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Full Metadata Object Profiling for flexible geoprocessing workflows 1 

The design and running of complex geoprocessing workflows is an increasingly 2 

common geospatial modelling and analysis task. The Business Process Model 3 

and Notation (BPMN) standard, which provides a graphical representation of a 4 

workflow, allows stakeholders to discuss the scientific conceptual approach 5 

behind this modelling while also defining a machine-readable encoding in XML.  6 

Previous research has enabled the orchestration of Open Geospatial Consortium 7 

(OGC) Web Processing Services (WPS) with a BPMN workflow engine. 8 

However, the need for direct access to pre-defined data inputs and outputs results 9 

in a lack of flexibility during composition of the workflow and of efficiency 10 

during execution. This article develops metadata profiling approaches, described 11 

as two possible configurations, which enable workflow management at the meta-12 

level through a coupling with a metadata catalogue. Specifically, a WPS profile 13 

and a BPMN profile are developed and tested using open-source components to 14 

achieve this coupling. A case study in the context of an event mapping task 15 

applied within a big data framework and based on analysis of the Global 16 

Database of Event Language and Tone (GDELT) database illustrates the two 17 

different architectures. 18 

Keywords: workflow, metadata, catalogue services, web processing service, big 19 

data 20 

1 Introduction 21 

Geoprocessing workflows are a fundamental concept to the development of geospatial 22 

applications and products (Alonso & Hagen, 1997; De Giovanni et al., 2016; Hu, Wu, 23 

Zhong, Lv, & Yu, 2010; Nativi, Mazzetti, & Geller, 2013; Sun & Yue, 2010). 24 

Applications such as data conflation, quality assurance procedures and cartographic 25 

production are typical geospatial analysis tasks where a repository of geoprocessing 26 

transformations is used as a toolbox to compose a ‘chain’ of operations, and where 27 

reusing these chains as-is or with few modifications can often be needed. For example, 28 

standardised interfaces of legacy GIS analysis components may be exposed for creating 29 

these workflows e.g. Yue et al (2010) or new types of tests may be defined together to 30 



fulfil a particular experimental design e.g. Meek  et al (2014). Both the toolboxes and 1 

available datasets can be shared within communities using interoperable e-2 

infrastructures comprised of web services and may be described with metadata of the 3 

geoprocessing components available. Easy access to this metadata would be helpful as a 4 

support when composing and executing the workflows. Increasingly these workflows 5 

involve large data sets, distributed across different locations and computer systems, 6 

putting extra load on any geocomputational applications. 7 

Service oriented approaches to computing offer a promising way to integrate 8 

different computer architectures, programming languages and processing needs required 9 

by geoprocessing workflows (Castronova, Goodall, & Elag, 2013; De Giovanni et al., 10 

2016; Di, Shao, & Kang, 2013; Sheng et al., 2014; Sun & Yue, 2010). A Service 11 

Oriented Architecture (SOA) defines individual software components that provide data 12 

and functionality as Web services  (Yang, Raskin, Goodchild, & Gahegan, 13 

2010).Within the geospatial context, Open Geospatial Consortium web services (OWS) 14 

refers to services that are defined according OGC standards. OWS have some minimum 15 

required functionality that must be implemented (e.g. GetCapabilities) and respond to 16 

HTTP requests made from the clients. Although OWS are self-describing, and do 17 

include support for including metadata as part of their capabilities, the Catalogue 18 

Service for the Web (CSW) specification defines a standard for registering and locating 19 

metadata associated across multiple data or geoprocessing service instances (OGC, 20 

2007b). This standardised metadata cataloguing enables client applications to efficiently 21 

identify and make use of the resources. Three ISO standards are relevant here for 22 

helping achieve this including ISO19115, ISO19119 and ISO19139. ISO19115 defines 23 

metadata that should be associated with a geographic resource such as its history, 24 

quality and intended use (ISO, 2003). ISO19119 is high-level standard that defines a 25 



hierarchical categorisation of six geospatial services including Workflow/Task services 1 

and Processing services, with the latter being further sub-divided into four further 2 

categories (ISO, 2005).  ISO19139 is an XML schema that implements the ISO19115 3 

standard and can be used to define metadata records (ISO, 2007). These records are 4 

inserted in, and retrieved from a CSW system. 5 

When defined as services, chaining and orchestration of processes into 6 

workflows can be achieved. Two notable distinctions exist between service chaining 7 

and service orchestration. Service chaining is undertaken when multiple processes are 8 

combined to form a sequence or pipeline which creates a new service (Alameh, 2003). 9 

