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ABSTRACT

Background. The whale shark (Rhincodon typus) is known to aggregate in a number of

coastal locations globally, however what causes these aggregations to form where they

do is largely unknown. This study examines whether bathymetry is an important driver

of coastal aggregation locations for R. typus through bathymetry’s effect on primary

productivity and prey availability. This is a global study taking into account all coastal

areas within R. typus’ range.

Methods. R. typus aggregation locations were identified through an extensive literature

review. Global bathymetric data were compared at R. typus aggregation locations and a

large random selection of non-aggregation areas. Generalised linear models were used

to assess which bathymetric characteristic had the biggest influence on aggregation

presence.

Results. Aggregation sites were significantly shallower than non-aggregation sites and

in closer proximity to deep water (the mesopelagic zone) by two orders of magnitude.

Slope at aggregation sites was significantly steeper than non-aggregation sites. These

three bathymetric variables were shown to have the biggest association with aggregation

sites, with up to 88% of deviation explained by the GLMs.

Discussion. The three key bathymetric characteristics similar at the aggregation sites

are known to induce upwelling events, increase primary productivity and consequently

attract numerous other filter feeding species. The location of aggregation sites in these

key areas can be attributed to this increased prey availability, thought to be the main

reason R. typus aggregations occur, extensively outlined in the literature. The proximity

of aggregations to shallow areas such as reefs could also be an important factor why

whale sharks thermoregulate after deep dives to feed. These findings increase our

understanding of whale shark behaviour and may help guide the identification and

conservation of further aggregation sites.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Conservation Biology, Marine

Biology, Spatial and Geographic Information Science

Keywords Whale shark, Marine megafauna, Conservation, Bathymetry, Distribution model

INTRODUCTION

Marine ecosystems are the most extensive and among the most threatened in the world

(MEA, 2005). The increasing rates of exploitation and incidental capture in the fisheries

industry (Halpern et al., 2007) often exhibit disproportionate impacts onmarinemegafauna
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(Abercrombie, Balchowsky & Paine, 2005; Read, Drinker & Northridge, 2006; Capietto et al.,

2014). The consequences and subsequent declines are far reaching; marine megafauna are

often apex predators, therefore, their removal has cascading impacts on lower tropic levels,

causing community restructuring and enhanced vulnerability of other species (Lewison

et al., 2004; Casini et al., 2008; Howarth et al., 2014). Impacts are not only ecological;

presence of megafauna often significantly contributes to local economies through

ecotourism (Catlin & Jones, 2010). Despite their importance, little is understood about

the factors affecting the movements and global distributions of many marine megafauna

species. Identifying and understanding areas used in important periods of their life is

essential for future conservation efforts (Hays et al., 2016). The whale shark (Rhincodon

typus) is one such species where there are still many knowledge gaps about their global

distribution, movements and the factors affecting these (Sequeira et al., 2013).

Rhincodon typus is one of three large pelagic filter feeding shark species and is the largest

fish in the world (Smith, 1828). They have a circumglobal distribution, found in tropical

and warm temperate seas between the latitudes of 30◦N and 35◦S (Pierce & Norman,

2016). As filter feeders, R. typus primarily feed on zooplankton and therefore tend to be

observed in areas with high productivity (Colman, 1997; Rohner et al., 2018). However,

recent studies have shown whale sharks also feed on the spawn of various corals, fish and

invertebrates (Graham & Roberts, 2007; Hobbs et al., 2009; Rohner et al., 2016). There is

no robust population estimation for this species, but it is listed as endangered on the

IUCN Red List (Pierce & Norman, 2016). Their late sexual maturation, highly mobile

nature and relatively low abundance make this species extremely vulnerable, particularly to

incidental capture and overexploitation, which has caused global population decline and

fragmentation (Dulvy et al., 2008; Pierce & Norman, 2016). More recently, the economic

value of live whale sharks to ecotourism has been shown to be considerably higher than

when fished (Catlin & Jones, 2010; Cagua et al., 2014). A report published by the WWF-

Philippines (Pine, 2007) estimates the value of a whale shark to be worth US$250,000 dead,

or US$2,000,000 provided in ecotourism benefits over the animal’s lifetime.

The importance of this species has triggered a growing interest amongst the scientific

community, with the majority of papers on R. typus published within the past two decades.

Together with the increases in ecotourism, there is now a depth of knowledge about local

and regional whale shark ecology and biology. Yet there is still a dearth of information

about global distribution, especially connectivity of populations and pattern in movements

(Sequeira et al., 2012; Sequeira et al., 2013). R. typus were once perceived to be solitary

animals that live and feed in the open ocean, but it is now well documented that juvenile

whale sharks do aggregate in response to the forming of predictable, seasonal feeding

opportunities (Colman, 1997; Heyman et al., 2001; Riley et al., 2010).

