
This is a repository copy of Supporting Nested Resources in MrsP.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/131792/

Version: Published Version

Conference or Workshop Item:
Garrido, Jose, Zhao, Shuai, Burns, Alan orcid.org/0000-0001-5621-8816 et al. (1 more
author) (2017) Supporting Nested Resources in MrsP. In: Reliable Software Tecnologies,
01 Jun 2017.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Nested Resources in MrsP

Jorge Garrido1, Shuai Zhao2, Alan Burns2, and Andy Wellings2

1 Sistemas de Tiempo Real e Ingenieŕıa de Servicios Telemáticos (STRAST)
Universidad Politécnica de Madrid (UPM)

2 Department of Computer Science, University of York

Abstract. The original MrsP proposal presented a new multiproces-
sor resource sharing protocol based on the properties and behaviour of
the Priority Ceiling Protocol, supported by a novel helping mechanism.
While this approach proved to be as simple and elegant as the single
processor protocol, the implications with regard to nested resources was
identified as requiring further clarification. In this work we present a
complete approach to nested resources behaviour and analysis for the
MrsP protocol.3

1 Introduction

Both the increasing requirements in terms of computation power and the decreas-
ing availability of single processor platforms have given rise to the need for safe,
analysable real-time multiprocessor systems. While providing more execution
units increases the overall computation power, it also increases the complexity
of the required scheduling protocols with regard to shared resources and task
communication management.

Single core approaches benefited from the inherent serialization on access
requests imposed by the existence of only one processor. Multicore approaches
to shared resources have explored different ways of providing a bound on the
time it takes to gain access to such resources. One of the main approaches is to
use spin-locks. Following this approach, a task requesting access to a resource
places the request on a queue and spin-waits at a certain priority until the access
request is satisfied. If the synchronisation protocol does not allow higher priority
tasks to preempt tasks accessing shared resources then higher priority tasks may
suffer unnecessary blockings. Alternatively, if access requests can be preempted,
then a mechanism has to be defined to ensure progress on the locked resource if
other tasks are blocked by a resource held by a locally preempted task. This last
approach is the one followed by the Multiprocessor Resource Sharing Protocol
(MrsP) [4]. In this protocol a helping mechanism is defined, by which locally
preempted tasks can migrate to other processors to make progress provided that
a task is actively waiting on that processor to access the locked resource.

In this paper we analyse the life cycle of a task with regard to the MrsP shared
resource protocol and define a set of rules supporting a fine grained analysis for
preemptive, FIFO spin-lock controlled, nested resources.

3 This work has been partially funded by the Spanish National R&D&I plan (project
M2C2, TIN2014-56158-C4-3-P).

2 Related work

Despite the academic interest in multiprocessor real-time systems, many propos-
als are oblivious to, or explicitly ban, task communication and synchronization.
Among the work on shared-memory synchronization protocols for multiproces-
sors real-time systems published up to date, few publications address the analy-
sis of nested resources as required by the complex paradigms of synchronization
required by modern real-time systems.

A common approach to supporting nested resources has been to group re-
sources together. In this approach, of which FMLP [2] is a notable example,
nested resources are locked and released as a whole. This unfortunately seriously
undermining the concurrency of the system, thereby reducing schedulability.

The first proposal for fine-grained analysis was proposed in [10]; forcing a
strict order on locks and releases (locking operations are not allowed after a
release has been performed on the nesting). An extension of this work is the
Real-time Nested Locking Protocol (RNLP) [12,13] which limits the concurrency
on nested resource accesses by means of a token mechanism and provides a set
of request satisfaction mechanisms aiming for optimality under different system
configurations.

Recent work has provided a fully fine-grained blocking bound for nested
non-preemptive FIFO spin locks under partitioned fixed-priority scheduling [1].
This is achieved using a novel graph abstraction of the blocking interaction
among tasks and resources for which, given a set of invariants stating graph
properties, an Integer Linear Programming (ILP) approach is used to find a
subgraph yielding a safe worst-case blocking value.

