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Abstract 

Background: The prevalence of self-reported shoulder pain in the UK has been estimated at 16%. This has been 
linked with significant sleep disturbance. It is possible that this relationship is bidirectional, with both symptoms 
capable of causing the other. Within the field of sleep monitoring, there is a requirement for a mobile and unobtru-
sive device capable of monitoring sleep posture and quality. This study investigates the feasibility of a wearable sleep 
system (WSS) in accurately detecting sleeping posture and physical activity.

Methods: Sixteen healthy subjects were recruited and fitted with three wearable inertial sensors on the trunk and 
forearms. Ten participants were entered into a ‘Posture’ protocol; assuming a series of common sleeping postures in a 
simulated bedroom. Five participants completed an ‘Activity’ protocol, in which a triphasic simulated sleep was per-
formed including awake, sleep and REM phases. A combined sleep posture and activity protocol was then conducted 
as a ‘Proof of Concept’ model. Data were used to train a posture detection algorithm, and added to activity to predict 
sleep phase. Classification accuracy of the WSS was measured during the simulations.

Results: The WSS was found to have an overall accuracy of 99.5% in detection of four major postures, and 92.5% in 
the detection of eight minor postures. Prediction of sleep phase using activity measurements was accurate in 97.3% 
of the simulations. The ability of the system to accurately detect both posture and activity enabled the design of a 
conceptual layout for a user-friendly tablet application.

Conclusions: The study presents a pervasive wearable sensor platform, which can accurately detect both sleeping 
posture and activity in non-specialised environments. The extent and accuracy of sleep metrics available advances the 
current state-of-the-art technology. This has potential diagnostic implications in musculoskeletal pathology and with 
the addition of alerts may provide therapeutic value in a range of areas including the prevention of pressure sores.
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Background
Pathologies affecting the shoulder are common within 
the population, often leading to a significant loss of func-
tion. UK prevalence of self-reported shoulder pain has 
been estimated at 16%, with rates as high as 26% in the 
elderly [1]. Accounting for 2.36% of presentations to 

general practitioners, it is the third most common mus-
culoskeletal presenting complaint [2]. Shoulder pain has 
been found to lead to significant sleep disturbance, which 
consequentially has significant impact on quality of life. 
Further, sleeping posture has been implicated as a causa-
tive mechanism of certain shoulder pathologies, as well 
as having a detrimental impact on post-operative healing 
following musculoskeletal surgery.

Patients following shoulder surgery demonstrated 
greater pain intensity and duration in comparison to total 
hip and knee arthroplasty patient cohorts, with such pain 
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having significantly greater interference with sleep and 
activities of daily living [3]. Smith et al. [4] demonstrated 
that 90% of patients were unable to sleep on their affected 
shoulder post-operatively, additionally 80% of patients 
with shoulder conditions without prior surgery were also 
unable to sleep on their affected shoulder [5].

It has been hypothesised that a lateral decubitus sleep-
ing position can lead to increased shoulder pressure for 
extended periods of time, precipitating chronic pain [6]. 
Kempf et  al. [7] demonstrated a significant correlation 
of 68% between the side of shoulder pain and preferred 
sleeping side, and hypothesised that manipulating sleep-
ing posture could prevent further damage to the shoul-
der. Werner et  al. [8] reported that the supine position 
resulted in significantly lower subacromial pressures 
compared to prone and lateral decubitus positions, dem-
onstrating that sleep positions leading to active flexion, 
abduction and internal rotation should be avoided during 
recovery.

Monitoring sleep quality may provide broad insight 
into general health status of patients [9–13], with exten-
sion of monitoring into patients with shoulder patholo-
gies seeming logical given the high prevalence of sleep 
disturbance, anxiety and depression [14]. In the setting 
of shoulder pathology, sleep activity and posture provide 
surrogate markers for sleep quality and limb position-
ing. The current gold standard for sleep monitoring is 
polysomnography (PSG); however, there have been tech-
nological advancements to produce less intrusive meth-
ods of monitoring sleep, which can be used in a more 
natural sleep setting. These include actigraphy (physical 
activity), heart rate variability (HRV), and smartphone 
applications. Actigraphy and HRV are currently the only 
methods that have been validated to measure sleep qual-
ity to a high degree of accuracy, ranging from 82–97 and 
57–93%, respectively [15–21].

