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Abstract—Location-based applications attract more and more
attention in recent years. Examples of such applications in-
clude commercial advertisements, social networking software and
patient monitoring. The received signal strength (RSS) based
location fingerprinting is one of the most popular solutions for
indoor localization. However, there is a big challenge in collecting
and maintaining a relatively large RSS fingerprint database. In
this work, we propose and compare two algorithms namely, the
Gaussian process (GP) and Gaussian process with variogram,
to estimate and construct the RSS fingerprints with incomplete
data. The fingerprint of unknown reference points is estimated
based on measurements at a limited number of surrounding
locations. To validate the effectiveness of both algorithms, ex-
periments using Bluetooth-low-energy (BLE) infrastructure have
been conducted. The constructed RSS fingerprints are compared
to the true measurements, and the result is analyzed. Finally,
using the constructed fingerprints, the localization performance
of a probabilistic fingerprinting method is evaluated.

Index Terms—Indoor localization, received signal strength,
Gaussian process, variogram, location fingerprinting.

I. INTRODUCTION

Wireless positioning has received considerable attention due

to the ever-increasing demands on location-based services

(LBS) in various areas. Wireless network infrastructures in-

clude, but not limited to, cellular radio networks (LTE and

5G), Wi-Fi networks, Bluetooth-low-energy (BLE) networks.

A cheap but competent solution is to use the received signal

strength (RSS) as position related measurements since they are

easy to obtain for most of the existing networks.

Ranging-base positioning algorithms, such as trilateration,

depend highly on the range-related signal propagation model.

A plethora of explicit RSS models already exist in the liter-

ature, for instance the conventional linear log-distance model

and ray-tracing model [1]. Alternatively, the scene analysis

methods estimate target locations based on maps of features.

For example, the RSS-based location fingerprinting method

calculates a target location depending on a set of RSS maps.

Furthermore, for each base station involved, a map con-

sisting of RSS measured at all reference points (RPs) is

necessary. For higher positioning accuracy, a map of refined

RPs (more RPs in the same area) is essential, but the first-time

construction and later maintenance could be labor-intensive

and time-consuming.

Given measurements at some known points, the inter-

polation/extrapolation algorithms can be used to estimate

measurements at new locations. The paper [2] summarizes

and compares three common-used interpolation/extrapolation

algorithms for constructing RSS fingerprints. However, those

algorithms are fairly simple for indoor RSS measurements,

considering the complex indoor propagation conditions. Ad-

vanced method, such as data-driven method, can be more ac-

curate and flexible in modeling and interpolating/extrapolating

RSS measurement in terms of 2D geometry.

Nowadays, there is an increasing interest of using the non-

parametric Gaussian process (GP) for RSS modeling. The

reasons are twofold. First, it is a powerful tool for exploring

the relationship in a set of variables given the training dataset.

Second, GP perfectly fits in the Bayesian framework, which

allows for explicit probabilistic interpretation of the model

outputs [3]. Prior work includes [4]–[8]. The key difference

lies in the use of different kernel functions in the non-

parametric model. For instance, Matérn kernel was used in [4]

and squared-exponential (SE) kernel used in [8]. Recently, [9]

compared different kernels thoroughly using simulations and

proved that the SE kernel works quite well in most cases. Most

recent work on kernel design include [10]–[12]. GP based RSS

models have been used in different Bayesian filters, which

include extended Kalman filter (EKF), unscented Kalman filter

(UKF) and particle filter [5].

In the meanwhile, Kriging methods, or sometimes called

Gaussian process regression with a variogram, which are

considered belonging to the family of Gaussian process, been

adopted jointly with a RSS fingerprint database in several

recent works. The simple Kriging method is used in [13],

while the ordinary Kriging in [14] and the universal Kriging

in [15]. The paper [16] proposes a new distance measure for

wall attenuation in spatial correlation modeling for the Kriging

method. A modified ordinary Kriging is proposed in [17] and

a modified universal Kriging is proposed in [18].

The contributions of this paper are as follows. First, theo-

retical descriptions of the two methods are introduced in the

context of RSS fingerprints constructions. Second, to answer

the frequent question about the differences between the GP and

GP with variogram, theoretic details are given and results from



algorithms performance validation are presented. To the best of

authors’ knowledge, this is the first time that the two methods

are compared in the context of localization. At last, the two

methods are applied to real BLE data. Results of the RSS

fingerprint construction and performance of a probabilistic

fingerprinting method based on the constructed database are

evaluated and analyzed.