Web service orchestration can be defined as integrating the invocation of two or more 10 

services into a more complex workflow (Peltz, 2003). The orchestration can be a 11 

manual specification of outputs to other services, semi-automatic (through use of a 12 

configuration file), or automatic through the publication of capabilities between services 13 

(Kiehle, Greve, & Heier, 2007). Graphical environments for modelling are commonly 14 

used for scientific workflows and are attractive in a range of disciplines (De Giovanni et 15 

al., 2016; de Jesus, Walker, Grant, & Groom, 2012; Deelman, Gannon, Shields, & 16 

Taylor, 2009; Oinn et al., 2006).  17 

In recent previous work, the use of BPMN for geoprocessing workflows has 18 

been adopted (Bigagli, Santoro, Mazzetti, & Nativi, 2015; Meek, Jackson, & Leibovici, 19 

2016; Wiemann, 2016). BPMN is an Object Management Group (OMG) and ISO 20 

standard aimed at replacing flowchart diagrams and offers a graphical notation in 21 

association with the XML executable by the workflow engine. Bigagli et al. (2015) also 22 

made use of BPMN due its readily understandable graphical representation over 23 

Business Process Execution Language (BPEL). Meanwhile, Meek, Jackson, and 24 

Leibovici (2016) proposed orchestrating WPS through extending a Business Process 25 



Modelling (BPM) platform which utilises BPMN workflow standard. The approach that 1 

was developed relied on direct management of the objects, data inputs and outputs, as 2 

well as the geoprocessing service defined as a customised workflow engine task.  3 

In this paper, we describe the development and application of a profile-based 4 

architecture that couples a metadata catalogue with a workflow process modelling 5 

platform. The use of a self-contained BPMN file, which encodes the workflow, enables 6 

easy access to all the metadata associated with the geoprocessing, abstracts away the 7 

data and process objects from the workflow engine and delays use of the data objects 8 

during the workflow execution. This is achieved by designing and developing profiles 9 

for geoprocessing web services and BPMN based upon a metadata coupling, which we 10 

preliminarily described in short form in Rosser et al (2016) and extend here. Our 11 

contributions include: 12 

- Design and development of two approaches for integrating metadata within a 13 

geoprocessing workflow, 14 

- Illustration of the potential and usability of each solution with a comparison of 15 

the both approaches, 16 

- Experimental demonstration of the proposed approaches within a big data 17 

geospatial workflow, thus enabling integration of different technology stacks, 18 

The remainder of this paper is structured as follows: section 2 highlights related 19 

work; section 3 details the two profiling designs and architectural configurations as well 20 

discussing usability of the solutions provided; section 4 describes the implementation of 21 

the components; section 5 describes a case study for experimental deployment; finally, 22 

concluding remarks are made in section 6. 23 

2 Related work on service orchestration 24 

The focus of this work is on providing an interoperable environment that facilitates 25 



seamless re-use and sharing of scientific models composed as BPMN workflows, and 1 

relates to both web service orchestration and metadata management.  In particular, the 2 

goal is also to be able to rapidly adapt existing open source tools to provide an 3 

environment capable of enabling further support of scientific modelling workflow 4 

management and execution, e.g. scenario testing and simulation, error propagation, and 5 

parallelisation. This section describes related literature in this field and highlights 6 

shortcomings with existing approaches regarding the ambitions stated above. 7 

Integrating approaches for web service orchestration with OWS can present 8 

many difficulties for geospatial workflows. For example, the two systems typically do 9 

not use a common protocol. In particular, Web Service Description Language (WSDL) 10 

and Simple Object Access Protocol (SOAP) are used by web service orchestration 11 

engines but neither of these is well-adopted in OWS implementations, which instead 12 

tend to use Key-Value Pair (KVP) encoded in HTTP calls. Furthermore, Alameh (2003) 13 

identified that SOAP and WSDL are insufficient to describe geographic services which 14 

need to provide extra details about the spatial data such as capabilities and coverage. 15 