An increasing number of coastal aggregation areas are being discovered, with

research showing there could be up to 25 sites globally (Colman, 1997; Eckert

et al., 2002; Andrzejaczek et al., 2016). Nevertheless, 25 sites is a very small num-

ber in all of the world’s oceans, indicating that whale sharks only aggregate in

response to a very specific set of conditions. There is great variability among

aggregation events in terms of available prey, when they occur and the num-

ber of individuals aggregating (Rowat & Brooks, 2012; Andrzejaczek et al., 2016).
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Studies have shown R. typus aggregate in areas of high biological productivity and the

seasonal nature of such aggregations appears to be the result of local increases in prey

(Meekan et al., 2006; Rowat et al., 2007; Rowat et al., 2009). The timing of a number of

aggregations is predictable due to the close association with increased prey availability.

For example, Heyman et al. (2001) show whale sharks are only regularly seen in large

numbers at Gladden Spit, Belize, during full moon periods in April and May where a large

number aggregate to feed on Lutjanidae spp. spawn. This is again reflected in the Gulf of

Tadjouran, Djibouti, when throughout the winter months (November to February) a large

aggregation of R. typus can be observed feeding on zooplankton (Rowat et al., 2007). There

are disparities in aggregation size and structure between sites; numbers vary from 10 to

1,000-plus individuals and exhibit a spatial segregation by age and gender, typical in shark

populations (Springer, 1967; Brunnschweiler et al., 2009; De la Parra Venegas et al., 2011).

R. typus is a pelagic species believed to spend most of their lives in deep offshore

waters except during aggregation events, which are thought to be predominantly seasonal

(Abercrombie, Balchowsky & Paine, 2005; Andrzejaczek et al., 2016). There have only been

a handful of studies researching the deep diving behaviour of R. typus, nonetheless they

suggest R. typus dive to the mesopelagic zone to feed (Graham, Roberts & Smart, 2006;

Brunnschweiler et al., 2009; Sun et al., 2016). Using pop-up satellite archival tags, Tyminski

et al. (2015) recorded one individual diving to a depth of 1,928 m in the north-eastern

Gulf of Mexico. These studies indicate deep water is important for R. typus, therefore the

neighbouring bathymetry could play a role in aggregation events.

Bathymetric features such as continental and reef slopes, shallow banks and seamounts

tend to be areas of high marine productivity, in particular high zooplankton abundance,

often driving predator prey aggregations (Afonso, McGinty & Machete, 2014). Bouchet et al.

(2015) show areas with complex bathymetry such as seamounts or steep slopes found on

outer reefs accumulate zooplankton, which subsequently attracts filter feeders, particularly

at epipelagic and mesopelagic depths. This was shown by Sims (2008) with a greater

abundance of basking sharks (Cetorhinus maximus) in areas with steeper slopes, owing to

the higher densities of zooplankton.

Studies have shown almost all R. typus aggregations occur in coastal areas of shallow

bathymetry in close proximity to the reef slope and deeper water (De la Parra Venegas et

al., 2011; Donati et al., 2016; Diamant et al., 2016). Past studies have illustrated increased

zooplankton availability in areas of steep bathymetry, which R. typus preys upon (Bouchet

et al., 2015). Therefore, bathymetry at and around areas of aggregation events could be an

important factor in driving them. There are currently few in-depth studies into bathymetry

and R. typus globally (Sleeman et al., 2007; Rohner et al., 2013; Sequeira et al., 2012) use

coarse scale bathymetry data to look at the distribution of R. typus, and McKinney et al.

(2012) use bathymetry to investigate the feeding habitat of R. typus in the Gulf of Mexico.

However, the current lack of highly detailed studies into bathymetry and R. typus could

limit future conservation efforts for this species (Rowat & Brooks, 2012).

Our study therefore aims to address this knowledge gap by investigating whether there is

an association between bathymetry and R. typus feeding aggregation sites by quantitatively

analysing previous qualitative and anecdotal observations. We will address the following
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questions: Are there similarities in bathymetry between aggregation sites? How does this

compare to bathymetry at non-aggregation sites? Which bathymetric variables are most

associated with aggregations? And, what is the biggest potential driver of aggregations? By

addressing these key questions, we will deliver a quantitative update to previous qualitative

research and aim to provide an increased understanding of the bathymetric conditions at

R. typus aggregation sites.

MATERIALS & METHODS

Data acquisition

To identify R. typus aggregation sites, an extensive literature review was done using the

following search terms in Web of Science and Google Scholar: Whale shark, Rhincodon

typus, aggregation, coastal, bathymetry, topography, relief, depth, movements, feeding. All

relevant articles (in excess of 150) were evaluated and papers that mentioned aggregations

were retained for further use. From these, a database of 17 aggregation events was created

containing size, spatial and temporal occurrence and coordinates at the centre of the

aggregation. Although more sites were found in the literature search (Gulf of Oman

(Robinson et al., 2016), Japan (Colman, 1997), Tawian (Stewart & Wilson, 2005; Hsu, Joung

& Liu, 2012) and Thailand (Theberge & Dearden, 2006)), there was a lack of detailed

location information and no clarity as to if these were recognised aggregations or one-off

events. Therefore, these potential additional sites could not be used accurately in our analysis

and were not included in this study. See Table 1 for a list of the included aggregation sites.

