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Assessing the Incremental Contribution of
Common Genomic Variants to Melanoma
Risk Prediction in Two Population-Based
Studies

Anne E. Cust1,2, Martin Drummond1,2, Peter A. Kanetsky3,
Australian Melanoma Family Study Investigators*,
Leeds Case-Control Study Investigators†, Alisa M. Goldstein4, Jennifer H. Barrett5, Stuart MacGregor6,
Matthew H. Law6, Mark M. Iles5, Minh Bui7, John L. Hopper7, Myriam Brossard8,9,
Florence Demenais8,9, John C. Taylor5, Clive Hoggart10, Kevin M. Brown4, Maria Teresa Landi4,
Julia A. Newton-Bishop5, Graham J. Mann2,11 and D. Timothy Bishop5
It is unclear to what degree genomic and traditional (phenotypic and environmental) risk factors overlap in
their prediction of melanoma risk. We evaluated the incremental contribution of common genomic variants (in
pigmentation, nevus, and other pathways) and their overlap with traditional risk factors, using data from two
population-based case-control studies from Australia (n ¼ 1,035) and the United Kingdom (n ¼ 1,460) that used
the same questionnaires. Polygenic risk scores were derived from 21 gene regions associated with melanoma
and odds ratios from published meta-analyses. Logistic regression models were adjusted for age, sex, center,
and ancestry. Adding the polygenic risk score to a model with traditional risk factors increased the area under
the receiver operating characteristic curve (AUC) by 2.3% (P ¼ 0.003) for Australia and by 2.8% (P ¼ 0.002) for
Leeds. Gene variants in the pigmentation pathway, particularly MC1R, were responsible for most of the in-
cremental improvement. In a cross-tabulation of polygenic by traditional tertile risk scores, 59% (Australia) and
49% (Leeds) of participants were categorized in the same (concordant) tertile. Of participants with low tradi-
tional risk, 9% (Australia) and 21% (Leeds) had high polygenic risk. Testing of genomic variants can identify
people who are susceptible to melanoma despite not having a traditional phenotypic risk profile.
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INTRODUCTION
Primary and secondary prevention strategies that reduce sun
exposure and encourage increased sun protection and skin
examination behaviors are important for reducing melanoma
incidence and mortality, particularly for those identified as
being at high risk (Aitken et al., 2010; Armstrong and Kricker,
1993; Breitbart et al., 2012; Glanz et al., 2015). To date,
identifying people at high risk for melanoma has focused on
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factors such as family history (Olsen et al., 2010b), pheno-
typic characteristics (fair skin, skin that burns easily, red hair,
moles and freckling (Gandini et al., 2005a), solar and artifi-
cial UV radiation exposure (Cust et al., 2011a; Gandini et al.,
2005b), and previous keratinocyte skin cancers (Gandini
et al., 2005b).

Common genomic variants may help identify people at
high risk for melanoma, particularly those who lack these
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Table 1. Characteristics of case and control
individuals in the Australian Melanoma Family Study
and Leeds case-control study

Characteristic
Australia,
n (%)

Leeds,
n (%)

Total, case and control individuals 1,035 1,460

Case individuals 578 (56) 964 (66)

Control individuals 457 (44) 496 (34)

Sex

Female 623 (60) 874 (60)

Male 412 (40) 586 (40)

Age at diagnosis/interview, years1

18e29 268 (26) 61 (4)

30e39 682 (66) 198 (14)

40e49 85 (8) 264 (18)

�50e69 0 (0) 937 (64)

Ethnic background2

English 649 (63) 1,358 (93)

Scottish, Irish, Welsh 52 (5) 67 (5)

Other Northern European 46 (4) 6 (0)

Southern European 11 (1) 6 (0)

Eastern European 238 (23) 3 (0)

Mixed/other European 39 (4) 20 (1)

1Leeds case and control individuals were unselected for age at diagnosis.
In Australia, all case individuals were younger than 40 years at diagnosis,
and all population control individuals were younger than 40 years when
ascertained. Case and control individuals could be up to age 44 years at
interview for this analysis.
2Self-reported.
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traditional risk factors (Berwick et al., 2014; Cust et al., 2012;
Kanetsky et al., 2010). It is becoming more feasible to
incorporate genomic profiles into risk prediction tools, given
increased understanding of genomic risk factors and
increased genomic testing in clinical practice. Development
and assessment of melanoma risk prediction models that
combine traditional and genomic risk factors is warranted to
help improve melanoma prevention and population
screening. For example, Australian general practice guide-
lines state that clinical assessment of melanoma risk should
take into account multiple risk factors yet highlight the fact
that there are no sufficiently well-validated risk models to
assess the combined effects of all risk factors (Royal
Australian College of General Practitioners, 2016). Accurate
identification of people at high risk for melanoma will also
facilitate research on targeted screening strategies for those at
higher risk (US Preventive Services Task Force et al., 2016).