The difficulty in integrating OWS within the wider setting of web service orchestration 16 

has prompted various integration approaches. Version 1 of the WPS standard, the 17 

version adopted for this work, identifies three ways to chain services (OGC, 2007c). 18 

One approach is to use a BPEL engine to define and execute the workflow. This has 19 

previously been demonstrated as a mechanism for chaining WPS calls in relation to 20 

various applications (Brauner, Foerster, Schaeffer, & Baranski, 2009; Hobona, 21 

Fairbairn, Hiden, & James, 2010; Yu et al., 2012). However, this approach has been 22 

criticized by its technical complexity which may lead to non-domain users defining 23 

workflows (Bensmann, Alcacer-Labrador, Ziegenhagen, & Roosmann, 2014). Another 24 

option for orchestration is to wrap a sequence of WPS calls within another WPS 25 



(Bielski, Gentilini, & Pappalardo, 2011; Eberle & Strobl, 2012). The third option 1 

mentioned in the WPS standard is to encode a chain of services within the execute 2 

query to form a cascading request. Version 2 of the WPS standard does not recommend 3 

any particular approaches for service chaining (Mueller & Pross, 2015). 4 

With respect to providing intensive computing operations via WPS, Castronova 5 

(2013) developed a wrapper interface between WPS and an Open Modelling Interface 6 

(OpenMI) simulation framework and applied it to a hydrologic model case study. The 7 

WPS wrapper sits on the client machine and converts data into the OpenMI standard, 8 

and this enables a loose coupling of the scientific simulation model with OGC services. 9 

Use of self-describing packages of geoprocessing components have also been proposed 10 

as a mechanism to ease sharing of algorithms and scientific models that involve 11 

intensive analysis and large data sets (Müller, Bernard, & Kadner, 2013). Furthermore, 12 

the concept of a Geoprocessing Appstore presents one solution to help improve 13 

cataloguing and discovery of processes by acting as a central repository for the 14 

algorithm code together with machine-readable associated descriptions (Henzen, 15 

Brauner, Müller, Henzen, & Bernard, 2015). However, although the work adopts 16 

“Moving Code Packages” as a format for describing the algorithms, the catalogue does 17 

not provide metadata according to a standardised catalogue installation. 18 

The inclusion of semantics has been shown to help with the design of workflows 19 

and with the documentation of the results of an analysis. Hobona et al (2007) propose a 20 

semantically-assisted system that enables a user to compose a workflow at an abstract 21 

level and then have a concrete implementation of it suggested based on a similarity 22 

score calculated using an ontology of the workflow components. Their system requires 23 

that the metadata for the workflow resource be tagged using Web Ontology Language 24 

(OWL) concept. Furthermore, utilising artificial intelligence path planning strategies 25 



alongside ontology descriptions of workflow components can also help with semi-1 

automatic creation of geospatial workflows, and these descriptions may be encoded in 2 

ISO19115 documents in a CSW (Yue et al., 2009). Al-Areqi et al (2016) also describe 3 

annotating web-services with ontologies to enable automatic composition of workflows 4 

based on an initial sketch provided by the user.  5 

With respect to aiding documentation of workflows, Yue et al (2010) developed 6 

a system for helping the tracking of metadata using semantic web technologies to 7 

capture provenance details within a service-oriented environment. Müller (2015) 8 

suggests that processes can be defined using a hierarchical profile of geoprocessing 9 

operations. For example, processes can have profiles at a conceptual level (i.e. what it 10 

does), which can be extended to a generic profile (i.e. how the operation is computed) 11 

which in turn can be extended to an implementation level (i.e. what data encoding is 12 

required and produced).  13 

While progress has been made in using OGC services within a workflow 14 

environment, integrating metadata relating to the input data and processing 15 

implementations into the composition process has not been undertaken (Bigagli et al., 16 