Furthermore, three of the 17 aggregation sites appeared vastly different from the other

sites in this study. The Al Shaheen Oil Field site aggregation, Qatar, described by Robinson

et al. (2013) is an area of high whale shark abundance, however it is not coastal and is

dispersed over a large area, therefore not considered a truly comparable aggregation.

Literature suggests the aggregations around the Mississippi Delta and the Christmas Island

aggregation are driven by unique ecological phenomena. The aggregation in the Gulf of

Mexico appears to be driven by runoff from the Mississippi stimulating high primary

productivity at a scale far higher than other aggregation sites (Hoffmayer et al., 2007;

Hueter, Tyminski & De la Parra, 2013). Meanwhile, the Christmas Island aggregation is

driven by red crab (Gecarcoidea natalis) spawning events which do not occur at any other

sites (Hobbs et al., 2009;Meekan et al., 2009). Moreover, these three sites have considerably

fewer literature describing the aggregations compared to the other sites in this study.

Therefore, for the purpose of this study we decided these sites were not comparable with

the other 14 well-known large aggregations.

The global range of R. typus was obtained from the IUCN (International Union for

Conservation of Nature , IUCN) to examine the spatial distribution of aggregation sites.

Bathymetric depth data were obtained from the 2014 General Bathymetric Chart of the

Oceans (GEBCO, 2015) at a resolution of 30 arc-seconds (approximately 1 km). The

GEBCO dataset was highest resolution, freely available bathymetric that covered the whole

study area. Whilst more detailed datasets are available for specific areas such as Western

Australia, there is no comparable data for many of the areas in the tropics, therefore the

GEBCO dataset was used throughout to ensure consistency and to allow comparison
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Table 1 Summary of the aggregation sites.Names and locations used in this study with the literature

sources where information has been extracted.

Aggregation location Sources

Australia, Ningaloo Reef Meekan et al. (2006),Wilson et al. (2006), Reynolds et al. (2016) and

Norman et al. (2017)

Belize, Gladden Spit Heyman et al. (2001), Graham, Roberts & Smart (2006), Quiros (2007)

andMcKinney et al. (2017)
aChristmas Island, West Coast Hobbs et al. (2009) andMeekan et al. (2009)

Djibouti, Gulf of Tadjoura Rowat et al. (2007), Schmidt et al. (2009), Rowat & Brooks (2012) and

Leblond & Rowat (2016)

Gulf of California, La Paz Clark & Nelson (1997), Ramírez-Macías et al. (2016) and Ramírez-

Macías & Saad (2016)
aGulf of Mexico, North Area Hoffmayer et al. (2007) andMcKinney et al. (2012)

India, Gujarat Pravin (2000), Rowat (2007) and Sequeira et al. (2014)

Madagascar, Nosy Be Jonahson & Harding (2007), Brunnschweiler et al. (2009) and Diamant et

al. (2016)

Maldives, South Ari Atoll Riley et al. (2010), Donati et al. (2016) and Perry (2017)

Mexico, Afuera De la Parra Venegas et al. (2011), Hueter, Tyminski & De la Parra (2013)

and Hacohen-Domené et al. (2015)

Mexico, Yucatan Peninsula Motta et al. (2010), Ziegler, Dearden & Rollins (2012), Hueter, Tyminski

& De la Parra (2013) and Tyminski et al. (2015)

Mozambique, Tofo Beach Brunnschweiler et al. (2009), Sequeira et al. (2012) and Rohner et al.

(2018)

Philippines, Donsol Bay Eckert et al. (2002), Quiros (2007), Thomson et al. (2017) and Araujo et

al. (2017)
aQatar, Al-Shaheen Oil Field Robinson et al. (2013), Robinson et al. (2016) and Robinson et al. (2017)

Seychelles, Rowat et al. (2007), Rowat et al. (2009) and Andrzejaczek et al. (2016)

Saudi Arabia, Al-Lith De la Torre et al. (2012), Berumen et al. (2014) and Sun et al. (2016)

Tanzania, Mafia Island Cochran (2014), Rohner et al. (2015) and Prebble et al. (2016)

Notes.
aindicate they were later removed from analysis, explained in subsequent sections.

between sites. To examine relationships between bathymetry, primary productivity and

their association with whale shark aggregations we also obtained data on sea surface

temperature (SST) and chlorophyll-a concentration from OceanColor (NASA, 2014), an

archive of oceanographic data from satellite based remote sensing. SST data were a seasonal

composite of the years 2000 to 2016 at a 4 km resolution recorded by the Terra MODIS

instrument. The seasonal composite of chlorophyll-a concentration from 2012 to 2016

at a 4 km resolution, recorded by the SNPP-VIIRS instrument was also used. Seasonal

composites were used as R. typus aggregate seasonally and a composite of a number of

years should mitigate the influence of anomalies such as El Niño.