Few studies have examined the contribution of multiple
genomic risk factors to risk prediction over and above that of
traditional risk factors (Fang et al., 2013; Kypreou et al., 2016;
Stefanaki et al., 2013). Limitations of previous studies have
included lack of external validation, small sample size
(Stefanaki et al., 2013), lack of data on nevus phenotype or
family history (Fang et al., 2013; Kypreou et al., 2016;
Stefanaki et al., 2013), and possible confounding by
ethnicity (Fang et al., 2013).

We aimed to evaluate the incremental contribution of
common genomic variants to melanoma risk prediction,
including the contribution of variants associated with iden-
tified biological pathways, using data from two population-
based studies in geographically disparate but genetically
similar populations (Australia and the UK). Both studies were
developed by the GenoMEL (www.genomel.org) melanoma
genetics consortium and used the same measurement pro-
tocols, facilitating external validation.
RESULTS
Participant characteristics

Demographic characteristics of participants in the Australian
and Leeds, UK, case-control studies in this analysis are
shown in Table 1. The studies had a similar proportion (60%)
of female participants but a slightly different mix of European
ethnicities; results were similar if restricted to English ethnic
background. Participants were younger in the Australian
study because it restricted recruitment to onset before age 40
years.

Association of polygenic risk score with melanoma risk

For each country, there was a 3-fold higher risk of melanoma
for participants in the highest versus lowest tertile of poly-
genic risk score and a 6-fold higher risk in the highest versus
lowest decile; the odds ratio (OR) per adjusted standard de-
viation increase in polygenic score (i.e., OPERA) was 1.75 for
Australia and 1.63 for Leeds (Table 2). When evaluated by
biological pathway (see Supplementary Table S1 online) the
ORs for the pigmentation pathway were similar to the overall
polygenic risk score, but the ORs were lower for the telo-
mere/senescence/other pathway (about 50% increased risk
for the highest vs. lowest tertile) and the nevus pathway
Journal of Investigative Dermatology (2018), Volume 138
(about 25% nonsignificantly increased risk for the highest vs.
lowest tertile).

Incremental contribution of polygenic risk score based on
published risk estimates

Adding the polygenic risk score based on published ORs to a
model with traditional risk factors increased the AUC by
2.3% (P ¼ 0.003) for Australia and by 2.8% (P ¼ 0.002) for
Leeds (Table 3). The net reclassification improvement (NRI)
was 0.42 (95% confidence interval [CI] ¼ 0.30e0.54) for
Australia and 0.29 (95% CI ¼ 0.18e0.39) for Leeds; this was
driven more by improvements in specificity (i.e., net move-
ment of control individuals to a lower risk: 29% in Australia
and 19% in Leeds) than in sensitivity (net movement of case
individuals to a higher risk: 13% in Australia, 9% in Leeds).
Single nucleotide polymorphisms (SNPs) in the pigmentation
pathway, particularly MC1R, were responsible for most of the
incremental improvement. Conversely, SNPs in the nevus
and other pathways did not significantly improve risk pre-
diction. Most models were well calibrated except for the
addition of the nevus pathway SNPs in Australia.

Secondary analyses

Polygenic risk score and traditional risk factors had similar
discrimination when compared side by side in separate
models (respectively, 0.71 vs. 0.72 for Australia and 0.64 vs.
0.65 for Leeds). The incremental contribution of the poly-
genic risk score, including pathway-specific scores, was
stronger when the models were based on risk estimates
derived from the study datasets (AUC increased by 6.0% for
Australia and 5.6% for Leeds), but after 10-fold
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Table 2. Association of an overall polygenic risk score with melanoma risk in the Australia and Leeds studies

Overall
Polygenic
Risk Score

Australia Leeds

Range

Case
Individuals,

n (%)

Control
Individuals,

n (%)
Odds Ratio1

(95% CI) Range

Case
Individuals,

n (%)

Control
Individuals,

n (%)
Odds Ratio1

(95% CI)

Tertiles

1 e2.11 to 0.16 103 (18) 152 (33) 1.00 e1.46 to 0.16 160 (17) 163 (33) 1.00

2 0.16 to 0.60 158 (27) 170 (37) 1.38 (0.97e1.94) 0.16 to 0.60 312 (32) 154 (31) 2.09 (1.56e2.82)

3 0.60 to 2.52 317 (55) 135 (30) 3.22 (2.30e4.51) 0.60 to 2.69 492 (51) 179 (36) 2.84 (2.14e3.77)

P trend <0.0001 <0.0001

P int2 0.29

Deciles

1 e2.11 toe0.26 24 (4) 43 (9) 1.00 e1.46 toe0.27 48 (5) 53 (11) 1.00

2 e0.26 toe0.05 23 (4) 45 (10) 0.93 (0.45e1.94) e0.26 toe0.05 38 (4) 50 (10) 0.88 (0.49e1.58)