2015; Sheng et al., 2014), as proposed here.  17 

3 Full Meta Objects Profiles & architecture 18 

The aim of the work presented in this paper is to describe and test the required 19 

architecture to facilitate workflow composition using metadata records for the datasets 20 

and geoprocessing tasks used in the workflow. The principle followed for this 21 

architecture is to define the artefacts of the workflow, i.e. data and processes, from their 22 

metadata. The metadata links (exposed as URI strings) are managed either entirely by 23 

the workflow engine (BPMN implementation) or by the WPS behind each 24 

geoprocessing task. In practical deployment, this means that both data and processes are 25 



defined as a web-accessible metadata records (ISO 19139) and references to these 1 

records are embedded in the BPMN XML workflow definition.  2 

Two approaches, named Full Meta Objects (FMO) profiles, for constructing and 3 

executing workflows comprised of metadata objects have previously been described 4 

(Rosser et al., 2016). Here we develop and test the architecture for an experimental 5 

processing scenario. Our proposal is the coupling of the workflow system with a 6 

metadata catalogue (see Figure 1). The configuration of system components is such that 7 

the workflow editor deals only with their metadata and does not need to understand the 8 

technicalities of the process inputs and outputs (such as the geospatial data formats). 9 

Similarly, depending on the type of profile architecture used, the workflow engine can 10 

also avoid needing to handle geospatial data and process entities (see section 4). 11 

WPS

WFS / WCS

CSW
User

Workflow 

Editor & Engine

 12 

Figure 1. Overview of workflow composition using metadata objects. See Figure 2 and 13 

Figure 4  for detailed component diagrams illustrating options of system architecture 14 

and communication between components. The architecture uses open source software 15 

(described in further detail below) that implement the OGC and the BPMN standards. In 16 

particular, CSW: OGC Catalogue Services for the Web, WFS: OGC Web Feature 17 

Service and WPS: OGC Web Processing Service. 18 

3.1 Web Processing Service profiling 19 

The FMO WPS profile is a WPS that for each input accepts a metadata link to the 20 

metadata record of the dataset. Figure 2 illustrates the architecture between the 21 



components and Figure 3 shows the execution sequence. 1 
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Figure 2. Component diagram of the Web Processing Service profile approach. The 3 

implementations used for our testing are shown in brackets. 4 

The implementation of any geoprocessing within this profile will deal first with the 5 

metadata record, to request, for example, the data used in the geoprocessing. As a direct 6 

consequence, syntactic interoperability is left to the processing step. For example, the 7 

different formats available for the dataset therefore have direct access to the metadata 8 

which could imply different processing options. Any existing geoprocessing 9 

functionality made accessible via WPS can be wrapped into a FMO profiled WPS. This 10 

FMO WPS wrapper retrieves the data links from the metadata records and builds the 11 

second, non-metadata related WPS request. The workflow architecture using FMO 12 

WPS is illustrated in Figure 3 showing the sequence of messages and operations 13 

between the different components of the architecture. To highlight what is happening in 14 

terms of flow of information (data or metadata) the figure uses an FMO WPS wrapper 15 

as described above. Upon execution, the workflow engine begins by constructing an 16 

ExecuteRequest document comprised of the metadata URL and literal parameters. At 17 

this stage no data has been fetched and no ‘real’ computation has been performed from 18 

the workflow engine. Upon execution of the WPS wrapper, the process logic of the 19 

wrapper then iterates over each data input and makes a GetRecords request to the 20 



catalogue (Step 1). The response of this request is an XML metadata record (ISO 1 

19139). From each record, the URL (gmd:URL) is extracted from the distribution 2 

information (MD_DigitalTransferOptions). If multiple endpoints are listed, we search 3 

the list to identify a GML format. A second GetRecords request extracts the metadata 4 

record relating to the WPS process (process name and end-point) from the catalogue 5 