Spatial analysis

R. typus aggregation point data were imported, and locations re-checked against source

papers to ensure locations were correct. To investigate if aggregation sites are unique, they

were compared to areas where aggregations do not occur; therefore, 1,000 random points

in non-aggregation areas were created (Fig. 1). 1,000 points were chosen to allow a large

geographic spread within R. typus’ range to capture a range of bathymetric characteristics.
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Figure 1 Locationmap of sites. Location of aggregation and non-aggregation sites used in this study

with the global R. typus distribution.

Full-size DOI: 10.7717/peerj.4904/fig-1

Whilst there is no consensus on the correct number of pseudo absence points to include,

the large number of pseudo absence points we used allowed for a powerful comparison

with aggregation sites. Although R. typus has a global range, the aggregations in this study

are coastal, therefore unproductive and deep high seas areas were excluded, as these would

have biased our absence data. Thus, random points were constrained to coastal areas

by calculating the maximum distance of the observed aggregation sites from the coast

(26 km) and using this to create a zone around coastlines within R. typus’ range. Due to

the resolution of the bathymetry data, each point covers an area of approximately 1 km2.

Aspect, slope and vertical/profile curvature, hereafter referred to as ‘‘curvature’’, layers were

generated from bathymetric depth to further examine the characteristics of bathymetry

in key areas. Positive values of curvature indicate upwardly concave slopes, negative

values show upwardly convex slopes, and values close to 0 indicate planar slopes. Benthic

complexity was generated from the standard deviation of depth and slope roughness was

generated as the standard deviation of slope. Although there are other ways to measure

complexity and roughness, using the standard deviation of slope or depth is one of the

most simple and effective measures at a variety of scales (Fox & Hayes, 1985; Grohmann,

Smith & Riccomini, 2011). These variables were chosen based on similar research focusing

on both R. typus and other marine megafauna species (Sleeman et al., 2007; Sequeira et al.,

2012; Afonso, McGinty & Machete, 2014; Bouchet et al., 2015).

Twenty km buffer zones were generated around each aggregation and random point,

allowing extraction of information about the surrounding areas. This size of zone was

selected based on distances R. typus travels; Hueter, Tyminski & De la Parra (2013) show

the mean daily distance travelled during long distance movements to be 24.7 km, which

would be lower during aggregation events with the focus on feeding. Minimum,maximum,

mean, range were extracted for depth, complexity, slope and curvature for the point data

and buffer zones. SST and chlorophyll data were extracted by the same method but only

for point data, not buffer zones due to the lower resolution of these data, where one cell

covers a large portion of the buffer zone. The distance of aggregation sites to the 200 m

and 1,000 m isobaths (mesopelagic and bathypelagic zones) were also measured as these
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depths were previously shown to be important for R. typus feeding (Brunnschweiler et al.,

2009).

Statistical analysis

Of the 1,000 random points, five had missing data for one or more variables so were

removed, leaving 995 random points for analysis. Literature shows aggregations occur

in the seasons with the highest chlorophyll-a concentration and SST (Sequeira et al.,

2012; Afonso, McGinty & Machete, 2014). Therefore, maximum values across the four

seasons were extracted and used during analysis. Basic statistics were run on the variables,

examining means and variance to initially look for differences in the data. To test whether

differences between aggregation and non-aggregation sites were significant, an independent

samples t -test was used. This was chosen due to its power and robustness, particularly

with large datasets (Zimmerman, 1987; Erceg-Hurn & Mirosevich, 2008). Generalised linear

models (GLMs) with a binomial error function were used to investigate which variable

had the greatest influence on aggregation presence. Whilst examining data, a number

of predictor variables exhibited collinearity (Variance Inflation Factors ≤5.0 or Pearsons

Correlation r ≥ 0.7). Variables with the strongest covariate relationship were removed from

the dataset, strongest first, in an iterative stepwise process, whilst retaining the variables

with the strongest univariate relationship with the response variable. To minimise this

intercorrelation and prevent masking of trends whilst modelling, data were split into

four sub-sets based on the stepwise reduction (Zuur, Ieno & Elphick, 2010; Tamura et al.,

2017). These four sub-sets were modelled separately to keep variables with strong covariate

relationships apart (see Table 2 for the list of variables in each GLM). The four model

outputs showed no overdispersion so minimum adequate models were created using

backward-forward stepwise reduction based on the Akaike Information Criterion (AIC)

(Hilbe, 1994; Dobson & Barnett, 2008). Analysis of deviance was used to test whether the

deviance explained had not reduced from the full models, therefore justifying the use of

stepwise reduction (McCulloch, 2000).

