The

University

yo, Of
Sheffield.

This is a repository copy of Scaling marine fish movement behavior from individuals to
populations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131598/

Version: Published Version

Article:

Griffiths, C.A., Patterson, T.A., Blanchard, J. et al. (4 more authors) (2018) Scaling marine
fish movement behavior from individuals to populations. Ecology and Evolution, 8 (14). pp.
7031-7043. ISSN 2045-7758

https://doi.org/10.1002/ece3.4223

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Received: 24 November 2017

Revised: 13 February 2018

Accepted: 29 March 2018

DOI: 10.1002/ece3.4223

ORIGINAL RESEARCH

Ecol Evoluti
WILEY cology and voutlon

Scaling marine fish movement behavior from individuals to

populations

Christopher A. Griffiths">3
| Serena R. Wright®

David A. Righton®

School of Mathematics and
Statistics, University of Sheffield, Sheffield,
UK

2Institute for Marine and Antarctic
Studies, University of Tasmania, Hobart,
TAS, Australia

SCentre for Environment, Fisheries and

Aquaculture Science, Lowestoft Laboratory,

Lowestoft, UK

4CSIRO Marine and Atmospheric Research,
Hobart, TAS, Australia

°Department of Biology, University of York,
York, UK

Correspondence

Christopher A. Griffiths, School of
Mathematics and Statistics, University of
Sheffield, Sheffield, UK.

Email: cagriffithsl@sheffield.ac.uk

Funding information
Natural Environment Research Council,
Grant/Award Number: NE/L002450/1

| Toby A. Patterson* | Julia L. Blanchard®*® |
| Jon W. Pitchford® | Paul G. Blackwell*

Abstract

Understanding how, where, and when animals move is a central problem in marine
ecology and conservation. Key to improving our knowledge about what drives animal
movement is the rising deployment of telemetry devices on a range of free-roaming
species. An increasingly popular way of gaining meaningful inference from an ani-
mal’s recorded movements is the application of hidden Markov models (HMMs),
which allow for the identification of latent behavioral states in the movement paths
of individuals. However, the use of HMMs to explore the population-level conse-
quences of movement is often limited by model complexity and insufficient sample
sizes. Here, we introduce an alternative approach to current practices and provide
evidence of how the inclusion of prior information in model structure can simplify the
application of HMMs to multiple animal movement paths with two clear benefits: (a)
consistent state allocation and (b) increases in effective sample size. To demonstrate
the utility of our approach, we apply HMMs and adapted HMMs to over 100 multi-
variate movement paths consisting of conditionally dependent daily horizontal and
vertical movements in two species of demersal fish: Atlantic cod (Gadus morhua;
n = 46) and European plaice (Pleuronectes platessa; n = 61). We identify latent states
corresponding to two main underlying behaviors: resident and migrating. As our anal-
ysis considers a relatively large sample size and states are allocated consistently, we
use collective model output to investigate state-dependent spatiotemporal trends at
the individual and population levels. In particular, we show how both species shift
their movement behaviors on a seasonal basis and demonstrate population space use
patterns that are consistent with previous individual-level studies. Tagging studies
are increasingly being used to inform stock assessment models, spatial management
strategies, and monitoring of marine fish populations. Our approach provides a prom-
ising way of adding value to tagging studies because inferences about movement
behavior can be gained from a larger proportion of datasets, making tagging studies

more relevant to management and more cost-effective.
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1 | INTRODUCTION

The spatial management of the marine world requires in-depth in-
formation about how animals move, when they move, and where
they move to. Key to increasing our understanding of species space
use, movement patterns, and how individuals interact with the en-
vironment they inhabit is the rising deployment of small and reli-
able data loggers and transmitters on free-roaming marine animals
(Costa, Breed, & Robinson, 2012; Hays et al., 2016; Hussey et al.,
2015). Capable of recording a range of movement metrics, including
horizontal and vertical movement alongside basic environmental in-
formation such as water temperature, salinity, and ambient daylight,
these devices have revolutionized our understanding of fundamen-
tal ecology (Hussey et al., 2015), documented oceanwide dispersal
events (Block et al., 2011), highlighted areas that are essential for
species survival (Raymond et al., 2015), and even allowed us to test
the effectiveness of current conservation policies (Pittman et al.,
2014; Scott et al., 2012).