Alongside sleep quality, posture monitoring during 
sleep provides clinically valuable information regarding 
the arrangement of limbs and resultant joint angles and 
likely pressures. Electrocardiogram (ECG) waveforms, 
pressure sensors and ultra-wide band (UWB) frequency 
technology have all previously been used in the deter-
mination of sleep posture, though their efficacy in the 
patients with shoulder pain is yet to be established [22–
27]. Joint angle measurements provide another dimen-
sion to sleep posture monitoring and have demonstrated 
efficacy in the orthopaedic patient cohort. The current 
main methodologies in the measurement of joint angles 
include inertial sensors, universal goniometer and smart-
phone applications, with inertial sensors attracting the 
greatest interest within the literature [28–34]. However, 
traditional emphasis has been placed upon the refine-
ment of wearable sensors in isolation. In contrast, the 

current work aimed to develop a multi-sensor system 
architecture combining wearable sensors, communica-
tion technology and data analytics in a single platform 
capable of ambulatory monitoring. Herein, the presented 
study aims to investigate the accuracy of a wearable 
sleep system (WSS) in the detection of sleep quality and 
posture.

Methods
Study overview
A series of laboratory-based simulations were designed 
to assess the ability of WSS to detect sleeping posture 
and activity. Healthy adult subjects were recruited locally 
at the Hamlyn Centre (Imperial College London) and 
excluded if they demonstrated active shoulder pathology 
or reported upper body mobility limitation of any sort. 
Ethical approval was gained from the NRES Committee 
London—Dulwich on 19th November 2013 (REC Refer-
ence: 10/H0808/124). Informed consent was obtained 
directly from all study participants.

Sleeping posture was investigated by asking healthy 
individuals to assume a variety of predefined sleeping 
positions. Sleep activity was investigated by asking sub-
jects to simulate a typical sleeping period progressing 
through stages of sleep and replicating associated activity 
at each stage.

Wearable sleep system (WSS)
A bespoke WSS was designed consisting of a small wear-
able sensor positioned on each arm and the chest, (seen 
in Fig. 1) communicating wirelessly to a local processing 
unit (in this study was a laptop computer) using a radiof-
requency transceiver. The node platform consists of a TI 
MSP430 ultra low power processor, a Chipcon CC2420 
RF module for wireless communications and a light 
weight Li-ion polymer battery. The node is integrated 
with an Analog Devices ADXL330 for measurement of 
3D acceleration, an InvenSense ITG-3200 digital gyro-
scope for 3D angular velocity measurement and a Hon-
eywell HMC5843 for 3D magnetic field measurement as 
previously described. The whole sensor node measures 
20 × 30 × 17  mm with a weight of 10  g and has previ-
ously been shown effective in the quantitative analysis of 
human body movements [35].

Posture monitoring
Participants were first asked to lie on the bed and assume 
eight postures in a known order, demonstrated in Fig. 2, 
to allow sensor calibration. Each posture was maintained 
for 10  s before participants were instructed to assume 
the next predefined posture. To facilitate an assess-
ment of blinded classification accuracy, each partici-
pant re-enacted the postures in a randomised order. The 
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randomised sequence consisted of 16 total postures with 
each original posture performed twice by participants. 
A broad range of postures were chosen to determine the 
ability of the WSS to recognise both major and minor 
movements that may be employed by patients in the clin-
ical setting. In order to direct the selection of such posi-
tions, focus groups were held with study participants to 
identify common sleeping positions amongst individuals 
without shoulder pathology. Further sleeping positions 
in those with shoulder pain were identified by clinical 
authors through consultation with patients suffering with 
shoulder pathologies.