(step 2). The extracted data and process end-point references (Step 3) are inserted into a 6 

new ExecuteRequest (Step 4), which is executed (Step 5) with output(s) specified with 7 

the WPS standard asReference=TRUE parameter in order to retain the processing result 8 

on the server (Step 6). The output reference of the WPS is returned to the WPSWrapper 9 

which creates a new metadata record containing the output reference within the 10 

distribution information tags (Step 7). After insertion of the record in the catalogue 11 

service, the metadata URL is returned to the workflow client (Step 8). 12 



 1 

Figure 3. UML sequence diagram of the WPS profiling method. 2 

It is important to notice that without the FMO profiling, the BPMN engine would either 3 

get the output as data, thus requiring the presence of the data object in the workflow 4 

engine, or as a reference to the result (as part of the WPS standard specification). With 5 

FMO, the referencing is masked by being defined just as a string literal that is encoding 6 

the URL of the catalogue record. In this architecture, the BPMN engine still has to build 7 

the WPS request (as a FMO WPS request) for a task execution. This can be done using 8 

a customisation of BPMN for WPS (Meek et al., 2016), or using the BPMN standard 9 

specification, where a servicetask can be defined as ##WebService with a WSDL 10 

association (Sancho-Jiménez, Béjar, Latre, & Muro-Medrano, 2008), if it is available in 11 

the workflow engine implementation. 12 



3.2 BPMN profiling 1 

In this configuration, the integration of the metadata catalogue is undertaken at the 2 

workflow engine level, rather than as part of a WPS wrapper, as described for the FMO 3 

WPS. Figure 4  illustrates the architecture of the system components and Figure 5 shows 4 

the execution sequence when using the FMO BPMN profiling.  5 
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Figure 4. Component diagram of the BPMN profile approach. The implementations 7 

used for our testing are shown in brackets. 8 

 9 

Here, the integration of the metadata catalogue is undertaken at the workflow engine 10 

level, rather than as part of a WPS wrapper, as described for the FMO WPS. However, 11 

the same library calls can be utilised from the workflow. Steps 1-8 are equivalent to 12 

those described in section 3.1. 13 

The FMO BPMN profiling could be a special case of servicetask with a 14 

##WebService parameter defined using WSDL, with the dataset requests made as 15 

standard OGC requests (GetData). An alternative is to customise the BPMN editor to 16 

support the metadata management. Both solutions keep the BPMN interoperable, but 17 

the FMO profiling keeps the details at the metadata level. Also, for semantic support it 18 

is desirable to use the BPMN FMO profiling, especially if the workflow editor is 19 

capable of providing support based on the knowledge of the metadata. A BPMN editor 20 

capable of providing the support can of course also have the capacity to save the BPMN 21 



in its basic form, removing the FMO aspects and therefore losing the FMO details in 1 

future usage. 2 

 3 

Figure 5. UML sequence diagram of BPMN profiling method. 4 

3.3 Benefits and comparison of FMO solutions 5 

An implementation in the form of a case study big data analysis shows the practical 6 

aspects of both FMO profiling methods (see section 4). This is based on a two task 7 

workflow to provide a proof of concept of the approaches. The advantage of FMO 8 

solutions lies in both the potential semantic support driven by the metadata coupling and 9 

that processes do not need to manage datatypes within the workflow and the WPS 10 



interface. On one side, matters of semantic and syntactic interoperability (e.g. semantic 1 

properties, adequacy, datatype requirements) are dealt at metadata level, with the 2 

opportunity to do this within the workflow editor during composition.  On the other 3 

side, the interoperability requirements are deferred to the last part of orchestration i.e. 4 

execution within the WPS. This is obvious for the WPS FMO profiling, but is also the 5 

case for the BPMN FMO profiling as it is only at the WPS request that a translation of 6 

the metadata to the URL to retrieve the data link is performed and that a registering of 7 

the output is also made in the metadata catalogue. In terms of software development, the 8 

workflow engine does not need to deal with geospatial data as this is required only 9 

within each WPS, i.e. the workflow engine orchestrates tasks which are dealing only 10 

with metadata entry points to data records. Spatially-related data such as bounding box 11 

and coordinate system definitions are defined as number or string data types. 12 

Both FMO profiling methods exhibit advantages and disadvantages. The 13 

advantage of WPS FMO profiling is that the BPMN software for workflow 14 

orchestration needs no adaptation beyond making requests and handling responses. In 15 

particular, the workflow engine code does not need to be modified to implement the 16 

metadata management procedures (which are handled by the wrapper) and instead just 17 

passes the metadata URLs. On the other hand, the BPMN profiling solution is more 18 

flexible in that it has fewer system components as it does not need an extra WPS 19 

wrapper service to be deployed locally with the workflow engine or on another remote 20 

system. Thus, it could be easier to configure and maintain, particularly where system 21 

administration privileges are restricted or networks are secured. Note that the WPS 22 

wrapping mechanism could also be an architecture brokering WPS FMO to a non-FMO 23 