It is also worth to mention SPEPP [11] as a relevant protocol introducing the
notion of a helping mechanism, fundamental to MrsP formulation. This helping
mechanism was also used in M-BWI [7,8] to deal with the issue of tasks running
out of budget while holding a resource in systems ruled by execution-time servers.

Despite the fact that MrsP was recently proposed, it has been effectively
implemented [6] in Litmus [5] and RTEMS [9]. Its implementability in Ada is
discussed in [3], where a prototype outside-kernel implementation is presented.

3 System and task model

The baseline of the current work is the MrsP proposal [4]. In this work a proto-
col to provide a safe upper bound to resources shared among tasks potentially
executing on different processors is presented. In this work, the general sporadic
task model is considered, under fully partitioned systems. Deadlines are uncon-
strained, but there can not be more than one active job of a task at a time. As
such, the terms task and job are used interchangeably in this paper. Resources
are required to be accessed under mutual exclusion. Preemptive fixed-priority
scheduling is assumed.

Tasks are related to resources by means of different functions: G(rj) is the set
of tasks that access directly a resource rj , and F (τi) returns the set of resources

used by task τi; function map returns the set of processors where the argument
entities execute, and || returns the size of a set. If all tasks that access a resource
execute on the same processor then the resource is deemed to be locally accessed,
otherwise it is contended for globally.

MrsP, in general, follows the rules of the Priority Ceiling Protocol (PCP):
resources are given a Local Ceiling Priority on each processor which is equal to
the highest priority of any local task that accessing the resource. Tasks, when
attempting to access a resource, rise their active priority to that Ceiling Priority.
Authors in [4] claim to inherit four fundamental properties from PCP:

– A job is blocked at most once during its execution.
– This blocking takes place prior to the job actually executing.
– Once a job starts executing, all the resources it needs are (locally) available.
– Deadlocks are prevented.

The scheduling analysis for MrsP keeps the form of Response-Time Analysis
(RTA) as in the PCP case, defined in the following equation:

Ri = Ci +max{ê, b̂}+
X

τj2hpl(i)

&

Ri

Tj

'

Cj (1)

where Ri is the worst-case response-time of task τi, ê is the maximum arrival
blocking due to local lower priority tasks accessing shared resources, and b̂ is the
maximum non-preemptive execution time caused by the underlying OS/kernel.
Ci is decomposed into the Worst Case Execution Time (WCET) of the task
outside its use of shared resources plus the cost of accessing (e) each shared
resource r up to n times during each activation:

Ci = WCETi +
X

rj2F(τi)

nie
j (2)

Finally, e is calculated as the cost of each individual access, cj , multiplied by
the number of processors from where the resource can be accessed (this is the
maximum length of the FIFO queue):

ej = |map(G(rj))|cj (3)

This safe upper bound to the access cost is based on two properties of MrsP:

– Only one task per processor can be accessing a resource at any given time.
This is directly inherited from PCP.

– A helping mechanism, proposed in [4], by which tasks spin-waiting to access a
resource can take over the execution of tasks locally preempted while holding
the required resource.

Since the helping mechanism is the most relevant and novel feature in [4],
and highly influences the behaviour of the system, it will be further explained
in the rest of this section.

Figure 1 represents the different logical states in which a task can be with
regard to MrsP controlled resources:

Help not needed

Requiring help

Executing

Being helped Potential helper

Helping

1
Locks resource

2
Unlocks resource

3
Preempted

4
Re-dispatched

5
Helped

Helper preempted 6

7
Releases resource

8
Requires locked

resource

9
Obtains resource

10
Helps

11
Ends

helping

Obtains resource
while preepmpted

12

Fig. 1. Task state diagram of helping mechanism without nested resources.

– Executing : A task that does not require any resource to make progress.
– Help not needed : A task is making progress with a locked resource while

being dispatched on its host processor by means of its active priority.
– Requiring help: A task holding a global resource that is unable to make

progress (as it has been locally preempted) from its host processor.
– Being helped : A task that holds a global resource and has migrated to another

processor in order to make progress.
– Potential helper : A task that requests an already allocated resource, and is

spin-waiting for it.
– Helping : A task that was spin-waiting and pulled a requiring-help task to

make progress on its processor in order to help it to release the requested
resource.