Sleep quality monitoring
Participants were asked to perform a semi-structured 
simulation of the three sleep stages (awake, sleep and 
REM sleep) based upon the degree of major and minor 
transition movement permitted as outlined in the sleep 
stage simulation protocol, Table  1. Major transitions 
were defined as movement between the four main pos-
tures: right slide, left side, supine and prone. Minor 
transitions were defined as isolated movement of the 
limbs within each of the four main postures. Major and 
minor transition movements were standardised before 
recording commenced through verbal explanation 
and the use of a visual aid, Fig. 2. Each sleep stage was 
simulated for 2 min with a sequential order of A, B, C, 
B, C, B, A, providing 14  min of recording activity for 
each participant, where A represents awake, B repre-
sents sleep, and C represents REM sleep. Our string of 

movements therefore simulates progression throughout 
natural sleep. Table 1 outlines the degree of movement 
permitted in each of the sleep stages A, B and C. The 
sleep stage simulation protocol was developed in view 
of the limited battery life of the WSS (14 min) and was 
designed to broadly simulate differing stages of sleep 
across the constrained time period.

Combined proof of concept model
A single participant completed a simulation includ-
ing combination of both posture and activity changes to 
assess the validity of WSS as a future platform for total 
sleep monitoring. Sensors were placed as described in 
Fig. 1 and the participant was asked to calibrate the sen-
sors with known body position as previously described. 
Immediately after completion of all eight postures the 
subject was then asked to perform the same three simu-
lated sleep phases.

Data analysis
Data from tri-axial accelerometer, gyroscope, and mag-
netometer for all three sensors were integrated and 
wirelessly sent to a receiving laptop. An algorithm was 
developed to allow the training of a computerised pos-
ture classifier based on calibration data (see Additional 
file  1). Data were analysed on  MATLAB® (MathWorks 
Version R2014a (8.3.0.532) to quantify both individual 
and overall accuracy and error. For activity, a surro-
gate for sleep phase, accelerometer values from each of 

Fig. 1 The WSS sensor platform. a Schematic representation of WSS sensors placement, with one on each arm and one on the trunk. b Structural 
representation of the WSS sensors used
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the three sensors were combined to estimate activity 
level using data variance, i.e. the magnitude of 3-dimen-
sional movement. Subject-specific activity thresholds 
were derived from study data and used to determine 
the simulated sleep phase. The nested IF function: = IF 

(F3 > 0.14, “3”, IF (F3 > 0.058, “2”, IF (F3 < 0.058, “1”))) 
was used to quantify activity levels and correspond-
ing sleep stages. To calculate the percentage of time, the 
participant spent in each phase the COUNTIF func-
tion = COUNTIF(H3:H24509,3) was run across all data.

Fig. 2 Simulated sleeping postures. (1) Right lateral decubitus—both hands under cheek, arms parallel; (2) right lateral decubitus—bottom 
forearm under head, top arm relaxed with hand in front of face; (3) supine—arms parallel to body; (4) supine—hands behind head; (5) left lateral 
decubitus—both hands under cheek, arms parallel; (6) left lateral decubitus—bottom forearm under head, top arm relaxed with hand in front of 
face; (7) prone—hands in front of forehead; (8) prone—arms parallel to body
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Statistical analysis
Statistical tests were used to determine if any of the par-
ticipants or postures demonstrated particularly high and 
low accuracy levels. The non-parametric test Kruskal–
Wallis one-way non-parametric analysis of variance 
(KW-ANOVA) was used to initially detect any outliers. 
Outliers were further compared against group averages 
using the Mann–Whitney U Test. Analyses were per-
formed using SPSS version 20.0 for Windows. The statis-
tical significance level was set at P < 0.05.

Results
Sixteen healthy subjects were recruited, ten participat-
ing in the posture protocol, five in the activity protocol, 
and one for the proof on concept simulation. There were 
seven females and nine males with a mean age of 25 years 
old. No major technical issues arose and datasets were 
available for all participants recruited.

Posture
Across 10 participants, the WSS platform showed an 
overall classification accuracy of 99.5% for detecting 
the four main sleeping postures: right, supine, left, and 
prone. Classification accuracy across all eight postures 
was 92.5% (Fig. 3).