BPMN implementation. 24 



3.4 Outlook on FMO solutions for workflows 1 

For both FMO profiling solutions we have described the relative benefits in the previous 2 

sections. For either approach, and even for a mixed solution of the two profiles, dealing 3 

with the metadata can be advantageous when performed at the workflow level and at 4 

WPS level.  As mentioned above, each architecture offers flexibility, whilst retaining 5 

interoperability, in a similar way to metadata brokering. This focuses mostly on 6 

syntactic interoperability, but also offers flexibility at the semantic level through 7 

enabling more complex reasoning based knowledge of the manipulated objects when 8 

composing or exploring a workflow. This is due to the fact that the BPMN file contains 9 

the metadata of all 'objects' used in the workflow: data and (geo) processes.   10 

Therefore composition support can be provided when accessing the metadata, as 11 

suggested by Hobona et al (2007), Yue et al (2009) and Al-Areqi et al (2016). For 12 

example, attached ontologies could help with harvesting appropriate thematic data with 13 

specific characteristics of scale, resolution or quality levels (or other criterion judged to 14 

be important) after analysing the metadata related to the task (the process encapsulated 15 

in the WPS). Not only does the integration of semantic support into the workflow editor 16 

enable the identification of different requirements on compatibility and adequacy, but it 17 

can also directly allow different types of workflow execution. A simple example might 18 

be verifying the required data format for the process. Similarly, being able to test format 19 

availability at the WPS level could lead to a more efficient algorithm (if the WPS allows 20 

multiple input formats). 21 

Another example usage is for error propagation analyses. Monte Carlo simulation 22 

services can be initiated solely from the information provided by the BPMN file. For 23 

example, the file can contain the metadata about the data quality of all datasets used in 24 

the workflow (linked via the metadata catalogue service). Therefore it is possible to 25 

perform sampling under the given accuracies. 26 



In terms of sharing knowledge, the BPMN file encapsulates all the required information 1 

as a single object which can be shared as a scientific model or an application 2 

represented by the workflow. In section 4, we demonstrate a simple implementation 3 

example of each design we described above to demonstrate FMO workflows. 4 

4 Implementation choices and illustrative example 5 

The workflow implementation adopted here is the jBPM engine and editor environment 6 

(github.com/cobweb-eu/workflow-at). The jBPM environment implements version 2 of 7 

the BPMN standard. GeoNetwork was chosen for the CSW and GeoServer and 52North 8 

were used for WPS processes and FMO WPS wrappers respectively, both of which 9 

implement version 1.0 of the OGC WPS standard. Currently, GeoNetwork implements 10 

the OGC-CSW 2.0.2 ISO Profile which enables cataloguing of metadata on datasets and 11 

services according to ISO19115 and ISO19119 standards (OGC, 2007b). We use the 12 

ISO19139 XML schema to encode the metadata records of both the input data (and the 13 

process results) objects and processes. The GeoNetwork harvesting module can 14 

automatically populate the catalogue with the minimum metadata necessary for the case 15 

study datasets. The encoding of the processes as ISO19139 records was achieved 16 

through manual definition of the XML, however, the catalogue harvester could be 17 

modified to make this process automatic i.e. through invoking GetCapabilities and 18 