Every task initially holds no resource, so its in the executing state. At a
certain point, a task can request access to a global shared resource. As part of
the process of this request, it increases its active priority to the Local Ceiling
Priority of the resource. If the resource is free, it will lock the resource (transition,
or tran, 1). Otherwise it will be spin-waiting blocked by this resource until access
is granted to the resource (tran 8).

Transition 1, locking the resource, moves the task to the help not needed

state. While in this state, the task can: finish the access to the resource and
release its associated lock (tran 2), or be locally preempted while accessing the
resource (tran 3).

If a task is locally preempted while holding a lock, it is considered to requiring
help to make progress on the resource. While it remains in the requiring help

state, no progress is possible. If no other task requires the locked resource, while
being preempted, then this preemption time is just local interference, and the
requiring help task will, at some point (when the preempting job terminates),
be re-dispatched at its host processor due to its active priority (tran 4).

However, if at some point while being preempted, another task requests access
(or was already spin-waiting) to the resource, this task will help the preempted

one (tran 5 for the preempted task). This transition, in practice, implies a migra-
tion to the helper host processor, with the active priority updated to the Local
Ceiling Priority of the held resource on that processor. Then, the task will make
progress (being helped) until it releases the resource, migrating back to its host
processor with its base priority (tran 7), or until it is preempted again on the
helping processor, requiring help (tran 6) again until it is re-dispatched on its
own processor or is helped again.

Tasks blocked by a locked resource are potential helpers. Their request is
added to a FIFO queue and will be served when all requests in front have been
satisfied. This can happen when the task is actually spin-waiting for the resource
(tran 9), immediately making progress on the resource, or when the task is locally
preempted. As it would hold a resource without making progress due to being
locally preempted on its host processor, it would be considered to be requiring

help (tran 12).
If, while being a potential helper due to being blocked by a locked resource,

the holder of that resource is locally preempted and thus requires help, the help-
ing mechanism is fired. This, in practice means that the potential helper task
pulls the requiring help task to its host processor and lends it its active priority,
to execute on its behalf (tran 10). The helping procedure ends when the helped
task releases the held resource or it is preempted on the helping processor (tran
11).

Thus, for a task to be helped, there should be both a task requiring help

and a potential helper for the same resource. The helping mechanism begins
with transition 5 for the requiring help and transition 10 for the potential helper.
Equivalently, the helping mechanism ends with a helped task transitioning by 6
or 7, and a helper doing transition 11.

While these behaviours deal adequately with non-nested resources requests,
systems including nested resources require a more specific approach. The full
description and definition of such an approach is the main contribution of this
paper.

4 Nested resources

The system model and analysis presented in [4] and briefly summarized in sec-
tion 3 can not, by themselves, be transferred to a system with nested resources.
Equation 3 only reflects direct accesses from tasks to resources. In [4], a new
term, V (rj) was proposed as a function returning the set of resources accessing
the resource rj . Based on that definition, the following equation for calculating
the cost of accessing a nested resource was proposed:

ej = (|V (rj)|+ |map(G(rj))|)cj (4)

Equation 4 now defines the maximum queue length for accessing the resource
as the number of processors from where the resource can be directly accessed
plus the number of outer resources from where the resource can be accessed.
While this interpretation of the queue length is correct, the value of ej does not

necessarily represent a safe upper bound for a resource that requires accessing
inner resources to complete its execution. The reason for this is that the analysis
fails to account for the possible transitive blocking while accessing that inner
resources (rk). That is, a task (or outer resource) attempting to access resource
rk may find it already locked, and be unable to make progress. We shall produce
a correct version of this equation in section 4.2.

Another issue raised when considering nested resources in MrsP is local block-
ing. For non-nested resources, it is proven that, following PCP behaviour, a task
can only be blocked once, and only before it actually gets to execute. This prop-
erty is necessary to maintain the max{ê, b̂} factor for the local blocking in equa-
tion 1. However, the helping mechanism proposed in [4], together with nested
resources, could lead, if no measures are taken, to situations in which higher pri-
ority tasks can be blocked more than once after beginning their execution. Due
to the helping mechanism, a task holding a resource and locally preempted can
be migrated to another processor, in order to make progress, While migrated, it
might lock an inner local resource with a higher priority. If the active priority
of the task is raised then, on return to the host processor it would preempt a
higher base priority task thus causing further delayed local blocking. For this
reason the active priority of a migrated task is not raised in this situation.