The remainder of this paper is organized as follows: Sec-

tion II and Section III present the GP and GP with variogram

methods in context of RSS fingerprint construction. In Sec-

tion IV, the adopted probabilistic fingerprinting algorithm is

demonstrated. Section V concludes the similarities and differ-

ences between the two methods theoretically. The collection

and processing of practical BLE data will be described at the

beginning of Section VI-A, followed by experimental results

and analysis. Section VII concludes the paper. An Appendix

presents the algorithm for hyperparameter estimation.

Throughout this paper, matrices are presented with up-

percase letters and vectors with boldface lowercase letters.

The operator [·]T stands for vector/matrix transpose and [·]−1

stands for the inverse of a non-singular square matrix. The

operator | · | stands for determinant of a matrix. The operator

‖ · ‖2 stands for ℓ2 norm of a vector. The operator diag(Σ)
returns the diagonal elements of matrix Σ, and [Σ]i,j gives the

entry at the ith row and jth column of Σ. Further, N (μ, σ2)
denotes a Gaussian distribution with mean μ and variance

σ2. Notation 0N means an N × N matrix of all zeros, IN
denotes an identity matrix and 1 denotes a vector of all ones.

The operator ln and lg denote logarithm to base e and 10,

respectively. The operator E[·] is the mathematical expectation.

II. STANDARD GAUSSIAN PROCESS FOR FINGERPRINT

CONSTRUCTION

Fingerprinting methods estimate the location of a target

by consulting a pre-defined fingerprint database. In deter-

ministic framework [19], [20], a fingerprint consists of a

measurement vector, and the corresponding location (i.e., this

can be considered as an augmented vector [r,p] , where

r is the measurement and p is the corresponding location

where the measurement has been collected). Once the target

measurements are obtained, metrics such as the ℓ1-norm or ℓ2-

norm are used to justify the similarity between the target and

fingerprints. Afterwards, the target location is given by either

the most matching fingerprint, or a weighted linear combina-

tion of several most matching fingerprints where the weights

are computed as the inverse of aforementioned metrics.

In this work, a probabilistic fingerprinting method is consid-

ered. More precisely, in the database construction phase, the

RSS from m base stations are first collected at the pre-defined

RPs, whose locations are denoted by Q = {q1, ...,qS}. The s-

th fingerprint consists of the location qs and a set of Gaussian

distributed measurements in which the m-th distribution is of

posterior mean r̄m,s and variance σ̄2
m,s.

In order to construct an RSS fingerprinting map, we first aim

to train a model for each reference network node to specify

the RSS distribution. The model1 we use here is given by:

r(p) = μ(p) + e(p) + w, (1)

where r(p) denotes the RSS observed at any position p (in

x, y, and z dimensions in general) from the mth reference

network node, μ(p) is the noise-free RSS which is also con-

sidered as a propagation function, e(p) is a position dependent

noise term which represents the shadowing effects, and w is

a position independent noise term which account for the joint

influence of the interference from other devices, signal ab-

sorption from human bodies, (unsuccessfully removed) small-

scale fading, as well as the background noise. We assume w to

be independent and identically Gaussian distributed with zero

mean and variance σ2
w.

We follow an empirical propagation function given below:

μ(p) = A+ 10B · log10 d(p), (2)

where A is the RSS measured at 1 meter away, B is the

path loss exponent, and d(p) denotes the Euclidean distance

between p and the corresponding network node. More sophis-

ticated function, i.e., μ(p) that take into account the wall effect

and other factors, can also be considered.

Given a training dataset Dm � {Pm, rm} for the m-th

network node and rewrite (1) in matrix form, we have

rm = µm + em +wm, (3)

where Pm is the set of training positions, rm, µm, em and

wm are composite vectors of corresponding variables, that are

given by:

Pm � [pT
m,1, . . . ,p

T
m,N ]T , (4a)

rm � [r(pm,1), . . . , r(pm,N )]T , (4b)

µm � [μ(pm,1), . . . , μ(pm,N )]T , (4c)

em � [e(pm,1), . . . , e(pm,N )]T , (4d)

wm � [wm,1, . . . , wm,N ]T , (4e)

and N is the number of data points in the training set.