One of the main motivations for animal-borne telemetry studies
is that by understanding individual movement behavior, we might
infer the population-, species- and community-level consequences
of movement (Block et al., 2011; Hindell et al., 2016; Raymond et al.,
2015; Wakefield et al., 2011). This is especially true in marine sys-
tems, as individual observations provide our only insight into the
otherwise unobservable. Achieving this scaling of inference from
individual movement patterns to population dynamics requires two
important components. The first is an adequate sample size (num-
ber of individuals) to address the ecological question of interest
(Hebblewhite & Haydon, 2010) and second, a statistical means by
which we gain meaningful inference at the individual and popula-
tion level from a finite sample of individuals (Jonsen, 2016; Langrock
et al., 2012; McClintock, Russell, Matthiopoulos, & King, 2013).

The issue of sample size has been extensively discussed, espe-
cially when considering how movement studies can inform marine
conservation and spatial management (Hebblewhite & Haydon,
2010; McGowan etal., 2017; Nguyen et al., 2017; Ogburn etal.,
2017). Tags can be expensive (McGowan et al., 2017), are liable to
occasional failure or loss, and often result in individual pathways
that are data-poor or have a low number of observations. As a re-
sult, meeting the minimum sample size of 20 + individuals when
making simple statistical comparisons between populations is un-
common (Hebblewhite & Haydon, 2010), with even greater num-
bers needed when testing for the effects of age, sex, and species
identity (Lindberg & Walker, 2007). In the absence of a collabora-
tive effort across multiple institutions (Block et al., 2011; Hindell
et al., 2016), a significant increase in funding or a community-wide

shift to data sharing (e.g., via online data repositories like Movebank

- Kranstauber et al., 2011); it would appear that the most viable
route toward robust population-level inferences is approaches that
make the most of the tagging data we already have.

Among the many methodological developments that utilize
movement data to answer ecological questions, hidden Markov
models (HMMs) and hidden semi-Markov models have taken cen-
ter stage (e.g. DeRuiter et al., 2016; McKellar, Langrock, Walters,
& Kesler, 2015; Michelot, Langrock, & Patterson, 2016; Towner et
al., 2016). Favored because they match our initiative understanding
that movement is governed by switches in an animal’s motivation
(Patterson et al., 2017), HMMs provide a computationally efficient
means of objectively classifying movement into discrete states, with
different statistical properties, indicating differences in underlying
behavior (Langrock et al., 2012).

HMMs have been fitted to multiple individual pathways simul-
taneously in both the frequentist (Langrock et al., 2012; McKellar
etal, 2015) and Bayesian statistical paradigms (Jonsen, 2016;
McClintock et al., 2013). However, these approaches are typically
implemented by specialist statisticians and require the coupling of
HMM and hierarchical structures, producing a hierarchical Hidden
Markov model (HHMM). The alternative is the use of HMMs or other
state-space approaches that fit on an individual by individual basis
(Jonsen, Myers, & James, 2007; Michelot et al., 2017). This latter,
more frequently used approach has its advantages, the most notable
being an ease of use for statisticians and biologists alike. Fitting per
individual also has its disadvantages. The first is that it requires indi-
vidual movement paths that are suitably data-rich to achieve model
convergence, imposing even stricter restrictions on sample size. The
second is a distinct lack of any formal process by which state one in
animal A is ensured consistency with state one in animal B. This lack
of consistency means that estimated parameters can readily inform
individual-level movement studies but will result in tricky interspe-
cific and intraspecific comparisons, limiting a researcher’s ability to
ask post hoc population-level questions of their data.

Our objective is to introduce an alternative framework that uses
HMMs to overcome the described limitations of individually fitted
HMMs while maintaining their heralded ease of use advantages. Our
approach combines an N-state HMM and several hierarchical struc-
tures but bypasses the need to integrate over the random effects
(as in HHMMs; Langrock et al., 2012) by using information we gain
from our data-rich pathways as a priori approximations of each states
movement parameters. Doing so not only allows us to achieve co-
herent individual- and population-level state classification, but also
ensures that we maximize our sample size by gaining meaningful in-
ference from our data-poor and data-rich movement paths.

To illustrate our approach, we apply it to a real ecological prob-

lem—quantifying seasonal space use patterns in Atlantic cod (Gadus
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morhua) and European plaice (Pleuronectes platessa) in the North Sea
and English Channel. Both Atlantic cod and European plaice have
significant commercial and conservation value and as a result have
been the subject of several long-term tagging programs (Hobson,
Righton, Metcalfe, & Hays, 2007, 2009; Hunter, Metcalfe, Arnold,
& Reynolds, 2004; Hunter, Metcalfe, O'Brien, Arnold, & Reynolds,
2004; Righton, Metcalfe, & Connolly, 2001). Drawing on this, the
rest of this paper considers a case study of 107 individual bivari-
ate movement paths, many of which (n = 73) have limited observa-
tions and/or lack clear biological signals. Our findings demonstrate
clear spatiotemporal patterns in the movement behavior of either
species that are consistent with individual-level studies (Hobson
et al.,, 2007, 2009; Hunter, Metcalfe, Arnold, et al., 2004; Hunter,
Metcalfe, O'Brien, et al., 2004; Neat et al., 2014). Furthermore, by
analyzing a relatively large dataset, we provide a unique insight into
how differing substocks of cod and plaice shift their behavior on a
seasonal basis, with clear consequences for fisheries management

and conservation.