RESULTS

Many of the bathymetric variables studied showed distinct differences between the

aggregation and non-aggregation sites. All depth measures were significantly shallower in

areas R. typus aggregate (Table 3), with the biggest difference shown to be between mean

depth at the aggregation sites, 22.2 m, an order of magnitude lower than non-aggregation

sites (635.3 m); this difference was highly significant (t = 19.262, df = 1006.7, p< 0.001).

Similarly, the mean depth in 20 km buffer zones was shown to be significantly shallower

than mean depth in non-aggregation sites (t = 9.578, df = 25.601, p< 0.001). Maximum

depth and range of depths within the 20 km buffer zones were around 50% lower at

aggregation sites, further highlighting aggregations occur in shallower areas. Benthic

complexity was significantly lower at aggregation sites than that at non-aggregation sites

(Table 3), meaning a smoother, less rugged surface.

Themean slope at aggregation sites was significantly steeper than that at non-aggregation

sites, however the inverse was displayed with mean slope in the buffer zones (Table 3).
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Table 2 Summary of the variables used in this study. These have been extracted from spatial analysis

and the name they are referred to throughout this study.

Variable Name

Mean point depth Site depth

Mean buffer zone depth Buffer depth

Maximum buffer zone depth Buffer max

Buffer zone depth range Buffer range

Benthic complexity Complexity

Mean point slope Site slope

Mean buffer zone slope Buffer slope

Maximum buffer zone slope Max slope

Slope roughness Roughness

Curvature at point Site curvature

Mean curvature in buffer zone Mean curvature

Maximum curvature in buffer zone Concavity

Minimum curvature in buffer zone Convexity

Slope aspect Aspect

Proximity to 200 m isobath 200 m

Proximity to 1,000 m isobath 1,000 m

Mean Chlorophyll-a concentration Chlorophyll

Mean SST SST

Table 3 Means for each variable and results of the t -tests. Means of each variable at aggregation and

non-aggregation sites with t -test statistic results highlighting the difference.

Variable Aggregation

site mean

Non-aggregation

site mean

t -test statistics

Site depth (m) 22.2 635.3 t = 19.262, df = 1006.7, p< 0.001

Buffer depth (m) 173.0 713.6 t = 9.578, df = 25.601, p< 0.001

Buffer max (m) 716.6 1,350.8 t = 3.086, df = 14.441, p= 0.008807

Buffer range (m) 712.4 1,295.3 t = 2.836, df = 14.319, p= 0.013

Complexity 180.3 336.5 t = 2.571, df = 14.121, p= 0.022

Site slope (degrees) 0.67780 0.00003 t = 2.931, df = 13, p= 0.012

Buffer slope (degrees) 1.41 2.55 t = 2.951, df = 14.46, p= 0.011

Max slope (degrees) 8.95 10.31 t = 0.624, df = 13.616, p= 0.543

Roughness 0.00744 1.96266 t = 30.083, df = 994, p< 0.001

Site curvature 0.000002 0.000011 t = 1.274, df = 21.855, p= 0.216

Mean curvature 0.000005 0.000003 t = 1.386, df = 13.177, p= 0.189

Concavity 0.000613 0.000584 t = 0.181, df = 13.549, p= 0.859

Convexity −0.000648 −0.000594 t = 0.312, df = 13.444, p= 0.759

200 m (km) 0.170 71.781 t = 14.477, df = 994.2, p< 0.001

1,000 m (km) 0.416 99.385 t = 17.694, df = 994.32, p< 0.001

Aspect 190.498 172.826 t = 0.73397, df = 13.518, p= 0.475

Chlorophyll (mg/m3) 0.669 1.532 t = 6.397, df = 35.86, p< 0.001

SST (◦C) 30.4 29.8 t = 2.173, df = 18.129, p= 0.063
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T -tests showed no significant differences between the means of maximum slope in buffer

zones, with a difference of only 1.4 degrees between aggregation and non-aggregation sites.

However, the absolute maximum slope recorded was steeper; 29.8 degrees at aggregation

sites and 60.1 degrees at non-aggregation sites. Aggregation sites had a lower slope roughness

by three orders of magnitude compared to non-aggregation sites, and the t-tests showed

these differences were highly significant. The curvature at and around both aggregation and

non-aggregation sites was slightly concave with no real differences (Table 3). The buffer

zones around aggregation sites showed greater concavity than areas aroundnon-aggregation

sites and the result is the same when looking at the slight convexity displayed at both sites.