A. Characterizing Spatial Correlation

With standard Gaussian process (SGP), the position-

dependent noise term, em, is modeled by

em ∼ GP
(

0,Km(Pm,Pm)
)

, (5)

where (we follow the notation GP(·, ·) used in [3]) the

covariance (kernel) function Km(Pm,Pm) characterize the

spatial correlation of the shadowing effect, of which the i, jth

element is given by
[

Km(Pm,Pm)
]

i,j
= km(pm,i,pm,j) = E

[

e(pm,i)e(pm,j)
]

.

(6)

1The observed RSS values are often preprocessed. Take LTE system as an
example, the RSS values are first averaged at the physical layer and low-pass
filtered at the network layer, in order to remove small-scale fading effects.



The kernel function km(pm,i,pm,j) can take any appropriate

form, such as the Matérn kernel used in [4], or the well-

established squared exponential (SE) model [3]. Here we take

the SE model, which is formulated as

km(pm,i,pm,j) = σ2
m,e · exp

[

−‖pm,i − pm,j‖
2

2l2m,c

]

, (7)

where σ2
m,e accounts for the uncertainty introduced by the

shadow fading into the GP model and lm,c denotes the

correlation distance.

B. Estimate Model Parameters

The unknown parameters in GP model need to be estimated

first. Herein, we assume all positions in the training set Dm are

precisely known. The likelihood function L
(

rm | Pm,θm

)

of

the training dataset is given as follows:

L
(

rm | Pm,θm

)

∼ N
(

µm,Cm

)

, (8)

with the following notations:

θm � [Am, Bm, σm,e, lm,c, σm,w]
T , (9a)

Cm � Km(Pm,Pm) + σ2
m,w · IN . (9b)

Then, the maximum-likelihood estimate (MLE) can be

adopted here to obtain a good approximation of the underlying

parameters θm. Further description is given in the Appendix.

C. Construct New Fingerprints

Having the trained model for the m-th network node,

according to [3] we are able to jointly compute the posterior

means and variances for RSS measurement distribution for all

RPs, that is

r̄m=KT
m(Q,Pm)C−1

m

(

rm−µm

)

+ µm, (10a)

C̄m=Km(Q,Q)−KT
m(Q,Pm)C−1

m Km(Q,Pm)+σ2
m,wIS ,

(10b)

where r̄m is composed of the posterior means of difference

RPs, i.e.,r̄m = [r̄m,1, ..., r̄m,S ]
T , and C̄m is a matrix with

the diagonal entries being the posterior variances of differ-

ence RPs, i.e. diag(C̄m) = [σ̄2
m,1, ..., σ̄

2
m,S ]

T . Therefore, the

probabilistic fingerprint of the s-th RP can be composed of

the corresponding values in all µ̄ and C̄.

III. GAUSSIAN PROCESS WITH VARIOGRAM METHOD FOR

FINGERPRINT CONSTRUCTION

The Gaussian process with variogram (GPV) method [21],

which is also called Kriging, named after Danie G. Krige,

refers to a group of least-squared based interpolation methods,

which are widely used in geostatistics discipline. GPV is also

considered as a kind of Gaussian process based method, but

with a different implementation. The GPV method used in this

work is the universal Kriging (UK), which is given below.

Given the training dataset Dm � {Pm, rm} for the m-th

network node, the GPV requires an RSS model that is similar

to (1) and (2), i.e.,

r(pm,i) = μ(pm,i) +R(pm,i), (11)

where R(pm,i) represents the location-dependent noise. Com-

paring (3) and (11), the location-independent noise wm,i is not

considered here.

The aim is to build new RSS fingerprints. Similar to the

SGP method, the GPV estimates an unknown RSS value based

on the known data points and a spatial correlation model

of the location-dependent residual R(pm,i). It needs to be

emphasized that the residual R(pm,i) needs to be decomposed

from the r(pm,i).