2 | MATERIALS AND METHODS

2.1 | Casestudy data

Movement paths were taken directly from the deployment of data
storage tags (DSTs) on free-roaming fish in the North Sea or English
Channel. The dataset includes 107 individuals from two species of
European demersal fish: Atlantic cod (n = 46) and European plaice

(n = 61). All fish were tagged and released between December 1996
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and June 2011. Fish were broadly separated into substocks based on
release location (see Figure 1) and displayed considerable variation
in movement path duration (Supporting information: Table S1).

Each DST was programmed to record depth (m) at 10-min in-
tervals for the duration of deployment. The first 2 weeks and the
last day of every time series were excluded to remove any errone-
ous or irregular measurements associated with release and recap-
ture events as per Hobson et al. (2007). For details of tag type, fish
catchment, tag implantation and measurement accuracy see Righton
et al. (2010; Gadus morhua) or Hunter, Metcalfe, Arnold, et al. (2004;
Pleuronectes platessa).

Each movement path is a bivariate time series of horizontal and
vertical movement per day. Net vertical movement (m/day) of each
fish was taken directly from the raw DST data by calculating the
absolute difference between corresponding 10-min depth measure-
ments and summing the values for each day at liberty. Horizontal
movement (m/day), in comparison, was inferred indirectly from the
depth data in a two-step approach. First, daily geolocation estimates
were produced via a Fokker-Planck-based method that combines
Metcalfe and Arnold’s (1997) tidal location method and a Bayesian
state-space model (see Pedersen, Righton, Thygesen, Andersen, &
Madsen, 2008 for model details). The straightline distance between
daily geographic estimates (commonly referred to as “step-length”)
was then calculated using the Great Circle equation. Both vertical
(v) and horizontal (h) movement metrics were log (natural log) trans-
formed prior to model implementation. Only time series that were
longer than 40+ days and had complete depth recordings were used

in this study. For descriptions of horizontal and vertical movement in
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Atlantic cod and European plaice see Hunter, Metcalfe, Arnold et al.
(2004), Hunter, Metcalfe, O'Brien et al. (2004) and Hobson et al.
(2007, 2009).

2.2 | The model

Previous individual-level studies demonstrate that Atlantic cod and
European plaice display periods of high activity while in the water
column punctuated by periods of relatively low activity while on the
seabed (Metcalfe, Hunter, & Buckley, 2006; Righton et al., 2010).
Thus, we consider a discrete 2-state HMM. We label state one as
“resident” (R), representing periods of time with low movement
rates. We label state two as “migrating” (M), representing a much
more active phase where movement rates in the horizontal and
vertical dimension are greatly increased. As in all attempts to infer
behavior from movement observations, state labels must be inter-
preted with care as they provide simplified proxies of unobserved
behavioral modes, not direct equivalents (Patterson et al., 2017).

For a movement path of length T, it is assumed that an under-
lying, nonobserved state sequence S, ..., S, taking values in {R, M}
describes the persistence within and stochastic switching between
states. The time-varying evolution of this state process takes the
form of a (first-order) Markov chain, with transition probability ma-
trix

TR—R YR—
F:( R—R YR-M > (1)
YM—R YM=M
and .
Yjok=Pr (S =kIS;=)) (2

for any j, k in {R, M}. Given a state j at time t the observation x, is

assumed to be drawn from a multivariate normal distribution (MVN):

X;~MVN (pj,Z,») (3)

with
[ HH

W= < Pjv> )

and
s csz PjOjHO}V
! PGy Oy  O2 (5)
JPHYV iV

and H and V represent movements made in the horizontal and ver-
tical dimension, respectively. Thus, the complete-data likelihood
given a state sequence S, ..., S;is

s, b5, (X1) Vs, 05,Ps, (X2) - Vs, s, s, (X7) ©

where the row vector o is the Markov chain initial state probability
(which we assume to be uniform at t = 1) and ¢; refers to the multi-
variate normal density stated in equation 3. We allow distinct pa-
rameters for each fish, indexed by i =1, ..., 107, and write these as
I, p]': and Z]'

In practice, standard HMM algorithms allow us to calculate the
actual likelihood, when the states are unobserved, very efficiently
by integrating over all possible state sequences using the forward

algorithm (Zucchini, MacDonald, & Langrock, 2016). Framing the
model in this way enables us to conduct parameter estimation
using a Bayesian approach, by numerically maximizing the posterior
density. The classification probability of each state at t is then de-
termined using the backward smoothing algorithm (Zucchini et al.,
2016). More details for how the efficient HMM machinery can be
used to conduct statistical inference are given in Zucchini et al.
(2016), for the particular case of animal movement modeling see
Patterson et al. (2017). For our case study, we used the R optimiza-
tion routine optim to numerically maximize the log posterior density.
State allocation is carried out by selecting the most likely state at
each time point separately.