With such small variation in all mean values, there were no significant differences between

curvature at aggregation and non-aggregation sites.

Aggregation sites were two orders of magnitude closer to the 200 m isobaths with a

mean distance of 0.14 km, whereas the mean distance for non-aggregation sites was 71.78

km. Similar results are shown in the distance to the 1,000 m isobaths; aggregation sites had

a mean distance of 0.41 km compared to non-aggregation sites which had a mean distance

of 99.38. The observed differences in distance to both the 200 m and 1,000 m isobaths

were highly significant (Table 3). The mean slope aspect was south for both aggregation

and non-aggregation sites; the majority of individual slope aspects were either southeast,

south or southwest, with very few facing north. There were differences in chlorophyll-a

concentration and SST between aggregation and non-aggregation sites. Surprisingly,

chlorophyll-a was significantly lower at aggregation sites with a mean concentration of

0.67 mg/m3, compared to 1.53 mg/m3 at non-aggregation sites (t = 6.397, df = 35.86,

p< 0.001). SST showed no significant difference between aggregation sites, and non-

aggregation sites.

Main drivers of aggregations

The six predictor variables left in the four minimum adequate models were significant

(p< 0.05) and three of the models (Table 4) had high percentage of deviance explained

(>85%) for aggregation site presence. Aggregation site presence was best modelled by

GLM3, with the mean depth in the buffer zone (buffer depth) explaining 88.71% of

deviance. GLM1 containing mean depth at points (site depth) and proximity to the 200 m

isobaths explained 87.96% of deviance of aggregation sites. Site slope and proximity to

1,000m, whichwere left in GLM2 after stepwise reduction, explained 88.16%of aggregation

site deviance. These three GLMs all explain high deviation with significance, therefore

indicating commonality in bathymetric features at aggregation sites and differences to

those found at non-aggregation sites. Diagnostic plots were checked for outliers and

showed the residuals were close to the line and Cook’s Distance values below 0.5 for all

points, suggesting no single point had an overpowering or unnecessary influence on the

overall trend of aggregation site presence. P[D] values (probability of decreased deviance

explained from the full model) for all models were high, suggesting the minimum adequate

models used explain no less deviance than the full GLMs and the stepwise reduction of

variables was justified.
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Table 4 Results of the GLM. Binomial generalised linear models of aggregation site presence and absence

bathymetric and environmental predictor variables. Statistics include the percentage deviance explained

(%D), probability of deviation (p[t]) and the probability of decreased deviance explained form the full

model (p[D]). Bold variables indicate significance to a level of 0.05.

Model Name Predictor variables tested Minimum adequate model

GLM1 Site depth, 200 m,

Site curvature, Complexity

Site depth: %D = 0.7748, p[t ] = 0.0143,

200 m: %D = 0.7496, p[t ] = 0.0379,

(AIC = 23.2, %D= 0.8796, p[D] = 0.683)

GLM2 Site slope, Depth range,

1,000 m, Mean curvature,

Max slope

Site gradient: %D= 0.6571, p[t ] = 0.0021,

1,000 m: %D = 0.4885, p[t ] = 0.0157,

(AIC = 27.3, %D= 0.8816, p[D] = 0.784)

GLM3 Buffer depth, Roughness,

SST, Convexity, Concavity

Buffer depth: %D = 0.8871, p[t ] = 0.029,

(AIC = 19.4, %D= 0.8871, p[D] = 0.793

GLM4 Buffer slope, Buffer max,

Aspect, Chlorophyll

Buffer max: %D = 0.4631, p[t ] = 0.0011,

(AIC = 67.006, %D= 0.4631, p[D] = 0.538)

DISCUSSION

Our analysis shows bathymetry to be significantly different at and around coastal areas

where R. typus aggregate compared to coastal areas where aggregations do not occur.

Aggregation sites were significantly shallower over both spatial scales (point data and the

20 km buffer zone). Despite the area surrounding aggregation sites being roughly 500 m

shallower than that measured at non-aggregation sites, the mean distance of aggregation

sites to both the mesopelagic and bathypelagic zones was significantly closer by two orders

of magnitude than non-aggregation sites. Steeper slopes were found at the aggregation sites,

but not in the surrounding buffer zones. These results suggest three aspects of bathymetry

are important to aggregation formation; shallow areas at aggregation sites, proximity to

deep water and steep slopes. These bathymetric characteristics were found to be important

in a number of local and regional studies of R. typus distribution (McKinney et al., 2012;

Sequeira et al., 2012; Afonso, McGinty & Machete, 2014).

Site depth and buffer zone depth were among the biggest drivers of aggregations.

Literature extensively illustrates R. typus aggregating in shallow water for twomain reasons.