4.1 Desired nested resource behaviour

In this work we propose a complete approach to global nested shared resources,
providing a safe upper bound access cost for nested resources as well as a dy-
namic priority assignment scheme preserving PCP properties. Figure 2 depicts

Help not needed

Requiring help

Executing

Being helped Potential helper

Helping

1 2

3 4

5

Helper preempted or
releases inner resource

6

7
Releases outermost

resource

8
Requires locked

outermost resource

9

10 11

Preempted holding a resource
or obtains resource
while preepmpted

12

Requires locked
inner resourece 16

13
Locks/releases
inner resource14

Locks/releases inner
resource or requires
a locked resource

15
Helped task requires

inner resource

Fig. 2. Task state diagram of helping mechanism with nested resources.

the different logic states of tasks under MrsP, when considering nested resources.

While the states remain the same, new transitions arise and some existing ones
are now triggered by new events.

Tasks still begin executing without any shared resource, and transitions 1 and
8 are triggered when the task requires the outermost resource of a nested call,
raising the active priority to the ceiling of that outermost resource. If the access
request is satisfied immediately, the task executes without requiring any help.
While executing in the help not needed state all locks and releases update the
active priority of the task (tran 13) as in PCP. If a lock request finds a resource
already locked, the task updates its priority to the local Ceiling Priority of the
resource and becomes a potential helper for that resource (tran 16).

As with the non nested case, the task can, while executing not being helped,
be locally preempted and thus require help to make progress (tran 3). If at some
point while requiring help, another task is spin-waiting for one of the resources
locked by this preempted task, it will be helped by the spinning task. However,
in the nested case, the helper may be helping not due to requesting the inner-
most locked resource, but due to requesting any of the resources held by the
preempted task.

A task, when migrated to be helped (tran 5), is granted the priority of the
helper task. While being helped, a task is allowed to lock and release further
resources (tran 14), but these actions do not change the priority of the helper,
and thus the priority at which the helped task is executing while being helped.

As with the non nested case, a task can, while being helped, release its outer-
most locked shared resource and migrate back to its host processor with its base
priority (tran 7). Similarly, a task can leave the being helped state to requiring

help (tran 6). In the nested case, this transition can be triggered by both the
task being preempted on the helping processor, and by releasing of the required
nested resource by the helping task. In this latter case, the task being helped still
holds other resources, and still requires help to make progress.

Any task finding a required resource already remotely locked while executing
or in help not needed state becomes a potential helper for that resource (trans 8
and 16). While being a potential helper a task can be preempted. In this case,
if the task holds a resource, it requires help to make progress on that resource
(tran 12).

Potential helpers are ready to help tasks requiring help, holding their required
resource (tran 10). A task while being helped may require a locked inner resource.
In this situation, the task is still considered to be helped (tran 14) and spin-
waits for locked resource. If the third task holding that inner resource is also
requiring help, the helping task is ultimately blocked by this third task not
making progress. As such, the helper task will also help the third task migrating
it to its host processor, and giving it its active priority, executing instead of the
task that was being helped before (tran 15). This transitive help is maintained
until the third task releases the inner resource required by the original helped
task.

The helping mechanism can end (tran 11) due to the same two reasons as
in the non nested case: the resource required being released or the helper task
being locally preempted, with the same implications as in the non nested case.