Periods of relative inactivity (low h and v movement rates) can
persist for 3-5months in either species (Metcalfe etal., 2006;
Righton et al., 2010). To accommodate this persistence within state,
we have imposed a prior penalty term on the transition probabilities,
such that

Y11~ B (ap) (7)

and

Y22 ~ B (a,p) (8)
where a = 99 and § = 1. This prior, termed hereafter as the transition
probability prior, is designed to ensure that states R and M corre-
spond to strong seasonal shifts in movement behavior and not day-
to-day fluctuations.

2.3 | Classifying fish movements

We apply the model described in section 2.2. to all 107 individ-
ual movement paths, such that each fish gets its own parameter
set. Each parameter set consists of 12 estimated parameters,
two transition probabilities and 2 sets of 5 parameters describ-
ing the mean (Hj) and covariance (Zj) of each state. A total num-
ber of 24,624 days (Atlantic cod = 9290 days; European plaice =
15,334 days) were considered. As expected, the resulting state
sequences are predominately made up of two clearly defined
behavioral modes - one more active and one less active (see
Supporting information: Figures S1 and S2 for example output).
However, the parameters describing the numerical structure of
these modes showed great variation among fish, with no clear
consistency. Moreover, a handful of movement paths failed to
achieve model convergence, as an upper threshold of observa-
tions is needed for robust parameter estimation (Patterson,
Basson, Bravington, & Gunn, 2009).

To avoid the wasteful removal of valuable data or a tedious post
hoc description of the individual variation that exists in the HMMs
output, we adopted an alternative approach. Based on the selection
criteria outlined in Supporting information: Figure S3, we select
model output from 34 fish (Atlantic cod, n = 11; European plaice,
n = 23) spread evenly across the five substocks (Supporting informa-
tion: Table S2). We then calculate summary statistics (means m and
variances §) that describe the numerical structure of the two states

(Supporting information: Figure S4). These summary statistics are
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FIGURE 2 Estimated state-dependent distributions (bars) for vertical (left) and horizontal (right) movements of all 34-selected fish.
Black lines illustrate the movement parameter prior distributions N (m,5) that were constructed based on collective model output. Prior
distributions are state (resident, solid line; migratory, dashed line)-, species (Atlantic cod, top; European plaice, bottom)-, and dimension

(horizontal or vertical)-specific

used to construct Gaussian distributions (Figure 2), N (m,5) where m
and § are dimension (h or v) d, state j and species specific given the
selected sample. These informative distributions (4 per species),
termed hereafter as priors on the model’s movement parameters,
are then introduced directly into the HMM s likelihood function, such

that Equation 6 is multiplied by
D Im;4,8;)
Hl;[ o O )

where ¢(- | m, ) is the Gaussian density with mean m and vari-
ance 8. Thus, our informative priors act to constrain the mean pa-
rameters of each state during the classification process.

This adapted approach is applied to the classification of the re-
maining 73 individual pathways (Atlantic cod, n = 35; European plaice,
n = 38), outputting state sequences that comprise comparable states
across all fish. This enables post hoc comparisons to be made at the in-
dividual and population level with relative ease. For an example of how
prior inclusion influences the classification process see Supporting in-

formation: Figure S5. Furthermore, demonstrations of how comparable

states are across multiple fish (Supporting information: Figure S6) and
differences between model fit for one of the data-poor movement
paths are provided (Supporting information: Figure S7).

All HMMs were coded and implemented in R (R Development
Core Team, 2016; see Supporting Information document 2 for ex-
ample code). All plots were generated using the ggplot2 (Wickham,
2009) and ggmap (Kahle & Wickham, 2013) packages in R (R
Development Core Team, 2016). Bathymetric data was sampled
from the General Bathymetric Chart of the Oceans online repository
(GEBCO 2017, www.gebco.net), which is a global topographic data-

set with a one-minute (1’) spatial resolution.

2.4 | Prior sensitivity analysis

When imposing prior distributions in statistical models it is always
important to test what influence those priors have on the models’
predictions, in our case the model’s estimated state sequences.