3 e0.05 to 0.13 37 (6) 43 (9) 1.47 (0.73e2.94) e0.05 to 0.13 64 (7) 52 (10) 1.45 (0.84e2.50)

4 0.13 to 0.27 51 (9) 54 (12) 1.83 (0.95e3.54) 0.13 to 0.27 83 (9) 42 (8) 2.36 (1.36e4.10)

5 0.28 to 0.37 54 (9) 76 (17) 1.23 (0.65e2.32) 0.27 to 0.37 57 (6) 41 (8) 1.61 (0.91e2.84)

6 0.37 to 0.49 41 (7) 30 (7) 2.51 (1.23e5.13) 0.37 to 0.49 109 (11) 43 (9) 2.99 (1.75e5.10)

7 0.49 to 0.63 49 (8) 41 (9) 2.13 (1.08e4.18) 0.49 to 0.63 91 (9) 55 (11) 1.94 (1.14e3.27)

8 0.64 to 0.82 77 (13) 44 (10) 3.06 (1.60e5.83) 0.64 to 0.83 106 (11) 51 (10) 2.44 (1.45e4.12)

9 0.83 to 1.06 73 (13) 38 (8) 3.03 (1.56e5.88) 0.83 to 1.06 118 (12) 57 (11) 2.44 (1.46e4.08)

10 1.06 to 2.52 149 (26) 43 (9) 5.88 (3.14e11.03) 1.06 to 2.69 250 (26) 52 (10) 5.62 (3.41e9.29)

P trend <0.0001 <0.0001

P int2 0.28

OPERA3 1.75 (1.53e2.01) 1.63 (1.46e1.83)

P int2 0.40

1Models are adjusted for demographic and study design factors of age, sex, city of recruitment, and European ancestry.
2P-value for interaction comparing trends across countries.
3Odds ratio per adjusted standard deviation, stratified by location (Australia/Leeds) and adjusted for age and sex, using the OPERA method (Hopper, 2015).
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cross-validation, the AUC increase was 2.0% and 1.2%,
respectively (see Supplementary Table S2 online).

Cross-tabulation of polygenic risk score with traditional risk
score

In a cross-tabulation of polygenic versus traditional risk
scores categorized as tertiles (low, average, high), 59%
(Australia) and 49% (Leeds) of participants were categorized
in the same (concordant) tertile (Table 4). Of participants with
low traditional risk, 9% in Australia and 21% in Leeds had a
high polygenic risk, indicating genetic susceptibility despite
lack of phenotypic risk features. Conversely, 8% of partici-
pants in Australia and 18% in Leeds had a high traditional
risk but a low polygenic risk.

Parsimonious risk prediction models combining traditional
and genomic risk factors

Table 5 lists traditional and genomic risk factors selected as a
more parsimonious model for each dataset. The same genetic
variants and traditional risk factors were assessed for inclu-
sion in both models, but only those with P < 0.20 in the
multivariable model were retained. Traditional risk factors
contributing to the final models for Australia and Leeds
included family history of melanoma, nonmelanoma skin
cancer, hair color, and nevus density. Other traditional UV
and pigmentation variables retained in the final models
differed between countries. A similar number of SNPs was
selected for each model (19 for Australia, 18 for Leeds), but
only seven overlapped. The AUCs for the Australian model
were 0.77 (95% CI ¼ 0.74e0.80) on internal validation and
0.72 (95% CI ¼ 0.69e0.75) on external validation; for the
Leeds model the AUCs were 0.72 (95% CI ¼ 0.69e0.75) on
internal validation and 0.77 (95% CI ¼ 0.74e0.80) on
external validation.
DISCUSSION
Our comprehensive assessment of the contribution of com-
mon genomic variants to melanoma risk prediction showed
that a polygenic risk score is strongly associated with mela-
noma risk and improved the classification of people at high
risk of melanoma beyond that identified from traditional risk
factors. The incremental improvement to risk prediction was
independent of ambient sun exposure because the increases
were similar for the Leeds and Australian studies.