4.2 Updated analysis and properties

In this subsection we propose an analysis in which a safe upper bound can be
obtained for the access cost to a resource including any of the inner resources
required by this resource. To provide such analysis, we require a strict irreflexive
partial order on the resource nesting. This not only prevents deadlocks, but also
provides an end to the recursion in the analysis, as at least there has to be one
resource in the system not requiring any other resource to complete its execution.
Given this, the access cost for a nested resource is now defined as follows:

ej = (|V (rj)|+ |map(G(rj))|) ∗ (cj +
X

rk2U(rj)

nk
j e

k) (5)

where U(rj) is the set of inner resources directly accessed by rj and nk
j is

the number of times an inner resource rk is accessed on each access to rj .
In equation 5, the length of the queue is as in [4], where PCP limits the

number of concurrent access attempts to a resource to one at a time per processor
(|map(G(rj))|) and the mutual exclusion nature of shared resources under MrsP
ensures that only one access attempt can be performed at a time from any
outer resource, giving the total number |V (rj)|. Note this queue length may be
pessimistic, but our objective here is to provide sufficient analysis.

For the cost of the access itself, now we do not only consider the cost of the
accessed resource itself but the cost of accessing all the nested resources. So ej

now represents the full cost for a task accessing nested resources via rj as an
outermost resource, or the cost for outer resources accessing ej and all its inner
resources.

This way of calculating the e value for nested resources now includes the
possible transitive blocking on each access. As each access is not considered
isolated, but includes the cost of inner resources queues (which are the source of
transitive blocking), now equation 5 provides a safe upper bound.

Considering the extra blocking a task may suffer due to the helping mech-
anism, in this proposal we require that a task does not update (increase or de-
crease) its host active priority while being helped. This way, lower priority tasks
can not benefit from the helping mechanism to increase their priority while mi-
grated, with the undesired side effect of causing extra blocking to local higher
priority tasks. In turn, tasks are dispatched on their host processor with the pri-
ority they had when they were locally preempted. We will refer to this priority
as the Leaving Priority for the rest of the paper. Migrated tasks do update their
active priorities when they are re-dispatched on their host processor.

Example. To illustrate the approach, the example for nested resources analysis
presented in [4] is now revisited. Consider a system with four tasks, τ1, ... , τ4,

executing on four different processors p1, ..., p4, and two resources, r1 and r2,
with execution times c1 and c2 respectively. Tasks τ1 and τ2 access r1 directly,
and τ3 and τ4 access r2 directly. In addition r1 accesses r2, so, for example, when
τ1 accesses r1 it will, while holding r1 also access r2.

Table 1. Task allocation and resource usage.

Task Processor F (τi)

τ1 p1 r1, r2

τ2 p2 r1, r2

τ3 p3 r2

τ4 p4 r2

Resource G(ri) V (ri) map(G(ri))

r1 τ1, τ2 ∅ p1, p2
r2 τ3, τ4 r1 p3, p4

As presented in Section 4.2, the nested resource analysis proposed is solved
by iteration from inner to outer resources. In this example, we have one inner
resource, r2, and one outer resource, r1. The accessing cost of the inner resource
is (following equation 5):

e2 = (1 + 2) ∗ (c2) = 3c2

Then we can calculate the cost of accessing the nesting of resources via r1,
as we know the cost of accessing all its inner resources (r2):

e1 = (0 + 2) ∗ (c1 + e2) = 2(c1 + e2) = 2(c1 + 3c2)

Now e1 is a safe upper bound, including transitive blocking, for the access to
r1 and all its required inner resources. We note an incorrect answer is given for
this example in [4].

4.3 Improved nested helping analysis

With the current definition of local and global resources ceiling priorities , there
are situations in which the analysis can benefit from other priority assignments.
Specifically, resources accessed only by tasks allocated to the same processor
via outer global resources receive a pessimistic analysis. This pessimism can be
reduced and in some cases eliminated by a combination of a particular priority
assignment (giving global resources encapsulating a call to an inner local resource
the ceiling priority of this inner local resource) and the definition of an equivalent
task set reflecting the behaviour of the system with that particular assignment
of priorities.

Consider a system comprising a specific processor P1 with a task set includ-
ing, among others (irrelevant for the example) the following tasks: tasks τ1, τ2,
τ3 with lowest priorities on P1, and τ10 with the highest priority on P1. On this
processor, there is a set of local resources r1l , r

2
l , r

3
l , which are only accessed

by tasks τ1, τ2, τ3 and τ10. Task τ10 accesses the local resources directly, while

τ1, τ2, and τ3 do so via a global resource, different for each of them. These re-
sources are accessed only from tasks from P1 and another processor, but accesses
from the other processor do not generate accesses to r1l , r

2
l and r3l . The relevant

information for the example is summarized in table 2.