To test the sensitivity of our model to changes in the transition
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probability prior we varied the o and p values that characterize the
priors’ beta distribution and reran the HMM for all 34 “selected”
fish. In test 1 (x = 49.5, p = 0.5) we still expect a behavioral switch
to occur at an order of every 100 days. However, we approximately
double our prior’s variance. In test 2 (« = 49, § = 1) the expected rate
of switching is halved.

To test the model’s sensitivity to changes in the movement pa-
rameter priors, we varied the variances (8s) that describe the spread
of each state and reran the adapted HMM for 10 randomly selected
fish from each species. In test A, we increased all § values by 10%, re-
flecting a prior expectation of greater variability between the param-
eters of individual fish, and in test B we decreased all § values by 10%,
reflecting an expectation of reduced variability. During all reruns of
the adapted HMM (Test A and Test B) the state transition prior is kept
constant, therefore ensuring that any change in state is a direct con-

sequence of the changes to the model’'s movement parameter prior.

2.5 | Univariate modeling

To assess the advantages of using bivariate responses,
we also carried out an analysis using a univariate obser-
vation model, considering only movements made in the
horizontal dimension. The same model for transition prob-
abilities is used as described above. We apply this approach
to the 34 fish (Atlantic cod, n = 11; European plaice, n = 23)
previously characterized as data-rich movement paths.
Reported comparisons reflect the percentage change, if any, in

the resultant state sequences for each individual fish.

2.6 | Inferring population patterns

As population dynamics emerge as the sum of the individuals that
comprise the population, we used individual movement behaviors
to explore spatiotemporal patterns. Annual temporal patterns of
movement behavior were calculated for each species in two ways.
First, the daily individual probabilities of each fish being in each state
were averaged across all individuals and over each week of the year.
Second, the proportion of fish classified to each state was calculated
by averaging the daily number of fish in each state and smoothing
it, again to the weekly time step. Week refers to weeks of the year,
starting on the 1st January and ending on the 31st December and is
independent of year.

Patterns of space use while in either state were quantified
using utilization distributions (Kie et al., 2010; Womble & Gende,
2013; Worton, 1989). For each species and substock, utilization
distributions were calculated by pooling all daily horizontal geolo-
cations for specified time periods and spatially binning them into
5 km? grid cells (Maxwell et al., 2011; Womble & Gende, 2013).
Specified time periods were state-dependent and based on a
weekly averaged probability of observing a given state across all
individuals exceeding 0.5. Successive weeks classified to the same
behavioral state were then grouped. In Atlantic cod this meant
locations that were classified to a resident state between June

- October and locations classified to a migrating state between
November and May were used. In European plaice locations clas-
sified to a resident state between April and September and loca-
tions classified to a migrating state between October and March
were used.

3 | RESULTS

3.1 | Individual fish movement

Mapping the posterior probability of being in a particular state in-
dicated that individual fish from either species switch between pe-
riods of highly directed movement when in a migratory state and
periods of random and highly localized movements when in the less
active resident state (Figure 3). Time spent in either state and the
transitions between states were shown to vary in space and time
and can be linked to certain habitats. For example, cod 1186 spent
197 days (June-November) consecutively in the resident state within
the deeper waters of the Celtic Sea and only shifted into a migratory
state when transiting through the English Channel. In comparison,
plaice 1084 undertook long-distance directed movements after its
release in the German Bight, spending 54 days consecutively in the
migrating state before switching to the resident state in the shallow
waters of the Central North Sea.

The majority of individual time series had observations that
shifted between resident and migratory states (n = 41 Atlantic cod,
n =60 European plaice). However, a small number of individuals
(n = 6) persisted in a single state for the duration of their time se-
ries: one European plaice and four Atlantic cod remained in a resi-
dent state throughout, whereas the movements of one Atlantic cod
were consistently classified to the migratory state. All 6 single state
movement paths had short duration times (average movement path
duration = 56 + 21 days) and were released throughout the year

(November-May).

3.2 | Population patterns

The mean probability of observing a resident state and the pro-
portion of observations classified to a resident state varied
throughout the year (Figure 4). In both species, migratory behavior
dominated throughout the winter and into spring, with the onset
of summer signifying a shift in movement behavior to the resident
state. This shift in state occurred earlier in European plaice than in
Atlantic cod, with movements of plaice having a higher probability
of classification to the slower, less active resident state between
late April and September, compared to June through to November
in cod.

The model predicted large variation in average movement rates
within each state (Table 1). Horizontal movement rates of plaice tagged
and released in the Southern North Sea and German Bight were sig-
nificantly lower than those tagged in the Central North Sea (resident,
Student’s t test, p < 0.001; migrating, Student’s t test, p < 0.001). In
the resident state, plaice from the Southern North Sea and German
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Bight moved on average 6.5 km/day horizontally and between 20.0 and
26.1 m/day vertically compared to 13.9 km/day horizontally and be-
tween 15.6 and 125.8 m/day vertically in the migratory state. In com-
parison, plaice tagged in the Central North Sea exhibited much higher
horizontal movement rates, moving on average 12.9 and 19.5 km/day in
the resident and migratory states, respectively.