The incremental AUCs (2.3% for Australia, 2.8% for Leeds)
and NRIs (0.42 for Australia, 0.29 for Leeds), based on pub-
lished risk estimates, indicate a moderate improvement to
risk prediction. Similar improvements in the AUC have been
shown when adding SNPs to an established breast cancer risk
model (Howell et al., 2014), and smaller improvements were
observed for prostate cancer (Szulkin et al., 2015) and
colorectal cancer (Usher-Smith et al., 2016). Even relatively
small improvements in the AUC have been shown to have
clinical and public health utility and could be used in pri-
mary and secondary prevention to identify subgroups of the
population at different levels of risk (Garcia-Closas et al.,
2014). Genetic risk profiling is likely to contribute more in
the future, because the proportion of variance in melanoma
risk attributable to common genetic factors has been esti-
mated to be at least 0.19 (Lu et al., 2014).
www.jidonline.org 2619
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Table 3. Incremental contribution of genetic risk factors to risk prediction of melanoma when added to a
traditional risk factor model, based on published risk estimates

Risk Factor Model
AUC

(95% CI)

Change in
AUC From
Base Model P-Value1

Hosmer-
Lemeshow
P-Value

Improvement in
Sensitivity

NRI (95% CI)2

Improvement
in Specificity
NRI (95% CI)2

Overall Improvement
in Classification
NRI (95% CI)2

Australia (N ¼ 1,035)

Base model with
traditional risk factors3

0.72 (0.69 to 0.75) 0.13

þ MC1R 0.73 (0.70 to 0.76) 0.011 0.05 0.47 e0.02 (e0.10 to 0.06) 0.35 (0.26 to 0.43) 0.33 (0.21 to 0.45)

þ Pigmentation
pathway

0.74 (0.71 to 0.77) 0.019 0.008 0.58 0.11 (0.03 to 0.19) 0.26 (0.18 to 0.35) 0.38 (0.26 to 0.50)

þ Nevus pathway 0.72 (0.69 to 0.75) 0.001 0.54 <0.01 e0.02 (e0.11 to 0.06) 0.07 (e0.02 to 0.16) 0.04 (e0.08 to 0.17)

þ Telomere,
senescence,
and other pathway

0.72 (0.69 to 0.75) 0.002 0.36 0.14 e0.06 (e0.14 to 0.02) 0.16 (0.07 to 0.25) 0.10 (e0.02 to 0.22)

þ All SNPs4 0.74 (0.71 to 0.77) 0.023 0.003 0.23 0.13 (0.05 to 0.21) 0.29 (0.20 to 0.38) 0.42 (0.30 to 0.54)

Leeds (N ¼ 1,460)

Base model with
traditional risk factors3

0.65 (0.62 to 0.68) 0.70

þ MC1R 0.67 (0.64 to 0.70) 0.014 0.02 0.34 e0.10 (e0.16 to e0.03) 0.27 (0.18 to 0.35) 0.17 (0.07 to 0.28)

þ Pigmentation
pathway

0.68 (0.66 to 0.71) 0.031 0.0005 0.76 0.09 (0.02 to 0.15) 0.22 (0.13 to 0.30) 0.30 (0.20 to 0.41)

þ Nevus pathway 0.65 (0.62 to 0.68) 0.000 0.98 0.81 e0.03 (e0.10 to 0.03) 0.06 (e0.03 to 0.14) 0.02 (e0.08 to 0.13)

þ Telomere, senescence,
and other pathway

0.66 (0.63 to 0.69) 0.004 0.33 0.19 e0.01 (e0.07 to 0.06) 0.10 (0.02 to 0.19) 0.10 (e0.01 to 0.21)

þ All SNPs4 0.68 (0.65 to 0.71) 0.028 0.002 0.10 0.09 (0.03 to 0.16) 0.19 (0.11 to 0.28) 0.29 (0.18 to 0.39)

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; NRI, net reclassification improvement; SNP, single
nucleotide polymorphism.
1Chi-square P-value for the difference in the AUC when compared with the base model.
2Based on continuous NRI. Improvement in sensitivity is calculated from reclassification of case individuals improvement in specificity is calculated from
reclassification of control individuals, and overall improvement combines the improvements in sensitivity and specificity.
3Traditional factors include hair color, skin color, eye color, freckling as an adult, skin photosensitivity, self-reported nevi, sunbed use, keratinocyte cancer
personal history, first degree family history of melanoma, vacation sun exposure, and blistering sunburns as a child, as well as the demographic and study
design factors of age, sex, city of recruitment, and European ancestry.
4Added as a polygenic risk score, comprising 45 SNPs in 21 genes. The SNPs in each pathway can overlap; the pigmentation pathway includes 14 genes (31
SNPs); nevus pathway includes 7 genes (13 SNPs); and telomere, senescence, and other pathways includes 5 genes (9 SNPs).
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The observed discriminative ability of the polygenic risk
score for melanoma was higher than has been previously
reported. AGreek study observed a 1.1% increase in the AUC
when adding information from 15 SNPs to a phenotypic risk
model (Kypreou et al., 2016). A US study combining three
different datasets found a statistically significant 3% increase
in the AUC when adding 11 SNPs to a phenotypic risk model
(Fang et al., 2013); however the NRI when based on cate-
gories of risk (<20%, 20%e50%, >50%) was not significant
because improvements in sensitivity were outweighed by
reduced specificity. Conversely, in our study we observed a
significant NRI that was driven by improvements in speci-
ficity and sensitivity, particularly specificity. The Women’s
Health Initiative cohort recently showed a 2-fold increased
risk of melanoma for the highest versus lowest tertile of
genetic risk score comprising 21 SNPs (Cho et al., 2018),
compared with a 3-fold difference in our studies. They had
limited information on phenotypic risk factors (Cho et al.,
2018). We observed a larger improvement to risk prediction
based on ORs from the study datasets, but this is likely due to
model overfitting (Wray et al., 2013).