A. Characterizing Spatial Correlation

To characterize the spatial correlation of R(pm,i), the

assumption of stationarity, i.e., intrinsic stationarity, is re-

quired: by constructing a new variable, which is the difference

between the residual of two neighbor points δi,j = R(pm,i)−
R(pm,j), the intrinsic stationarity implies that the mean of

δi,j is zero in the local neighborhood and the variance of

δi,j depends only on the separation distance ‖pm,i − pm,j‖,

i.e.,E[δi,j ] = 0, and Var(δi,j) = 2γ(‖pm,i −pm,j‖) = 2γ(h),
where γ(·) is the variogram function, and h = ‖pm,i−pm,j‖,

is called lag which represents the separation distance between

pm,i and pm,j .

To obtain a variogram, the classic regression analysis

method is adopted. First, all possible pairs of locations are

categorized according to the lag h. Then, the empirical vari-

ogram, γ̂(h), is calculated as

γ̂(h) =
1

2
·

1

U(h)

U(h)
∑

i=1

(

R(pm,i)−R(pm,i+h)
)2

, (12)

where U(h) is the number of location pairs whose lag is h, and

pm,i+h represents the location with lag h to pm,i. A regression

model is then selected to fit the empirical variogram using the

least squares method [22]. This model is frequently chosen

from spherical model, exponential model, Gaussian model,

power model and linear model [23]. The obtained regression

model is used later to retrieve variogram value for any lag h.

B. Estimate Parameters and Build New Fingerprints

The GPV method estimates the value at a new location qs

(s = 1, . . . , S) as a weighted sum of known neighbor data

points, that is,

r̄m,s =

H
∑

i=1

λi · r(pm,i) (13a)

=

H
∑

i=1

λi

(

βm,1 + βm,2 log10 dm(pm,i) +R(pm,i)
)

,

(13b)

where λ1, ..., λH are GPV weights, H represents the number

of data points within the correlation distance lm,c, βm,1

and βm,2 are unknown parameters and are not necessary to

estimate.

To get an optimized estimate, the GPV weights are derived

through minimizing the estimator error variance, that is,

min
λi∈R

Var
(

r̄m,s − μm(qs)
)

, (14)



under the unbiasedness constraint:

E

[

r̄m,s − μm(qs)
]

= 0. (15)

The optimized GPV weights and parameters are derived as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

λ1

...

λH

Lm,1

Lm,2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

γ(1,1) · · · γ(1,H) 1 f
(1)
m

...
. . .

...
...

...

γ(H,1) · · · γ(H,H) 1 f
(H)
m

1 · · · 1

f
(1)
m · · · f

(H)
m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎢

⎢

⎢

⎣

γ(1,s)

...

γ(H,s)

1

f
(s)
m

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(16)

where Lm,1 and Lm,2 are multipliers that result from utiliz-

ing the Lagrange multiplier optimization method, and some

variables are written in shorthand as

γ(i,j) = γ(‖pm,i − pm,j‖), (17a)

γ(i,s) = γ(‖pm,i − qs‖), (17b)

f (i)
m = log10 dm(pm,i), (17c)

f (s)
m = log10 dm(qs). (17d)

Therefore, the posterior mean and variance of the s-th RP

can be given by

r̄m,s =

H
∑

i=1

λi · r(pm,i), (18)

σ̄2
m,s =

H
∑

i=1

λiγ
(i,s) + Lm,1 + Lm,2 · log10 dm(qs). (19)

Algorithm 1 GP Based Probabilistic Fingerprinting

Compute RPs Weights: For qs(s = 1, 2, ..., S), the weight

is computed by

αs =

M
∏

m=1

1
√

(2π)σ̄2
m,s

exp

(

−
1

2

(rm − r̄m,s)
2

σ̄2
m,s

)

. (20)

Find K-Nearest Neighbors: Sort the weights, αs(s =
1, 2, ..., S). The largest K(K ≤ S) weights are then normal-

ized to sum to one, i.e.,

ᾱs =
αs

∑K

s=1 αs

. (21)

Position Estimate: An estimate of the unknown position, p,

is computed by

p̂ =

K
∑

s=1

ᾱsqs. (22)

IV. LOCATION FINGERPRINTING METHOD

In what above, we have proposed two advanced methods

to construct RSS fingerprints. Then, in the position retrieval

phase (testing phase), given a target measurements r =
[r1, ..., rM ]T , the probabilities αs(s = 1, . . . , S) which justify

the similarity are then computed for each fingerprint. After

normalizing K largest probabilities into weights w̄s, the target

location estimate p̂ is given as a weighted linear combination

of several fingerprints. More details of the employed proba-

bilistic fingerprinting method are given in Algorithm 1.