Predicted spatial utilization distributions showed that migration oc-
curred throughout the spatial domain, with no clear concentration of
migratory activity in either species (Figure 5; Supporting information:
Figure S8). In comparison, periods of time spent in a resident state pro-
duced clear geographic patches of space use while in certain habitats.
These habitats varied with species (Figure 5) and substock (Supporting
information: Figure S8), however Southern North Sea cod and plaice
both aggregated in the coastal waters off the English mainland. Cod in
the English Channel shift to a resident state when in the western mouth
of the Channel. In the German Bight, 90% of plaice spent most of their
time at liberty within the area, displaying little or no dispersal. Of those
plaice tagged in the Central North Sea, 48% were estimated to be in
the resident state within the Northern North Sea while a further 11
fish undertook southern migrations before shifting to a resident mode

in the shallow waters of the Central North Sea.

3.3 | Prior sensitivity analysis

Minimal change in the classification of states was found dur-
ing prior sensitivity analysis (Supporting information: Table S3).
Re-running the HMM with changes to the transition probability
prior revealed an average percentage change in state across all
individuals of 1.5% in cod and 1.8% in plaice. In comparison, rerun-
ning the adapted HMM with changes to the movement parameters

Ecology and Evolution _ m
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priors resulted in a percentage change in state that was on average
<1% in cod and 2.3% in plaice. Such findings demonstrate that the
precise details of these priors are not crucial, with state classifica-
tions and biologically important results being robust to fairly large
changes in prior parameters.

3.4 | Distribution of state dwell times

In an HMM, the length of time that an individual spends in one state
before switching to the other necessarily follows a geometric distri-
bution. Pooling across individuals, we find that these distributions
are indeed geometric (see Supporting information: Figures S9 and
510), and so the dynamics of the fitted changes in state are consist-
ent with the Markov nature of the model. Further model assessment
is provided by residual plots in Supporting information: Figure S11
and S12.

3.5 | Comparison to univariate modeling

State allocation was found to be different across the two tested ob-
servation models. The bivariate model resulted in state sequences
that differed from the univariate model in 8.0% and 23.3% of cases
in Atlantic cod and European plaice, respectively. This result con-
firms the need for the bivariate analysis.

4 | DISCUSSION

One of the main objectives of animal movement studies is the scal-
ing of inference about movement behaviors from individuals to

Latitude

Longitude

Depth (m)
=300
200-300
100-200
50-100
25-50
<25

FIGURE 3 State-dependent movement behavior of two individual fish. Shown in a color scale from red to yellow is the movement
behavior of one Atlantic cod tagged on the March 25, 2005 (duration = 300 days). Red points represent a migrating state, yellow a resident
state, and those points shown in orange illustrate times when the model was uncertain of state classification (i.e., the daily probability

of state classification was <0.85). Shown in a scale from purple to cyan is the movement behavior of one European plaice tagged on the
November 14, 1997 (duration = 253 days). Purple points represent a migrating state, cyan a resident state, and those points shown in royal
blue illustrate times when the model was uncertain of state classification. The start point and end point of each individual’'s movement path

are shown as a green triangle and a red diamond, respectively
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Substock movement (km) movement (m) movement (km) movement (m)

Atlantic cod (Gadus morhua)

Southern 9.2
North Sea

English 9.6
Channel

European plaice (Pleuronectes platessa)

Southern 6.4
North Sea

German Bight 6.6

Central North 12.9
Sea

31.5 13.9
53.5 134
20.0 12.9
26.1 14.9
26.2 19.5

158.3

125.4

115.6

125.8
121.0

Note. All values are taken from collated model output and are averaged across all individuals.

FIGURE 4 Annual temporal
distributions of the resident state in
Atlantic cod (red) and European plaice
(blue). The plotted line in either graph
illustrates the mean probability of
observing a resident state (+1 SE—gray
shading). The underlying barplots
demonstrate the proportion of individual
fish that are in a resident state during
each week. Periods of time when the
mean probability of observing a resident
state is continually >0.5 are illustrated in
either species