The similarities between the results from Australia and
Leeds suggest that the published risk estimates used to create
the polygenic risk score are appropriate across populations of
European origin. Although the AUC values for the compre-
hensive model were different between countries (0.74 for
Journal of Investigative Dermatology (2018), Volume 138
Australia and 0.68 for Leeds), this simply reflects more pro-
nounced differences in demographic factors (age, sex,
ethnicity) between case and control individuals in Australia
than in Leeds.

SNPs from genes in pigmentation pathways, particularly
MC1R, contributed the most to risk prediction, despite
several pigmentation phenotype variables already being
included in the traditional risk factor model. MC1R in-
fluences risk through pigmentation and nonpigmentation
pathways, and MC1R variants are associated with a higher
relative risk for melanoma in people who do not have a high-
risk pigmentation phenotype (Berwick et al., 2014; Cust
et al., 2012; Kanetsky et al., 2010). This effect-measure
modification of the association of MC1R with melanoma
risk by phenotype (Pasquali et al., 2015) is the reason that we
incorporated phenotype-stratified ORs for MC1R variants in
the models. We previously showed a 2.1% increase in the
AUC when addingMC1R genotype to a traditional risk model
based on risk estimates derived from the Australian dataset
(Cust et al., 2013), and a US study (Penn et al., 2014)
observed a statistically significant 1% increase.

Despite nevi being one of the strongest risk factors for
melanoma (Olsen et al., 2010a), SNPs from genes in nevus
pathways did not improve risk prediction when based on
published ORs, and they only modestly improved the AUC
(by about 1%) when based on ORs derived from the dataset.



Table 4. Cross-tabulation of polygenic risk score
versus traditional risk score categorized in tertiles1

Traditional
Risk Score

Polygenic Risk Score, n (%)

Tertile 1
(Lower Risk)

Tertile 2
(Average Risk)

Tertile 3
(Higher Risk) Total

Australia

Tertile 1
(lower risk)

223 (65) 91 (26) 30 (9) 344 (100)

Tertile 2
(average risk)

94 (27) 160 (46) 91 (26) 345 (100)

Tertile 3
(higher risk)

27 (8) 94 (27) 225 (65) 346 (100)

Total 344 345 346 1,035

Leeds

Tertile 1
(lower risk)

244 (50) 138 (28) 104 (21) 486 (100)

Tertile 2
(average risk)

153 (31) 209 (43) 125 (26) 487 (100)

Tertile 3
(higher risk)

89 (18) 140 (29) 258 (53) 487 (100)

Total 486 487 487 1,460

1Both models are adjusted for demographic and study design factors: age,
sex, city of recruitment, and European ancestry.

Table 5. Development of a risk prediction model for
each dataset using model selection1

Variable Selected

Australian Model,
Odds Ratio
(95% CI)2

Leeds Model,
Odds Ratio
(95% CI)2

Traditional risk factors

Family history of melanoma

None 1.00 1.00

1 or more relative 1.61 (1.05e2.48) 3.38 (1.33e8.59)

Hair color

Dark brown/black 1.00 1.00

Light brown 1.01 (0.71e1.44) 1.15 (0.79e1.68)

Fair or blonde 1.82 (1.16e2.86) 2.13 (1.32e3.42)

Red 2.76 (1.36e5.60) 1.86 (0.96e3.58)

Nevus density

None 1.00 1.00

Few 1.19 (0.57e2.48) 1.84 (1.09e3.11)

Some 3.13 (1.50e6.52) 3.93 (2.27e6.79)

Many 5.36 (2.43e11.83) 4.64 (2.36e9.15)

Nonmelanoma skin cancer

No 1.00 1.00

Yes 2.28 (1.19e4.37) 3.86 (0.77e19.40)

Blistering sunburn as a child

None 1.00 —

1 or more episodes 0.80 (0.58e1.11) —

Sunbed use

None 1.00 —

1e10 sessions 0.96 (0.61e1.51) —

>10 sessions 1.79 (1.01e3.20) —

Freckling as an adult

None/very few — 1.00

Few/some/many — 0.73 (0.52e1.02)

Eye color

Brown or black — 1.00

Green or hazel — 1.05 (0.68e1.63)

Blue or grey — 1.39 (0.89e2.16)

Sun exposure hours on weekends and vacations

Quartile 1 (lower exposure) 1.00

Quartile 2 — 0.52 (0.34e0.81)