Firstly, primarily to feed, hence chlorophyll-a concentration being included in this study

as an indicator of planktonic productivity (Platt & Herman, 1983; Sequeira et al., 2012).

However, non-aggregation sites had a mean chlorophyll-a concentration twice as high

as that at aggregation sites. The mean chlorophyll-a concentration at aggregation sites of

0.67 mg/m3 can be considered relatively high compared to pelagic areas where typically

chlorophyll-a concentration is <0.25 mg/m3 (Hu, Lee & Franz, 2012), nevertheless it was

significantly lower than other coastal areas within R. typus’ range. One reason for this can

be attributed to the diversity of R. typus’ prey; a number of studies have shown aggregations

coincide with spawning events such as Scombridae spp. spawn at the Yucatan peninsula

(De la Parra Venegas et al., 2011) or Lutjanidae spp. spawn in Belize (Heyman et al., 2001).

However, Donati et al. (2016) describe the aggregation at South Ari atoll as a yearlong

phenomenon with no seasonal peak and there is a current lack of understanding as to the

main cause of this aggregation if it is not seasonally prey driven. Nonetheless, these whale
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sharks will feed on plankton and various spawn in the shallow coastal waters where they

are regularly observed (Hoffmayer et al., 2007;Motta et al., 2010).

The second main reason suggested for aggregations in shallow waters is for

thermoregulation after deep dives into cooler water. Research into this field is limited

(Brunnschweiler et al., 2009; Thums et al., 2013; Tyminski et al., 2015), however this is a

viable theory and the results of this study illustrate aggregations occurred in warmer

waters than the random non-aggregation sites selected. Although SST was only higher

by ∼0.5 ◦C, this was at a coarse resolution, larger than the aggregation areas, therefore

SSTs on site may in fact be higher. Furthermore, the temporal averaging of SSTs may

have influenced the extent of difference between sites (this was done to ensure consistency

and avoid anomalous data produced by El Niño years). A number of ectothermic species

require surface intervals to raise body temperature to levels needed to regulate physiological

processes after time spent foraging in cooler, deep waters (Thums et al., 2013). The size of

R. typus’ gills make them extremely efficient at filtering prey from the water, but the large

volume of water passing over the gills causes R. typus to cool relatively quickly when in

deeper water (Colman, 1997). If thermoregulation occurs in warm shallow areas with high

productivity, or an abundance of prey, R. typus could continue to feed whilst increasing

body temperature from deep dives.

The proximity of R. typus aggregations to deep water is therefore thought to be due to

frequent deep dives for prey (Graham, Roberts & Smart, 2006; Tyminski et al., 2015), whilst

remaining close to shallow areas of high productivity for thermoregulation (Thums et al.,

2013) and potential feeding. All aggregation sites in this study were significantly closer to

areas with water in the mesopelagic and bathypelagic zones. The deep water bathymetric

variables (site depth, buffer depth and proximity to the 200 m and 1,000 m isobaths)

explained the greatest deviance of R. typus aggregation site presence, showing these aspects

may be highly important for separating aggregation from non-aggregation sites. Sequeira

et al. (2012) found similar results when modelling R. typus habitat suitability in the Indian

Ocean; depth and distance to the continental shelf were two of the biggest indicators of

habitat preference.

A number of studies with tagged whale sharks show their deep diving behaviour; Rowat

& Gore (2007) recorded three R. typus individuals spent ∼30% of their time at depths of

750–1,000 m. A recent study by Tyminski et al. (2015) showed one individual diving as

deep as 1,928 m in temperatures 4.2 ◦C, similarly reflected by Brunnschweiler et al. (2009)

in which two tagged whale sharks were recorded at depths of 1,286 m in temperatures of

3.4 ◦C. Graham, Roberts & Smart (2006) carried out a similar study, further illustrating

deep diving behaviour and also recording available prey at these depths. It has been

suggested R. typus feeds on zooplankton (euphausiids and myctophids), squid and jellyfish

in these deep waters seaward of the shelf breaks (Graham, Roberts & Smart, 2006;Wilson et

al., 2006). Although chlorophyll-a concentration was lower at aggregation sites, the satellite

sensors cannot penetrate deeper than 60 m (Mélin & Hoepffner, 2011), causing deep-water

areas with high productivity, such as around slopes and shelfs, to be missed. These areas

have been shown to be highly important to R. typus for feeding in a number of studies

(Graham, Roberts & Smart, 2006), and more recently Sequeira et al. (2012) and McKinney
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et al. (2012) showed areas with these bathymetric characteristics are the most associated

with R. typus sightings.