DescribeProcess operations on the service. In our work, we manually specified the 19 

process name (in MD_DataIdentification) and WPS endpoint (in 20 

MD_DigitalTransferOptions) which is the minimum information required in order to 21 

run a basic workflow. Additional fields in the ISO19139 schema could be populated as 22 

part of an organisation’s metadata creation procedures if it is desirable. For example, 23 

data quality information might be specified on the inputs (DQ_DataQuality), or the 24 

lineage field (LI_Lineage) might be populated to self-document workflows and enable 25 



tracing back through the inputs used. 1 

4.1 Workflow environment 2 

The BPM tool was modified to create and execute WPS requests and manage parsing of 3 

the responses to enable process chaining. In jBPM, this is achieved through the 4 

introduction of a domain-specific processing task, termed as a custom work item or 5 

custom service node. Although the BPMN standard allows the use of web services 6 

through defining a servicetask and associating it with a WSDL file, this was not 7 

implemented in jBPM. Instead each instance of this custom work item corresponds to a 8 

WPS request, with the inputs and outputs of the WPS mapped into a corresponding 9 

input and output declaration for the engine. Thus, in this work, each task is defined 10 

using MVFLEX Expression Language (MVEL) within the workflow engine and 11 

registered with a generic handler for executing a WPS as a BPM item. 12 

Figure 6 illustrates the workflow design environment which is provided via a 13 

plugin to the Eclipse Integrated Development Environment. The jBPM package also 14 

provides a web-based environment for composition of workflows. 15 

 16 



 1 

Figure 6. Screenshot of the jBPM workflow editor and development environment. 2 

4.2 Processing and database 3 

In the OGC WPS 1.0 specification, three operations are specified: GetCapabilities, 4 

DescribeProcess and Execute. These functions enable a client to identify all the 5 

available processes, receive details about the inputs and parameters of specific 6 

processes, and invoke running of these operations on the server. Implementation of 7 

these functions enables simple integration of data stores and service software. Here 8 

GeoServer and its WPS plugin facilitate exposure of a Hadoop back end. Hadoop-based 9 

platforms have had recent uptake for undertaking parallelised and large-scale data 10 

processing, analysis and storage using clusters of computers and have become a 11 

widespread service from cloud computing service providers. While intensive parallel 12 

computing is by no means new to geospatial and wider scientific computing 13 

applications, extension of the technology is required to support spatial processing. More 14 



specifically, a standard Hadoop distribution is not suited to managing geospatial data 1 

due its multi-dimensionality. Therefore, a spatial framework is needed to index and 2 

handle queries. Partitioning the data for remote sensing applications (Giachetta, 2015) 3 

and vector-based query (Whitman, Park, Ambrose, & Hoel, 2014) has been shown and 4 

various frameworks have become available as closed and open-source technology 5 

stacks such as SpatialHadoop (spatialhadoop.cs.umn.edu). In this work, we adopt the 6 

open-source GeoMesa (geomesa.org) project for providing the indexing capability and 7 

interface with Hadoop. GeoMesa uses Apache Accumulo (accumulo.apache.org), a 8 

column-orientated NoSQL database which enables distributed data storage across a 9 

Hadoop cluster (Hughes et al., 2015). GeoMesa also integrates with GeoServer 10 

(geoserver.org) enabling implementation and publication of OGC compliant services 11 

(including WFS, WCS, WMS and WPS). 12 

4.3 Metadata and metadata catalogue 13 

As a metadata catalogue service, we use GeoNetwork (geonetwork-opensource.org) 14 

v3.0.4.0. Currently, GeoNetwork implements the OGC-CSW 2.0.2 ISO Profile which 15 

enables cataloguing of metadata on datasets and services according to ISO19115 and 16 

ISO19119 standards (OGC, 2007a). We utilise CSW-ISO profile to encode metadata 17 

regarding both the datasets and the individual processes that make up a workflow. 18 



 1 

Figure 7. GeoNetwork catalogue application after harvesting GeoServer. 2 

5 Case study scenario  3 

5.1 A big data processing example 4 

Our implementation was tested using a workflow focused on a global event mapping 5 

task. As a data source we use the GDELT database which provides a large repository of 6 

georeferenced political event data covering 1979 to the present day (Leetaru & Schrodt, 7 