Quartile 3 — 0.61 (0.39e0.96)

Quartile 4 (higher exposure) — 0.44 (0.27e0.72)

Genomic variants

rs7412746 (ARNT) 0.85 (0.67e1.06) 0.81 (0.65e1.02)

rs62211989 (ASIP) 1.90 (1.33e2.71) 1.91 (1.28e2.84)

R151C (MC1R) 2.59 (1.77e3.79) 2.75 (1.83e4.13)

R160W (MC1R) 1.47 (1.00e2.16) 1.70 (1.15e2.51)

rs2487999 (OBFC1) 1.40 (0.95e2.06) 1.37 (0.93e2.01)

rs132985 (PLA2G6) 1.19 (0.95e1.48) 0.85 (0.68e1.06)

rs1393350 (TYR) 1.32 (1.03e1.70) 1.20 (0.95e1.52)

rs6949072 (AGR3) 1.28 (0.94e1.74) —

rs7274597 (ASIP) 0.50 (0.31e0.81) —

rs76699054 (CCND1) 1.40 (0.93e2.12) —

rs12527588 (CDKAL1) 1.56 (0.95e2.55) —

rs3731217 (CDKN2A) 0.79 (0.57e1.09) —

D84E (MC1R) 2.18 (1.02e4.67) —

I155T (MC1R) 2.60 (1.09e6.18) —

V60L (MC1R) 1.74 (1.21e2.50) —

V92M (MC1R) 1.70 (1.17e2.49) —

rs45430 (MX2) 0.72 (0.57e0.90) —

rs3219090 (PARP1) 0.73 (0.58e0.93) —

(continued )
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Discrimination may improve with the discovery of new
nevus-related genes (Duffy et al., 2017), but nevus phenotype
measurement will likely continue to be important for risk
prediction, perhaps because it reflects early-life sun exposure
and genetic susceptibility (Bataille et al., 2000). SNPs from
genes involved in other pathways unrelated to pigmentation
and nevi, such as telomere length or senescence, were
significantly associated with melanoma risk and made a
modest contribution to risk prediction.

The more parsimonious risk prediction models that we
developed showed good discrimination, because the AUCs
remained at 0.72 or greater after internal and external vali-
dation. Not all SNPs and traditional risk factors were signif-
icantly associated with melanoma in the Australian and Leeds
datasets, and the specific risk factors selected for the model
differed between countries; this is probably a reflection of the
studies’ sample sizes.

Although our cross-tabulation of polygenic with traditional
risk score tertiles estimated that 59% of people in Australia
and 49% in Leeds have a genetic risk concordant with their
traditionally estimated risk, a considerable proportion (9%
and 21%, respectively) had a high polygenic risk despite
having a low traditional risk. These people might be the most
likely to benefit from genomic profiling given that they do not
have the visible risk factors identified in public health cam-
paigns. Conversely, a similar proportion had a high tradi-
tional risk but a low polygenic risk; knowing they have a low
genetic susceptibility might worsen their sun-related behav-
iors. Our stratified analyses suggest that the improvement in
discrimination might be better for those with a low or average
traditional risk score. Studies are underway to evaluate the
impact on sun-related behaviors of giving personalized
melanoma genomic risk information (Kanetsky and Hay,
2017; Smit et al., 2018).

There are several strengths of our analysis, including the
population-based design, external validation in independent
datasets using the same questionnaires, relatively large
www.jidonline.org 2621
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Table 5. Continued

Variable Selected

Australian Model,
Odds Ratio
(95% CI)2

Leeds Model,
Odds Ratio
(95% CI)2

rs2736100 (TERT) 0.74 (0.59e0.94) —

rs34585474 (AGR3) — 1.27 (0.89e1.83)

rs7781130 (AGR3) — 1.59 (0.85e2.96)

rs1801516 (ATM) — 0.77 (0.55e1.07)

rs700635 (CASP8) — 1.27 (0.99e1.63)

rs7776158 (CDKAL1) — 1.36 (1.06e1.75)

rs16953002 (FTO) — 1.27 (0.93e1.73)

R163Q (MC1R) — 0.62 (0.36e1.09)

D294H (MC1R) — 4.11 (1.62e10.46)

rs6517661 (MX2) — 0.75 (0.53e1.07)

rs113908778 (RAD23B) — 0.55 (0.24e1.24)

rs4436178 (RAD23B) — 1.87 (0.82e4.26)