V. COMPARISON BETWEEN STANDARD GAUSSIAN

PROCESS AND GAUSSIAN PROCESS WITH VARIOGRAM

In this section, the comparison between SGP (equation (5)

to (10b)) and GPV (equation (11) to (19)) will be discussed.

From previous sections, both similarities and difference be-

tween the two methods can be observed, which can be

summarized as follow.

A. Stationarity Assumption

Both SGP and GPV methods use a function/model to char-

acterize the covariance of random field. The Gaussian process

adopts the kernel function km(pi,pj) and the GPV method

adopts the variogram γ(pi,pj). Therefore, the stationarity

assumptions of both methods shall be investigated.

A strictly stationary random field indicates that the joint

probability of two data points, p(pi,pj), is specified by the

distance between pi and pj , and does not change with location

shift of the data points. However, the strict stationarity is

usually too strong for signal processing. The second-order

stationarity is usually adopted in signal processing, which

indicates that only the first order moment (mean) and the

second order moment (covariance) is stationary. In the SGP

method, the noise component is assumed to be zero mean, and

the covariance can be characterized by the kernel function.

For GPV method, the intrinsic stationarity assumption is

adopted, which is weaker compared to the second-order sta-

tionarity. The intrinsic stationarity indicates that within the

neighbor, the expected difference are zeros, and the variogram,

which is half the variance of the differences, depends only on

the separation distance.

Both the SGP kernel function and the variogram are as-

sumed isotropic, which means the relationship between two

data points is independent of the link direction.

B. Modeling and Regression Analysis

In SGP, the component of the model and the kernel function

are a priori specified. The parameters of the model components

and kernel function can be estimated at the same time using

different approaches, e.g., maximum likelihood estimation.

On the contrary, in GPV method, the components of the

model can be specified but the parameters need to be estimated

first to compute the residuals. The variogram is built upon the

residuals through least square regression. The function can be

chosen among several basic functions based on fitness.

C. Estimation

To estimate value at an unknown location, standard Gaus-

sian process adopts all training data points and therefore the

dimension of the kernel matrix can be extremely large.

In GPV method, based on the decorrelation distance ob-

tained by first analyzing the variogram, data points out of



the decorrelation distance (neighborhood) can be ignored.

The known data points within the decorrelation distance have

sufficient amount of relationship, and therefore are used to

estimate the new points. Following this manner, the variogram

matrix can be much smaller than the kernel matrix in SGP.

According to [24], the weights in (13b) should sum to 1.

Therefore, (13b) can be further given as

r̄m,s =
H
∑

i=1

λi ·R(pm,i)+βm,1+βm,2 log10 dm(pm,i). (23)

Considering KT
m(Q,Pm)C−1

m in (10a) as a weights compu-

tation system and comparing it with the above equation, it is

not hard to find the similarity: both SGP and GPV estimator

include a weighted sum of residuals and noise-free term.

D. Computational Complexity

For SGP, the computational complexity mainly depends on

the inversion of the kernel matrix which has dimension Nm,

where Nm is the number of training data. It is easy to see that

for each RP, the complexity to compute the RSS mean and

variance from mth network node scales as O(N3
m). When the

number of training data grows, the computational complexity

for SGP increase dramatically.

However, as discussed previously, the GPV method only

considers the training data points which are within the corre-

lation distance. In such a way, the computational complexity

lies in inverting the matrix as shown in (16), which scales as

O(H3) for each RP. In the case when H ≪ NM , GPV yields

a much lighter way of constructing the RSS fingerprints as

compared to SGP.

VI. FIELD CAMPAIGN

A. Data Collection

Field trials were conducted in a typical office environment

at Ericsson Research, Linköping, Sweden. In total N = 12
Bluetooth-low-energy (BLE) beacons are placed uniformly in

the area, and they serve as the reference network nodes. The

floor plan as well as the beacon positions are illustrated in

[25, Figure 2]. The BLE beacons serve as transmitters and

broadcast data packages regularly. The transmit power is set

to PT = −58 dBm identically for all BLE beacons. Moderate

scale measurement campaign was conducted during normal

work hours. Throughout the field trial, RSS measurements are

conducted along predefined tracks and a total number of 28214
RSS measurements are collected from all BLE beacons. The

track positions are obtained from an app-based positioning

algorithm developed by Senion.