TABLE 1 State-dependent movement
rates (horizontal: km/day, vertical: m/day)
by substock in Atlantic cod and European
plaice
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FIGURE 5 Annual state-dependent space use patterns of Atlantic cod (a, b) and European plaice (c, d) in the North Sea and English
Channel. Plots are split into periods of resident dominant (a, c) and migrating dominant (b, d), defined by a mean probability of observing a
given state at a given time being >0.5. All grid cells (5 km?) are illustrated in a color gradient so as to illustrate the sum total number of days

spent in a certain state in a given grid cell within a specified time period

populations (Block et al., 2011; Hays et al., 2016; Hindell et al., 2016;
Raymond et al., 2015; Wakefield et al., 2011). HMMs (McKellar et al.,
2015; Michelot et al., 2016; Patterson et al., 2009) or their Bayesian
equivalents (Jonsen et al., 2013; McClintock et al., 2013) provide a

powerful way of achieving this objective but only when movement

behaviors are identified consistently across multiple individuals.
Here we have achieved this consistency by “borrowing” information
from a finite sample of individuals and using it to provide our model
with data-driven approximations of each state. Using this novel ex-
tension to HMM methodology, we investigated spatial and temporal
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shifts in movement behavior from a large sample size of bivariate
movement pathways. We demonstrated where and when shifts be-
tween two ecologically meaningful states are most likely to occur
and add further confidence to observations of seasonal dependence
in the movements of commercially important demersal fish. Our
biological findings complement and advance current understanding
and highlight how our approach has significant utility in the fields of
movement ecology and conservation.

Our approach to behavior classification has two major advan-
tages. First, it enabled us to gain meaningful inference from 73 (68%
of the dataset) additional movement pathways, many of which are
data-poor and would otherwise be subject to post hoc removal. This
retention of all individual-level information is favorable because it
maximized our sample size and lends more information to our anal-
ysis. Second, our approach ensures that state labels are allocated
consistently across multiple individuals, without resorting to large
increases in model complexity. As a direct consequence of these two
advantages, we were able to ask population-level post hoc questions
of our movement data and provide answers that are meaningful for
conservation and spatial management.

Studies that classify behavior based on horizontal and verti-
cal movements are rare (but see Breed, Bowen, & Leonard, 2013;
Bestley, Jonsen, Hindell, Harcourt, & Gales, 2015; DeRuiter et al.,
2016). Here, we have assumed that h, and v, are conditionally depen-
dent given latent states, which is a novel addition to the movement
ecology literature. Our reasons for doing so are linked to a priori in-
formation about how the species of interest alter their activity levels
within an annual cycle (Hobson et al., 2009). However, we intuitively
expect other species occupying three-dimensional environments to
exhibit similar degrees of coupling. For example, Bestley et al. (2015)
reveal that the directed horizontal movements in multiple Antarctic
pinniped species are associated with longer dive durations, whereas
an inverted relationship is noted in blue whales (Balaenoptera muscu-
lus) with perceived shallow foraging behaviors being characterized
by shallow dives and short horizontal movements (DeRuiter et al.,
2016). Future studies may find similar observation models a power-
ful tool for investigating the dependences of horizontal and vertical
movement rates (Carter, Bennett, Embling, Hosegood, & Russell,
2016).

Our estimates of average movement rates are consistent with
previous work. In cod, horizontal movement rates while in the migra-
tory state are shown to be approximately 13.5 km/day which is com-
parable to past observations (Hobson et al., 2009) and laboratory
studies (Bainbridge, 1957; Videler & Wardle, 1991). In plaice, previ-
ous research reports that seven tagged individuals swam on average
255 + 60.2 km during prespawning migrations (Hunter, Metcalfe, &
Reynolds, 2003). Assuming an average migration time of 2-4 weeks
(as noted in Hunter et al., 2003), our estimates of horizontal move-
ment rates between 13 and 20 km/day seem reasonable. Therefore,
we are confident that our choice of state labels is biologically mean-
ingful for the species in question.

Much work has considered the horizontal and vertical move-
ments of Atlantic cod (Hobson et al., 2007, 2009) and European