Abbreviation: CI, confidence interval.
1A risk prediction model was developed separately for each dataset using
a backward selection process in which traditional and genomic risk fac-
tors with P < 0.20 were retained in the multivariable model in addition to
forced variables age, sex, city of recruitment, and European ancestry. The
same genetic variants and traditional risk factors were assessed for
inclusion in both models.
2Odds ratios derived from the respective dataset, adjusted for all other
variables in the model. For genomic variants, the per-allele odds ratio is
presented. Values left blank indicate that the factor was not included in the
final model for that dataset (Australia/Leeds). The areas under the curve for
the Australian model were 0.80 (95% CI ¼ 0.77e0.83) from the develop-
ment model, 0.77 (95% CI ¼ 0.74e0.80) from internal validation (10-fold
cross-validation), and 0.72 (95% CI¼ 0.69e0.75) from external validation
using the Leeds dataset. The areas under the curve for the Leedsmodel were
0.77 (95% CI ¼ 0.73e0.80) from the development model, 0.72 (95% CI¼
0.69e0.75) from internal validation, and 0.77 (95% CI¼ 0.74e0.80) from
external validation using the Australian dataset. Both models were well
calibrated in the external datasets (Hosmer-Lemeshow P ¼ 0.57 for both).
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sample sizes, comprehensive risk factor information, and
evaluation of SNPs in distinct biological pathways. We also
account for known gene-environment interactions by using
phenotype-stratified ORs for MC1R variants in the models.
Overall interpretation of the lack of major differences be-
tween the two countries in our findings is restricted because
of the differing age ranges at recruitment (younger than 40
years for Australia, no age limit for the UK). Thus, these re-
sults cannot necessarily be extrapolated to older Australians.
Our two studies had a slightly different mix of European
ethnicities, with more Eastern European ancestry in the
Australian study. Although our results were similar when
restricted to English ethnic background, these ethnic differ-
ences might be further reflected in different pigmentation
phenotypes and sun-related behaviors. Further validation in
larger, diverse datasets is warranted. We have underestimated
the incremental contribution of the polygenic risk score
because not all the functional variants were known, but this is
likely a modest attenuation; conversely, MC1R functional
variants were included, and this may have strengthened its
contribution relative to other genes or pathways.

Combining common genomic predictors of melanoma risk
with traditional melanoma risk factors improves the discrimi-
nation of melanoma risk prediction models and can identify as
being at high risk an important fraction of people of European
origin who are at high genetic risk but low traditional risk.
Variants in MC1R were responsible for over half of the
Journal of Investigative Dermatology (2018), Volume 138
discrimination improvement, but SNPs in other genes further
improved risk prediction. Prediction models based on both
genomic and traditional risk factors could increase the yet
unproven capacity of models based only on traditional risk
factors to motivate melanoma risk reduction behaviors.

MATERIAL AND METHODS
Study samples

The Australian Melanoma Family Study was a multicenter,

population-based, case-control family study of invasive cutaneous

melanoma diagnosed between ages 18 and 39 years. Recruitment of

case (n ¼ 629) and control (n ¼ 535) participants was locally co-

ordinated in Sydney, Melbourne, and Brisbane, Australia. The study

design, recruitment, data collection, and participant characteristics

have been described (Cust et al., 2009), and more details for both

studies are provided in the Supplementary Materials online.

The Leeds case-control study recruited population-based incident

histopathologically confirmed invasive melanoma cases (n ¼ 2,184)

in patients aged between 18 and 82 years and population-

ascertained control individuals (n ¼ 513) (Newton-Bishop et al.,

2011; Randerson-Moor et al., 2009). This analysis focuses on

those case individuals whose measurement protocols exactly

matched the Australian study (n ¼ 964).

Approval for the study was obtained from the ethics committees of

the coordinating centers’ institutions in Australia and Leeds and the

cancer registries. All participants provided written informed consent.

Self-reported personal sun exposure

Comprehensive data on lifetime sun exposure was collected by

telephone interview. Questions referred to the frequency of sunburn

and time spent outdoors between 9 a.m. and 5 p.m. separately for

weekdays, weekends, and vacations in warmer months and in cooler

months (Cust et al., 2011b; Newton-Bishop et al., 2011). De-

mographic information, ancestry, diagnoses of keratinocyte and

other cancers, and family history information were also collected.

Pigmentary and nevus phenotype

Participants reported the skin color of their inside upper arm, eye

color, natural hair color at age 18 years, freckling using Gallagher’s

freckle chart (Lee et al., 2005), ability to tan, propensity to sunburn,

usual tanning and sunburn response to prolonged or repeated

exposure of skin to sunlight in summer, and nevus density (described

pictorially as none, few, some, many) (Cust et al., 2009).

Selection of gene variants

We selected 21 genes/loci (45 SNPs) that had a confirmed associa-

tion with melanoma risk in genome-wide association studies (Law

et al., 2015) or for one gene using whole-genome sequencing ap-

proaches (MITF rs149617956 variant) (Yokoyama et al., 2011) (see

Supplementary Table S3 online). Polygenic risk scores summarized

the combined effects of the SNPs using a published method

(Mavaddat et al., 2015) (for more technical details, see

Supplementary Materials).