Table 2. Task allocation and resource usage without improvement.

Task Processor F (τi)

τ10 P1 r1l , r
2

l , r
3

l

τ3 P1 r3 → r3l
τ2 P1 r2 → r2l
τ1 P1 r1 → r1l

Resource G(ri) V (ri) map(G(ri))

r1 τ1, τ
0

1 ∅ P1, P2

r2 τ2, τ
0

2 ∅ P1, P3

r3 τ3, τ
0

3 ∅ P1, P4

r1l τ10 r1 P1

r2l τ10 r2 P1

r3l τ10 r3 P1

Given the analysis presented in table 2, the access cost for the highest pri-
ority task τ10 of each local resource would be (considering execution times of
global resources cg and local resources cl): rl = 2cl, being the total access cost

for the three resources r
1,2,3
l = 3 · 2cl. This analysis assumes that the higher

priority task may have to wait for the lower priority tasks on each access to the
local resources. This is due to the access of the lower priority tasks via a global
resource. If this was not the case, r1l , r

2
l and r3l would be pure local resources

and be completely ruled by PCP. As the lower priority tasks can be preempted
while holding the global resources, and each of them can migrate to a different
processor to make progress, the three of them can access their respective local
resource concurrent with τ10 while being helped remotely. In this case, the help-
ing mechanism produces a high blocking time for a high priority task accessing
directly to local shared resources. This clearly contradicts the aim and intuition
behind PCP and MrsP.

This problem can be addressed by reducing the concurrency of the lower
priority tasks. If r1l , r

2
l and r3l are given the same local Ceiling Priority then

only one of the three tasks τ1, τ2, or τ3 can gain access to their outer resource.
As a result only one can be helped, and only one can gain access to the inner
resource while migrated. The impact on τ10 is reduced to a single block.

5 Definitions

The detailed approach for MrsP systems supporting nested resources is now
presented as a set of rules, lemmas, properties and theorems. Those from PCP
and non nested MrsP are assumed and hold unless overridden by those presented
here.
Rule 1. Resources under MrsP nest following a strict irreflexive partial order.
Rule 2. A task being helped executes on the helper processor with the helper
active priority.

Rule 3. The helping mechanism can be initiated due to the helper task request-
ing access to any of the resources held by the helped task.

Rule 4. The helping mechanism is transitive, i.e. a helper task shall help the
locally preempted task ultimately preventing it from making progress.

Property 1. A task holding one or more resources, that is not being blocked
accessing another resource, will make progress if there is a task spin-waiting due
to being blocked by any of the resources held.

This is the fundamental novel property from MrsP that we wanted to move
to nested resources, as it provides the safe upper bound expressed by equation 5.

Rule 5. Task only modify their active priority when they are dispatched in their
host processor, not being help.

Tasks can lock and release resources whenever they are executing. If they do
so while not being helped, the active priority of the task is modified according
to PCP rules. If they do so while being helped, there is no modification of active
priorities of any the helping or the helped task. The helped task will update its
active priority according to the resources held when it is dispatched again on its
host processor when its leaving priority is the highest among the tasks eligible
to execute.

Rule 6. The helping mechanism shall also be conducted between tasks allocated
to the same host processor.

Rule 7. Tasks remain notionally eligible to be dispatched (at their leaving pri-
ority) on their host processor while being helped.

By considering tasks being helped and executing on another processor as
eligible for dispatching on their host processor, lower priority tasks are prevented
from executing when a higher priority task would be executing instead.

Lemma 1. A task is only allowed to begin its execution if all higher base
priority tasks allocated on that processor are completed.

Proof. If no task is migrated, then all uncompleted tasks are ready to execute
on that processor. Following PCP rules, the task dispatched is the one with
higher active priority. For a task that has not locked any resource, all higher
base priority task have higher active priorities. As a task can not have locked
any resource before actually executing, it is proven. If a higher base priority has
migrated, its leaving priority is at least equal to its base priority. Then, following
Rule 7 the higher priority task would be eligible to execute against any lower
base priority task not holding any resource. ⇤.