After obtaining the training data, pre-processing is per-

formed. In this step, the collected RSS measurements for

each beacon are extracted. For SGP regression, the initial

values of Am, Bm and σn,m used to initialize the parameter

optimization are obtained by the Linear Least Square (LLS)

regression as given in [8]. For GPV, the model parameters

Am and Bm are assumed to be known and set to the values

obtained from the LLS fit.
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Fig. 1: 1a: Real measured RSS values for BLE beacon 4.

1b: Estimated RSS values for BLE beacon 4 using standard

Gaussian process. 1c: Estimated RSS values for BLE beacon

4 using Gaussian process with variogram.

B. RSS Map Reconstruction Results

In previous sections, two RSS fingerprint construction meth-

ods, namely SGP and GPV, have been discussed thoroughly.

In order to validate the two methods, the RSS fingerprint

construction performance for beacon 4 is given in this section.

To be more precise, we extracted the RSS measurements

for BLE beacon 4 from all measurements. Then, 50% of

the measurements are randomly selected as training data

to train both SGP and GPV models. The rest 50% of the
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Fig. 2: Predefined reference points used to build up the

fingerprinting database.

measurements are used for validation. The corresponding

results illustrating the construction performance are shown in

Figure 1.

By comparing the real and estimated measurements, it is

observed that both SGP and GPV can successfully interpolate

a smooth RSS map. Both methods give similar performance

from the illustrations. To compare the accuracy of the esti-

mated RSS values, we also calculate the root mean square

error (RMSE) for both cases. For SGP model, the RMSE of

the estimated RSS measurements is 3 dB and for the GPV, the

RMSE is around 2.9 dB.

C. Localization Results

1) RSS Map: Before performing RSS fingerprinting to

obtain the estimated position, we select a set of RPs which

build up the fingerprinting database as shown in Figure 2.

In order to reduce the storage and wireless communications

but in the meanwhile maintain necessary position information,

merely 166 grid points are selected to represent the most

frequently visited spots. Then, RSS maps are built for all BLE

beacons by computing the posterior mean and variance using

SGP and GPV, given the pre-collected training data.

We show the RSS map of the fourth BLE beacon constructed

by SGP and GPV in Figure 3 and 4. The posterior mean ranges

from −68 dBm to −95 dBm, while the posterior standard

deviation ranges from 6 dB to 7 dB for the SGP. The posterior

standard deviation is higher at points where there is no training

data in the vicinity. By comparing SGP and GPV methods, we

can see that the predicted mean at those grids are similar from

both methods. However, with SGP, the posterior variance is

much larger than the case using GPV.

2) Experiment Results: In the previous subsection, the

complete RSS maps are constructed with the RPs covering

all locations of interest. In what follows, the localization

performance of methods given in Section IV will be shown.

We use the 2-D RSS maps obtained in the previous sub-

section to localize a mobile terminal moving from the west

end of the floor to the east end, as indicated by the blue solid

line in Figure 5. While walking, the mobile terminal measures
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Fig. 3: Illustration of the calibrated RSS map for the 4th

BLE beacon using SGP: 3a depicts the posterior mean and

3b depicts the posterior standard deviation.

RSS from the BLE beacons at 807 sample positions on this

track. The size of the noisy RSS measurements rk varies with

k at different locations of the floor plan.

First, we test the GP based probabilistic fingerprinting (FP).

We run Algorithm 1 in a snapshot manner for each time

instance k. The position estimates are depicted in Figure 5

along with the ground truth trajectory. The corresponding

positioning RMSE is computed to be around 4.1 meters with

the number of nearest neighbors set to K = 3. Secondly, for

GPV based fingerprinting, we obtain the estimated positions

in a similar manner as described in previous paragraphs. The

position estimates are plotted in Figure 5. The RMSE of

position estimate is around 4.2 meters.

We tested various settings of K and found that for this

specific example K = 3 achieves the best performance. Note

that in our evaluations, physical constraints, such as the mobile

terminal cannot go through a wall, are not taken into account.