The distinction between postures 1 and 2 was the most 
difficult to classify, followed by postures 5 and 6. After 
KW-ANOVA, the mean rank suggested postures 1, 2 and 
6 to be outliers. A Mann–Whitney U test found no sta-
tistical significance between the classification accuracy 
of these postures compared to the others. Between par-
ticipants, the classification accuracy varied from 84.3 to 
100%.

Activity
Activity classification across five participants estimated 
28.5% of the time spent awake (28.6% simulated), 42.6% 
of the time spent asleep (42.9% simulated) and 26.6% of 
the time spent in REM (28.6% simulated). The activity 
measured for the simulated sleep of one participant are 
shown in Fig. 4, represented as the combined coefficient 

of variation calculated from each of the 3 accelerometer 
axes of each sensor.

Discussion
This study demonstrates the high accuracy levels achiev-
able for monitoring physical activity and postures dur-
ing sleep with a wearable sensor platform. The WSS was 
found to have an overall accuracy of 99.5% in the detec-
tion of four main postures, which was mostly maintained 
when detecting eight postures producing an accuracy of 
92.5%. Accuracy was acceptable across all subjects with 
the least accurate being 84.3%. The platform could pre-
dict simulated sleep phases (awake, sleep, REM) using 
arm and trunk activity measurements. The ability of the 
system to detect both posture and activity was exhibited 
in a proof of concept dataset, along with a conceptual 
layout for a tablet application to be used by both doctors 
and patients (Fig. 5).

The 4-posture classification accuracy (99.5%) compares 
well to other papers in the field. Hsia et  al. [23] used a 
Bayesian Classification with pressure sensors finding an 
overall accuracy of 81.4%. The use of a wireless identifica-
tion and sensing platform by Hoque et al. [36] gained a 
94.4% accuracy in detection of the four postures, whilst 
Ni et  al. [27] received similar results to this study in 
their use of UWB tags combined with a pressure sensor 
matrix, at approximately 99% accuracy. For eight pos-
tures, the WSS demonstrated an accuracy of 92.5%. Two 
studies using embedded pressure sensors, one consider-
ing five postures, and the other nine, gained accuracies of 
97.7 and 94%, respectively [24, 25]. Although both these 

Table 1 Sleep stage simulation protocol

The degree of movement permitted during the each of the simulated sleep 
stages is outlined along with corresponding major and minor transition 
frequencies where appropriate

Simulated 
sleep stage

Major 
transition 
permitted

Minor 
transition 
permitted

Movement 
between transitions 
permitted

Awake Every 30 s No Yes

Sleep No Every minute Limited

REM sleep No No No

1 2 3 4 5 6 7 8

1 79.6 20.7 0 0 0 0 0 0.37

2 19.6 79.3 0 0.35 0 0 0 0

3 0 0 100 0.70 0 0 0 0

4 0 0 0 98.2 0 0 0.34 0.74

5 0 0 0 0.70 99.7 17.4 0 0.74

6 0.77 0 0 0 0.32 82.6 0 0

7 0 0 0 0 0 0 99.7 0

8 0 0 0 0 0 0 0 98.1

Actual

Estimate

Fig. 3 Classification matrix representing the percentage accuracy for 
the eight main postures
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papers gained a higher classification accuracy compared 
to our 92.5%, pressure systems were embedded within 
mattresses, with the system described remaining the 
most accurate and advanced wearable platform.

Distinction between two right-sided postures (1 and 2) 
yielded the greatest identification error during our study. 
These postures are very similar, with the only difference 
being 90° rotation at the shoulder in one arm. Therefore, 
it is possible that the error in these postures is due to 
poor user compliance with the participant not recreating 
the posture performed during calibration. These findings 
are replicated on the left side. The possibility of poor par-
ticipant compliance is further highlighted by the fact that 
in 2 out of 10 participants the sensors were 100% accu-
rate, whilst other participants had accuracy levels as low 
as 84.3%. That said, in a true clinical model similar issues 

are likely to occur, but whether minor differences in posi-
tion will affect the utility of the information in currently 
unclear.

