instead of wireless links, in [23], the authors use wired links to deploy few sensors in
a grid network, to act as an electronic skin. However, nodes are interconnected using shared buses,
approach that differs from ours.

More recently, the authors of [7] presented a modular and dense sensor network in a form factor
of a tape, tailored to wearables. In these cases though, master-slave buses are used to interconnect
nodes (through SPI or I2C), regardless of the shape of the network. Not only shared buses drastically
decrease the opportunity for distributed processing due to their finite bandwidth that do not scale
along with the number of nodes, but they also constraint the number of nodes due to limited
address space and related electrical limitations. They are therefore not a scalable solution.
Related to the challenges of dense sensing on aircraft wings, in [15] the authors demonstrate a

design integration and experimental assessment of a stretchable sensor network that is embedded
inside a wing. The network consists of a passive and static structure, in which nodes are individually
read from the exterior. The authors provide a good technological solution to integration related
challenges, but do not address network communication issues.

XDense uses a 2D mesh network architecture that resembles common NoC architectures [1, 14].
Numerous works to achieve real-time guarantees have been proposed for NoCs. For instance,
the authors of [34] proposed a worst-case analysis technique for priority-preemptive, wormhole
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Fig. 15. Heterogeneous flow scenario: Link utilization for traffic shaping heuristics against simulation. Results
are for phases ϕ3 and ϕ4 and nradius set to 1, 2 and 5).

switched NoCs. This approach was later extended in [12], in which an end-to-end schedulability
analysis was proposed for many-core systems. Additionally, in [27] authors provide methods to
efficiently calculate the worst case bandwidth and latency bounds for real-time traffic streams on
wormhole-switched NoCs with arbitrary topology. However, wormholing is tailored to parallel
links, where very high bandwidth is required, and for large amount of data transfer between cores.
Because XDense relies on non-prioritized packet switched serial communication, this approach
does not apply to our network architecture.

More in line with our approach, initially proposed by Cruz [6], network calculus enables real-time
communication for packet switched multi-hop point-to-point networks, addressing the issue of
guaranteeing the delivery of messages with time constraints. This problem has been extensively
researched since then; In [10], the authors survey the state-of-the-art of deterministic and proba-
bilistic network calculus, by providing a review of service curve models of common schedulers
along with different types of networks and methods for identification of a system’s service curve
representation. With a slightly different concept, the authors in [9] propose a feasibility analysis of
periodic hard real-time traffic in packet-switched networks using first come first served queuing,
without traffic shaping. Their framework suite real-time analysis of switched Ethernet, and can
provide better results compared to network-calculus in some cases.

Traffic shaping to achieve tighter and deterministic bounds has also been investigated already. For
example, in [35] the authors use rate controlled Earliest Deadline First scheduling in conjunction
with per-hop traffic shaping to provide deterministic end-to-end delay guarantees. They identify the
shaping parameters that result in maximal network utilization. This has also been studied for NoCs
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Fig. 16. Heterogeneous flow scenario: Execution time of phases ϕ3 and ϕ4 computed for traffic shaping
heuristics against simulation.

in [22] for worst-case response guarantees and buffer space optimization. Traffic shaping is also
used on Ethernet networks to provide real-time guarantees by shaping the packet sources [36]. The
authors provide an asynchronous traffic scheduling algorithm, which gives low delay guarantees,
while keeping low implementation complexity.

6 CONCLUSIONS AND FUTURE WORK

The proposed traffic shaping heuristics enable us to endow XDense networks with real-time capa-
bilities. We showed that the performance of XDense is approximately the same, with and without
traffic shaping. This means that the proposed traffic shaping techniques allow determining timing
and memory requirements while imposing minor performance overheads. The performance of
XDense, in both homogeneous and heterogeneous scenarios also showcases its stable performance.
However, further experiments exploiting distributed processing algorithms on CFD input data for
AFC need to be performed (as discussed in Section 2.3).

Even though it has not been discussed in the paper, the analysis framework that we propose can
also serve as a basis to reason on the dimensioning of the system; in the choice of network size, the
clusters size, and other configuration that may impact on the performance. The framework was
designed to allow modeling different clustering, event detection and actuation algorithms, to meet
the demands of different application scenarios.
We also believe the proposed framework can be used in other kinds of synchronous multi-hop

networks. The requirements are that the flow sources (the nodes from which the packets are
generated) are known, and can be modeled according to our flow model. This should allow us to

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:26 J. Loureiro et al.

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ( )

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

1
2
3
4
5

(a) ϕ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ( )

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

ut
iliz

at
io

n

1
2
3
4
5

(b) ϕ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ( )

101

102

103

104

To
ta

l t
im

e 
(T

TS
)

1
2
3
4
5

(c) ϕ3

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ( )

0

10

20

30

40

M
ax

 q
ue

ue
 si

ze

1
2
3
4
5

(d) ϕ4

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ( )

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

ut
iliz

at
io

n

1
2
3
4
5

(e) ϕ4

0.0 0.2 0.4 0.6 0.8 1.0
Burstiness ( )

101

102

103

104

To
ta

l t
im

e 
(T

TS
)

1
2
3
4
5

(f) ϕ4

Fig. 17. Link utilization (a), maximum queue size (b) and total execution time (c) with varying burstiness, for
the LQ heuristic only, for nradius = [1, 2, 3, 4, 5].

shape every output/input flows on the network, and provide real-time guarantees based on the
calculations. We think that there are opportunities on designing new traffic shaping heuristics that
would provide reduced queue sizes and delays compared to the actual ones.

Improvements to the model can be made along many dimensions. One would be to bring in
computational fluid dynamics data to analyze the performance of the model vs synthetic data. The
model can also be improved with more accurate portrayal of hardware (for example, to consider
the internal delays). One way to do this is to measure delays on real hardware and incorporate it.
We have already made some progress along these lines [21].
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