Lemma 2. A task can only make progress by being helped if there is a
pending task on the same host processor with higher base priority than its active
priority.

Proof. A task having a lower priority than the base priority of another task,
will keep having a lower priority unless it locks a resource. Given PCP rules and
Rule 7, the lower priority task can not be dispatched on its host processor with
that lower priority until the higher base priority task is completed. Until then,
it can only lock another resource while making progress because of helping. Due
to Rule 5, this will not increase its active priority, this will keep it below the

higher base priority of the pending task. As a result, a task can not be executed
if not being helped while there are higher base priorities pending tasks. ⇤.

Corollary. Tasks with lower active priorities than pending tasks with higher
base priorities can not increase their active priority.

Proof. Proven during proof of Lemma 2. ⇤.

Lemma 3. Each task can suffer at most a single local block per activation,
and this blocking occurs before the task actually executes.

Proof. Lemma 3 in [4] proves this property for MrsP without nested resources,
based on the properties of PCP. For nested resources, as tasks are not allowed
to increase their priority while migrated, no task can preempt an already higher
base priority task.

A higher priority task may require more than one resource already locked
by lower priority tasks. However, due to PCP rules, only one task could have
locked such resource on its host processor and increase its priority preventing
the higher priority task to execute (arrival blocking). The other tasks only could
have locked resources required by the higher priority task while migrated. As
tasks are dispatched on their host processor by their leaving priority, no further
arrival blocking is possible due to lower priority tasks. ⇤.

Lemma 4. Nested MrsP does not suffer from deadlocks.

Proof. The source of deadlock in nested resources systems is when two or
more resources requiring each other prevents any progress to be made. By Rule
1 forcing irreflexive partial order, circular dependencies and thus deadlock due
to them are avoided. ⇤.

Lemma 5. A safe upper bound to the number of concurrent access attempts
to a resource rj is given by |V (rj)|+ |map(G(rj))|.

Proof. The number of direct accesses is safely bound by |map(G(rj))| as all
direct accesses from tasks are outermost accesses, and thus are all dealt while not
being help (and migrated), so this directly inherits all PCP properties. As only
one request can be generated at a time from each processor, there is an upper
bound on the number of processors from where the resource can be accessed. As
shared resources have mutual exclusion, only one task can be requesting its inner
resource at a time. The number of concurrent requests from outer resources is
thus bounded to the number of such resources, i.e. |V (rj)|. ⇤.

Lemma 6. The cost of each individual access (e0) to a resource rj is bounded
by e0j = cj +

P

rk2U(rj)
nk
j e

k.

Proof. As a consequence of Rule 1, there is at least one terminal resource
rt in the system not accessing any inner resource, i.e. U(rt) = ∅. For such a
resource, its individual access cost is:

e0t = ct

From Lemma 5, if we simplify the queue of a resource as qj = |V (rj)| +
|map(G(rj))| then the total access cost to et is:

et = qtct ⇒ et = qte0t

For the set of resources accessing the terminal resource, V(rt), the individual
access cost can be expressed as the execution time of the resource plus the access
cost to its inner resource rt as:

e0t+1 = ct+1 + nt
t+1(q

t ∗ ct)

then substituting et:

e0t+1 = ct+1 + nt
t+1e

t ⇒ et+1 = qt+1(ct+1 + nt
t+1e

t)

By the common method of recursion proving, it can be demonstrated4 that
this recursion holds for an arbitrary level k of nesting, where:

e0k = ck + nk�1
k ek�1

This can be directly applied to resources sequentially requiring more than
one different independent inner resources:

e0k = ck +
X

rk−12U(rk)

nk�1
k ek�1

Theorem 1. Equation 5 is a safe upper bound to the cost of accessing a
MrsP shared resource and its required inner resources.

Proof. By construction if Lemma 5 gives a safe upper bound on the number
of possible concurrent accesses to a resource rj and Lemma 6 reflects a safe
upper bound on the cost of each individual access to rj and its required inner
resources, then equation 5 is a safe upper bound to the cost of accessing rj . ⇤.