Statistical analysis

Analytic dataset. We excluded participants who did not give a

blood sample or who failed genotyping, were missing data on

traditional risk factors for melanoma, had germline CDKN2A path-

ogenic mutations or non-European ethnicity (on self-report or prin-

cipal components analysis), and Australian controls 45 years or older

at interview (because all Australian cases were diagnosed when

patients were younger than 40 years). The analysis dataset thus
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included 1,035 participants (578 case individuals, 457 control in-

dividuals) from Australia and 1,460 participants (964 case in-

dividuals, 496 control individuals) from Leeds.

Description of models. The primary analysis used ORs derived

from published meta-analyses to prevent overfitting, that is, over-

estimation of the prediction accuracy that can occur when estimating

the ORs from the same dataset that the predictions are made from

(Steyerberg, 2009;Wrayet al., 2013). TheAustralianandLeeds samples

contributed data to the meta-analyses, but their data represented less

than 10% of the total sample. In secondary analyses presented in

Supplementary Table S2, we show the results based on ORs derived

from the study datasets. The published ORs and ORs derived from the

datasets are shown in Supplementary Table S3 for genomic variants and

Supplementary Table S4 online for traditional risk factors. The pub-

lished ORs for the traditional risk factors were from fully adjusted

models inmeta-analyses, andwe categorized our variables the same as

the published data. The published ORs for genomic variants were ob-

tained from a meta-analysis of genome-wide association studies (Law

et al., 2015), using pooled ORs from a fixed effects model or random

effects where there was evidence of heterogeneity (I2� 31%). Because

the association ofMC1Rwith melanoma risk is modified by phenotype

(Pasquali et al., 2015), we incorporated phenotype-stratified ORs for

each of the MC1R variants for models that included traditional risk

factors; for this stratification, participants were classified as having a

sun-sensitive phenotype if they had one ormore of freckles (few, some,

many), red hair, or skin that usually or always burns.

Supplementary Table S3 shows the biological pathway/s through

which each gene is thought to influence melanoma risk: pigmenta-

tion (14 genes); nevus (7 genes); and telomere, senescence, and

other pathways (5 genes). Classification of pathways was based on

associations of SNPs with each of these traits (Choi et al., 2017;

Codd et al., 2013; Duffy et al., 2017; Law et al., 2015), and genes

could be allocated to multiple pathways.

Logistic regression models were used to assess associations between

melanoma and traditional and genomic risk factors, adjusted for de-

mographic and study design factors: age, sex, city of recruitment

(Australia only), and self-reported European ancestry (British, other

Northern European, Southern/Eastern European,mixed/other European);

ancestry was included as a covariate to minimize confounding by

ethnicity. The base risk prediction model included well-established in-

dependent traditional risk factors and UVexposure variables (hair color,

skin color, eye color, freckling as an adult, nevus density, reported skin

photosensitivity, personal history of keratinocyte cancer, first-degree

family history of melanoma, blistering sunburns as a child, vacation

sun exposure, and sunbed use). The incremental contribution of mela-

noma risk SNPs was assessed overall, by biological pathway, and for

MC1R alone.

Model performance. The ability of the model to discriminate

between case and control individuals was evaluated by calculating

the AUC, NRI, and OR per standard deviation (adjusted for age and

sex using the OPERA method [Hopper, 2015]). The AUC is the

probability that the predicted risk is higher for a case individual than

for a control individual and ranges from 0.5 (equivalent to a coin

toss) to 1.0 (perfect discrimination). The NRI quantifies overall

improvement in model sensitivity and specificity; it quantifies

movement of case and control individuals to higher or lower pre-

dicted risk probabilities when a new risk model is applied (Leening

et al., 2014). Because there are no established risk thresholds for

melanoma, we used category-free continuous NRI (Pencina et al.,
2011). We used the Hosmer-Lemeshow goodness-of-fit test to

assess calibration, that is, the agreement between observed and

predicted probabilities of melanoma (Steyerberg, 2009). For the

secondary analyses that used ORs derived from the study datasets,

we performed 10-fold cross-validation as a measure of internal

validation to help correct for overfitting (Steyerberg, 2009).

Cross-tabulation of polygenic risk score versus traditional risk

score. Traditional and polygenic risk scores (each based on pub-

lished risk estimates) were categorized into tertiles and cross-tabulated to

compare the concordance of genomic with traditional risk. The tradi-

tional risk score variable was derived from the predicted probability of

melanoma for each individual, based on b-values from a logistic

regression model with melanoma (case-control) status as the outcome

and traditional risk factors as predictors.

Data were analyzed using SAS, version 9.4 (SAS Institute, Cary

NC), and statistical significance was inferred at two-sided P less than

0.05. We reported the study according to published guidelines

(Collins et al., 2015; Janssens et al., 2011).
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