In addition to the positioning RMSE, we further evaluate

the cumulative distribution function (CDF) of the position

estimation error. The error is computed at each position as

follows:

Ek =
√

(p̂xk
− p∗xk

)2 + (p̂yk
− p∗yk

)2, (24)

where p̂xk
, p̂yk

denote the estimated position and p∗xk
, p∗yk
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Fig. 4: Illustration of the calibrated RSS map for the 4th

BLE beacon using GPV: 4a depicts the posterior mean and

4b depicts the posterior standard deviation.
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Fig. 5: Position estimates obtained from SGP and GPV based

probabilistic fingerprinting with the number of nearest neigh-

bors K = 3.
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Fig. 6: CDF curves of estimation error for both SGP and GPV

based RSS maps.

denote the ground truth. The CDF curves for various position-

ing algorithms are illustrated in Figure 6. It is observed that

SGP outperforms GPV method. From the results, it can be

concluded that SGP is more accurate in position estimation,

but with relatively higher computational complexity. On the

other hand, GPV yields less computational complexity and is

more suitable for applications not requiring high positioning

accuracy.

VII. CONCLUSIONS

This work focuses on indoor localization with Gaussian

processes. Two approaches are implemented and their per-

formance are compared. These are the standard Gaussian

process and a Gaussian process with variograms for RSS

fingerprints construction. By combining either SGP or GPV

method with probabilistic fingerprinting algorithms, position-

ing performance has been evaluated within an office environ-

ment with experimental data. It is concluded that both methods

provide satisfactory performance to construct RSS fingerprints

and thus provide more powerful and more flexible tools in fin-

gerprinting based positioning methods. Both methods result in

good positioning accuracy, while each has its own advantages.

Using both methods, the average positioning accuracy in an

ordinary office layout is around 2− 3 meters.
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IX. APPENDIX

The maximum-likelihood estimate of the GP model pa-

rameters, θ̂m, can be obtained by maximizing the Gaussian



prior likelihood function, cf.(8), with respect to θm, which is

equivalent to

argmin
θm

g(θm) � (rm − μm)TC−1
m (rm − μm) + ln |Cm|.

(25)

Various existing numerical methods can be adopted to solve

this minimization problem, such as the batch processing based

limited-memory BFGS (LBFGS) quasi-Newton method [3] or

stochastic gradient descent for reduced complexity when the

number of training samples is large. Herein, we adopt the

former method (implemented in [26]) which requires the first-

order derivatives of the cost function, g(θm). Due to the form

of mean function μm(p) in (1) and the SE kernel function in

(7), the first-order derivatives are computed as follows:

∂g(θm)

∂Am

= am
(

C−1
m + (C−1

m )T
)

(rm − μm) (26a)

∂g(θm)

∂Bm

= bm

(

C−1
m + (C−1

m )T
)

(rm −mm) (26b)

∂g(θm)

∂σ2
e,m

= tr

{

[

C−1
m −

(

C−1
m (rm − μm)

)

(·)T
] ∂Cm

∂σ2
e,m

}

(26c)

∂g(θm)

∂lc,m
= tr

{

[

C−1
m −

(

C−1
m (rm − μm)

)

(·)T
]∂Cm

∂lc,m

}

(26d)

∂g(θm)

∂σ2
n,m

= tr

{

[

C−1
m −

(

C−1
m (rm − μm)

)

(·)T
] ∂Cm

∂σ2
n,m

}

,

(26e)

where

am �
∂(rm − μm)T

∂Am

= −1T , (27a)

bm �
∂(rm − μm)T

∂Bm

= −10[d̃m,1, d̃m,2, . . . , d̃m,Nm
],

(27b)

d̃m,j � lg dm,j , (27c)
[

∂Cm

∂σ2
e,m

]

j,k

=

{

1, j = k

exp
[

−||pm,j−pm,k||
2

2

2l2c,m

]

, j �= k
(27d)

[

∂Cm

∂lc,m

]

j,k

=

{

0, j = k

σ2
e,m exp

[

−||pm,j−pm,k||
2

2

2l2
c,i

]

||pm,j−pm,k||
2

2

l3c,m
, j �= k

(27e)

∂Cm

∂σ2
n,m

= INm
. (27f)

Here we use (A)(·)T to denote (A)(A)T for brevity.
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