6 Conclusions

MrsP is a resource control protocol providing a safe upper bound on the con-
tention for global shared resources on multiprocessor systems. In this paper we
have provided a detailed approach to nested resource access under the MrsP
protocol. By implementing local PCP control on each processor, the number
of concurrent accesses to a global resource is bounded to at most one per pro-
cessor on systems not considering nested resource access. By defining a helping
mechanism by which busy waiting tasks can undertake progress inside shared
resources on behalf of locally preempted tasks, the total access cost to a resource
is effectively bounded. Based on this global resource control scheme, the PCP
Response Time Analysis can be used to analyse MrsP systems incorporating its
specific resource access cost analysis.

The approach presented in this paper defines a complete fine grained ap-
proach to nested resources for MrsP systems. The potential shortcomings of the
helping mechanism when used in nested resources systems are addressed specifi-
cally. In particular, we have clarified under which circumstances tasks are eligible

4 The complete proof can be found at http://www.dit.upm.es/~jgarrido/mrsp/

ae17-appendix.pdf

to help and to be helped. We have also defined how active priorities are updated
under our MrsP nested resources approach. Future work will consider analysis
that uses more detailed knowledge about resource usage to reduce the pessimism
within the analysis presented in this paper.

References

1. Biondi, A., Brandenburg, B.B., Wieder, A.: A blocking bound for nested FIFO
spin locks pp. 291–302 (2016)

2. Block, A., Leontyev, H., Brandenburg, B.B., Anderson, J.H.: A flexible real-time
locking protocol for multiprocessors. In: 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA). pp.
47–56. IEEE (2007)

3. Burns, A., Wellings, A.: Locking policies for multiprocessor ada. ACM SIGAda
Ada Letters 33(2), 59–65 (2013)

4. Burns, A., Wellings, A.J.: A schedulability compatible multiprocessor resource
sharing protocol – MrsP. In: Real-Time Systems (ECRTS), 25th Euromicro Con-
ference on. pp. 282–291. IEEE (2013)

5. Calandrino, J.M., Leontyev, H., Block, A., Devi, U.C., Anderson, J.H.: Litmusˆ rt:
A testbed for empirically comparing real-time multiprocessor schedulers. In: Real-
Time Systems Symposium. RTSS. 27th IEEE International. pp. 111–126. IEEE
(2006)

6. Catellani, S., Bonato, L., Huber, S., Mezzetti, E.: Challenges in the implemen-
tation of MrsP. In: Ada-Europe International Conference on Reliable Software
Technologies. pp. 179–195. Springer (2015)

7. Faggioli, D., Lipari, G., Cucinotta, T.: The multiprocessor bandwidth inheritance
protocol. In: Real-Time Systems (ECRTS), 22nd Euromicro Conference on. pp.
90–99. IEEE (2010)

8. Lipari, G., Lamastra, G., Abeni, L.: Task synchronization in reservation-based
real-time systems. IEEE Transactions on Computers 53(12), 1591–1601 (2004)

9. RTEMS, C.: Users guide-edition 4.6. 5, for rtems 4.6. 5. On-Line Applications
Research Corporation (OAR)-http://www. 1tems. com 30 (2003)

10. Takada, H., Sakamura, K.: Real-time scalability of nested spin locks. In: Real-
Time Computing Systems and Applications. Proceedings., Second International
Workshop on. pp. 160–167. IEEE (1995)

11. Takada, H., Sakamura, K.: A novel approach to multiprogrammed multiprocessor
synchronization for real-time kernels. In: Real-Time Systems Symposium. Proceed-
ings., The 18th IEEE. pp. 134–143. IEEE (1997)

12. Ward, B.C., Anderson, J.H.: Supporting nested locking in multiprocessor real-time
systems. In: 24th Euromicro Conference on Real-Time Systems. pp. 223–232. IEEE
(2012)

13. Ward, B.C., Anderson, J.H.: Multi-resource real-time reader/writer locks for mul-
tiprocessors. In: Parallel and Distributed Processing Symposium, IEEE 28th In-
ternational. pp. 177–186. IEEE (2014)

	Supporting Nested Resources in MrsP