Similarly, the basking shark (Cetorhinus maximus) and megamouth shark (Megachasma

pelagios) have also been recorded diving into the mesopelagic and bathypelagic zones in

search of prey (Nelson et al., 1997; Sims et al., 2003; Gore et al., 2008). Wilson et al. (2006)

hypothesise the deep diving behaviour in all three species is to locate the deep scattering

layer and associated prey at dusk and dawn. This idea was further supported by Gore

et al. (2008) who suggested regular dives of increasing depths is indicative of systematic

foraging, supporting the theory that deep dives occur to locate horizontally dispersed prey.

However, despite research into deep diving of these shark species, the function of deep

dives for R. typus remains poorly understood.

In this study, R. typus aggregations occurred in relatively flat areas with a mean slope of

0.68 degrees, however, this was significantly steeper than non-aggregation sites. Steepness

of slopes increased further from aggregation sites with a mean of 1.4 degrees and absolute

maximum of 29.84 degrees in the 20 km buffer zone. Aggregations typically occur in the

fore reef and lagoon areas, leading out to the reef slope, reef wall or continental slope,

which has a steeper slope and deeper water.

Areas with steep slopes are known to induce upwelling events (Botsford et al., 2003;

Zavala-Hidalgo et al., 2006), particularly coastal areas where depth changes rapidly, forcing

offshore deep-water currents to deflect against the steep slopes, bringing nutrient rich

water to the surface (Jacox & Edwards, 2011; Connolly, 2013). These areas have biological

significance, and often associated with enhanced primary productivity, therefore increasing

plankton abundance and attracting a number of species throughout the trophic levels

(Botsford et al., 2003; Jacox & Edwards, 2011).

Wolanski & Hamner (1988) carried out one of the first studies on the biological impacts

of steep bathymetry, suggesting these areas are of great significance to large marine

species due to availability of prey. Sims (2008) confirmed this with Cetorhinus maximus,

as steep slopes were shown to be their most common foraging habitat, where the highest

zooplankton densities were observed. McKinney et al. (2012) modelled the feeding habitat

of R. typus aggregations in the Gulf of Mexico using bathymetry, showing areas close to

the continental shelf are often selected as aggregation sites due to their productivity. The

model of McKinney et al. (2012) suggested proximity to a continental shelf is one of the

biggest influences on aggregation site location. Subsequent research by Afonso, McGinty &

Machete (2014) show increased R. typus abundance in areas with steep bathymetric slope

and in areas associated with increased prey abundance.

Because R. typus aggregate in only a handful coastal areas and aggregation events are

highly predictable, these sites should be focal points for conservation efforts to protect this

species through a number of means such as MPA creation, fishing restrictions, boat speed

limits and limited visitor numbers. By showing that these aggregations occur in areas with

specific bathymetry, there is the possibility to use species distribution models or habitat

models to predict other suitable areas where aggregations may already occur or areas

aggregations may shift to with projected anthropogenic climate change. The aggregations

investigated in this study represent only one of a number of habitats used in R. typus’ life
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cycle, with these aggregations shown to be used predominantly by juvenile males (Heyman

et al., 2001;Riley et al., 2010). Theremay be other types of aggregation occurring in offshore

waters, but there is currently little research being undertaken due to the high economic

and time requirements for such research.

Aggregations increase vulnerability to capture, boat strikes and overexploitation (Lewison

et al., 2004), particularly during crucial periods in their lives, such as feeding events and

breeding, and when sharks may be recovering from deep dives. Whilst there is no evidence

R. typus aggregations are for breeding, there is lack of information regarding the breeding

behaviour of this species. Therefore, it is plausible aggregations could also be used for

mating, which has been observed in zebra sharks (Stegostoma fasciatum) (Dudgeon, Noad

& Lanyon, 2008) and is suspected to occur at Cetorhinus maximus aggregations (Wilson,

2004). This study and a handful of others (McKinney et al., 2012; Sequeira et al., 2012;

Afonso, McGinty & Machete, 2014) have shown there are defined bathymetric characteristics

in R. typus aggregations. As certain characteristics and features of bathymetry are of great

importance to a number of marine megafauna species, more research should be carried

out in this field with conservation efforts focusing on areas where species are at their most

abundant, but also at their most vulnerable.

CONCLUSION

This study shows clear evidence that there are significant differences in bathymetry between

the coastal areas where R. typus aggregate compared to areas where R. typus aggregations

do not occur. Aggregations occur in shallow areas in close proximity to a reef slope or

shelf break with a steep slope, which leads into water in the mesopelagic and bathypelagic

zones. The bathymetric characteristics at and around aggregation sites are all associated

with increased productivity and prey availability, which are the main reasons R. typus and

a number of other species aggregate. Knowing this, future conservation efforts for marine

megafauna could look for areas with these key bathymetric characteristics, which have

been shown to be present in areas of aggregations for a number of species. This study is

the latest addition to that research; we have shown that key bathymetric characteristics are

a feature of areas in which whale sharks aggregate.
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