plaice (Hunter, Metcalfe, Arnold, etal., 2004; Hunter, Metcalfe,
O'Brien, Arnold, and Reynolds, 2004), noting strong seasonal de-
pendence in the movement patterns of individual fish. Here we add
confidence to these findings by providing a mechanistic view of
how fish switch between two movement modes during their annual
cycle. In particular, we show that cod and plaice are more likely to oc-
cupy a resident state during the summer months (April-September
in plaice; June-November in cod). These periods are dominated by
low horizontal and vertical movement rates, therefore our findings
support the hypothesis that both species spend their summer in a
sedentary state with minimal activity levels (Metcalfe et al., 2006;
Righton et al., 2010). Movement rates then ramp up during the win-
ter and early spring (October-March in plaice; December-May in
cod), resulting in a collective shift in state. As in previous studies
(Hobson et al., 2007; Hunter et al., 2004b), we interpret this shift to
be reflective of prespawning migrations, the onset of spawning and
subsequent postspawning migrations. One limitation of the two-
state model considered here is that we cannot directly infer foraging
or spawning behavior. Foraging and spawning events are likely to
represent an immediate activity level, with both behaviors involving
notable vertical displacement to and from the water column (Hobson
et al., 2009). The inclusion of a third immediate state would be a rel-
atively straightforward extension to model structure (see Vermard,
Rivot, Mahévas, Marchal, & Gascuel, 2010; Peel & Good, 2011;
Michelot et al., 2017 for examples of HMMs that consider >2 states).
However, it is unlikely that the scale of these vertical excursions is
large enough to allow classification at the daily time step. Therefore,
we suggest that future studies either deploy more sophisticated tags
which are capable of recording more refined information about the
underlying movement process (e.g., accelerometers; Leos-Barajas,
Photopoulou, et al., 2017) or consider a nested hierarchical HMMs in
which vertical and horizontal movements are recorded and classified
at differing time scales (Leos-Barajas, Gangloff, et al., 2017).

Over the last 70 years, landings data for the North Sea and
English Channel demonstrate that catch per unit effort (CPUE) for
demersal species is higher during the summer months (Righton,
Townhill, & Van Der Kooij, 2009). Such increases in CPUE are un-
doubtedly linked to changes in the populations’ underlying move-
ment behavior, as time spent on the seabed results in an increased
vulnerability to commercial exploitation (Righton et al., 2009). By
assuming that time spent in a resident state is linked to sea-bottom
dwelling, we show that cod and plaice aggregate in certain habitat
types. For example, cod in the English Channel have greatest density
in the deeper waters at the western mouth of the English Channel.
In contrast, cod and plaice in the Southern North Sea aggregate in
coastal waters off the English mainland. We also demonstrate that
plaice in the German Bight remain exclusively within this region, sug-
gesting the presence of a sedentary resident population in which fish
spawn and forage in the same locality (previously noted in plaice by
Hunter et al., 2004b and in cod by Neat et al., 2006). Such spatial
information is essential for defining multispecies management mea-
sures, as strategies typically involve gear restrictions (Moustakas,
Silvert, & Dimitromanolakis, 2006) aimed at limiting the exploitation
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of certain species/life stages and spatial fisheries closures aimed
at protecting areas of particular importance for species survival,
for example foraging and spawning grounds (Hunter et al., 2004b;
Righton, Quayle, Hetherington, & Burt, 2007).

One limitation of our method is the way in which we deal with
individual variation. Currently we assume that by analyzing the
movements of a finite sample of data-rich pathways (n = 34) we
gain sufficient information about how the mean movement of each
state is distributed throughout the population. We then expect the
movements of all other individuals to be drawn from one of these
distributions and make no attempt to explain any deviance away
from this “expected” process. One way to improve our approach and
make it more generic would be the inclusion of covariate informa-
tion (Phillips, Patterson, Leroy, Pilling, & Nicol, 2015). For example,
four Atlantic cod were unexpectedly classified solely to a resident
state even though their movements occurred throughout the win-
ter (November-April). Post hoc investigations reveal an average body
length of ~56 cm which lies within the predicted range of length at
first maturity (31-74 cm; Froese & Pauly, 2017). It is likely that im-
mature fish act differently to their mature conspecifics (Sippel et al.,
2015) and that tagging programmes like the one considered here in-
clude fish of differing sex and age (Carter et al., 2016). Consideration
of these factors is beyond the scope of this paper. However, we
believe that the inclusion of body length (see Towner et al., 2016
for an ecological example) or other individual covariates within the
HMM s likelihood function would provide a fruitful avenue for future
research.

Technological advancements in telemetry devices have led to
huge efforts to track the movements of free-roaming marine ani-
mals (Hays et al., 2016; Hussey et al., 2015). Tagging data are now
seen as a valuable information source for stock assessment models
(Sippel et al., 2015), monitoring the effectiveness of conservation
efforts (e.g., McGowan et al., 2017; Raymond et al., 2015) and un-
derstanding population dynamics across vast spatial scales (Block
et al., 2011; Hindell et al., 2016). However, there is no avoiding the
fact that tags are expensive (McGowan et al., 2017), liable to occa-
sional failure and often produce individual pathways that are of lim-
ited use (data-poor or a low number of observations). Here, we have
introduced a methodology that makes the process of scaling up in-
ference about movement behaviors from individuals to population
more readily achievable. Moreover, we illustrate how the adoption
of our approach can make tagging studies more cost-effective, as
inference can still be gained from data-poor movement paths with-
out resorting to redeployment or a renewed effort to secure further

funding.
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