The WSS could measure the duration of each sleep 
phase with high accuracy, only the REM phase having 
a greater than 1% deviation from the predicted, leading 
to an overall accuracy of 97.3%. This validates the ability 
of WSS to assess activity levels of a person whilst they 
are sleeping, facilitating the assessment of sleep qual-
ity in a natural environment. This compares well to the 
actigraph sensor, with the added benefit of simultaneous 
posture detection. Chang et  al. [37] are the only other 
group who have been able to provide a platform that is 
able to detect both sleeping posture and activity levels. A 
tri-axial accelerometer was used on the chest for posture 
detection, combined with ECG recording for sleep stage 

a

b

Fig. 4 Graphical representation of the various stages of sleep quantified using the WSS. a Represents the combined coefficient of variation from all 
three sensors; b represents the separation of (a) into the three phases: 1 (REM), 2 (sleep) and 3 (awake)
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monitoring [37]. The method described in this paper pro-
vides additional information regarding the position of the 
upper limbs which is of particular interest in musculo-
skeletal pathology.

The envisaged clinical impact of the WSS is primarily 
diagnostic, but with small adjuncts could become therapeu-
tic. Widening access of sleep monitoring beyond specialist 
facilities would allow patients suffering from upper limb 
symptoms to consider if sleep position may be a contribut-
ing factor. It also facilitates research into the sleep behav-
iour of post-operative patients, which may give insight into 
why some experience delay in recovery. The addition of an 
alert function based on pre-set criteria such as sleeping 
in one position for too long, might allow for therapeutic 
utility, e.g. following shoulder arthroplasty. In the broader 
healthcare setting use of such systems might help prevent 
pressure sores by alerting carers when patients have been in 
one position for a certain length of time.

The interpretation and application of the results 
should be done so in the context of the study limita-
tions. Despite the promising accuracy demonstrated 
by the WSS, our data were only collected from a cohort 
of healthy patients measured over 14 min of simulated 
sleep. Future comparative studies seeking to replicate 

such findings in a cohort of patients with shoulder 
pathology over a natural sleep cycle would prove use-
ful in determining if similar results can be obtained in 
those with shoulder pain and concurrent sleep distur-
bance. Of note, the sleep postures chosen were designed 
to capture potential movements replicated in a clini-
cal cohort. Future comparative studies will yield valu-
able data regarding actual preferred sleep positions in 
patients with shoulder pathology. As a validation study, 
the current work proves useful in providing preliminary 
data to inform the design of future comparative studies.

The main technical limitations of the WSS include bat-
tery life and sensor size. Unfortunately, the current WSS 
battery only lasts for 30 min, making overnight use cur-
rently unfeasible. To mitigate this, protocols were tailored 
accordingly, allowing the simulation of sequences to rep-
resent part of a night’s sleep. As prototypes, the sensors 
are cumbersome (20 × 30 × 17  mm) leading to potential 
discomfort. Both limitations could be overcome with 
formal sensor design and packaging, and optimising sen-
sor settings with regard to frequency of data capture and 
transmission. The study participant demographic was not 
in keeping with that of the clinical cohort; however, this 
is unlikely to affect the potential utility.

Fig. 5 Proof of concept output from the pervasive sleep sensor platform presented as part of a conceptual application interface. Reported data 
include demographics, activity levels with corresponding time intervals and relative posture for utilisation by clinicians and patients
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Conclusions
This work demonstrates the accuracy of a wireless sen-
sor platform to detect sleeping posture and quality. 
This has potential for use in patients with musculoskel-
etal pathology, as well as other healthcare applications 
such as pressure sore prevention. Ultimately, it is hoped 
that such sensor platforms could provide a low cost, 
mobile sleep laboratory, which could facilitate a greater 
number of sleep studies offering insight into disease 
processes, and help tailor the holistic management of 
patients with musculoskeletal disease.
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