2013). GDELT draws its observations from textual analysis of international news 8 

coverage which is automatically processed to create coded observations. The dataset is 9 

used for global scale political monitoring and prediction and has, for example, been 10 



adopted for forecasting civil unrest (Korkmaz et al., 2015) and monitoring sentiment 1 

toward political ideas or events (Bodas-Sagi & Labeaga, 2016). 2 

The reliance of GDELT on automated text analysis means that events may be 3 

misclassified, inaccurately geocoded or misrepresentative in other ways and the system 4 

has drawn criticism over its validity (Wang, Kennedy, Lazer, & Ramakrishnan, 2016). 5 

Therefore, we argue that effective cataloguing of the analysis results and the fact that 6 

the complete workflow is documented (via the BPMN definition, which encapsulates 7 

the relevant metadata and datasets) makes a relevant scenario for demonstrating the 8 

techniques in this paper. Furthermore, the size of GDELT makes query and analysis of 9 

the repository challenging. When dealing with such large datasets, network transfer 10 

needs to be minimised to ensure timely workflow execution. 11 

The GDELT database uses Conflict and Mediation Event Observation 12 

(CAMEO) codes for attributing events. Of particular note is the event code 13 

(EventRootCode) assignment which hierarchically classifies the records into “actions” 14 

relating to the identified political activity of the event and the actors involved e.g. 15 

“Provide Aid” or “Engage in Diplomatic Cooperation”. Mapping of these events using 16 

density methods provides a way to effectively monitor the spatial distribution of very 17 

large datasets and highlight areas for further exploration (Maciejewski et al., 2010). 18 

Density based mapping techniques are also relevant to the analysis of sentiment or tone 19 

of GDELT event data as investigated by Shook et al (2012).  20 

5.2 Processing workflow details 21 

Figure 8 illustrates the BPMN of the GDELT mapping workflow. The workflow 22 

comprises two processes for extracting data and creating the resulting density surface. 23 

For this case study, GDELT event data was ingested into Accumulo via the GeoMesa 24 

framework as a static loading step undertaken prior to the workflow execution. The data 25 



was then exposed as WFS through as GeoServer data store. Limitations in the cluster 1 

hardware available meant the input GDELT data was limited to 100,000 features. In 2 

practical deployment, this ingestion could easily be automated as part of a regular batch 3 

loading or an ongoing streaming job could be implemented. In our implementation test, 4 

we configured the workflow Eclipse editor and engine (jBPM) and metadata catalogue 5 

(GeoNetwork) on the same local machine. For the FMO WPS testing, the profile 6 

wrappers WPS (52North) were also implemented on the local machine. The data and 7 

processing service (GeoServer version 2.8.1 and GeoMesa version 1.2.5) was 8 

configured on a remote cloud service, as part of a single-node Hadoop (version 2.7.1), 9 

Accumulo (version 1.6.5) and Spark (version 1.5.2) cluster.  10 

 11 

 12 

Figure 8. GDELT mapping workflow (BPMN FMO profile) comprising a query WPS 13 

(GSGMQuery) and a heat map WPS (GSHeatmap). 14 

 15 

The first process of the workflow is a query on GeoMesa which extracts the 16 

relevant data according to temporal and event type constraints. Although a similar query 17 

could be achieved through specifying a filter in the WFS request (potentially more 18 

computationally efficiently), this would require customisation of the workflow editor in 19 

order to allow the set the filter parameters in that request.  The GSGMQuery process 20 

requires two parameters: one for the input metadata record; one for an OGC filter that 21 

describes the relevant constraints. For example, once inserted a metadata record may be 22 

referred to by its URL in the catalogue e.g. 23 

http://localhost:8005/geonetwork/srv/eng/xml.metadata.get?id=46092 24 

http://localhost:8005/geonetwork/srv/eng/xml.metadata.get?id=46092


The OGC filter defines the relevant event code and data for the GDELT query, see 1 

Figure 9. This query expression is provided by the workflow author during composition. 2 

Such a query might be taken from a library of pre-set expressions made available to the 3 

workflow author. 4 

 5 

Figure 9. Example OGC filter used as a parameter the for GSGMQuery process to 6 

extracting GDELT events data of type EventRootCode 14 (protest events) on 21st June 7 

2016.  8 

 9 

A sample of the metadata that is created and inserted in the catalogue after the process 10 

is completed is shown in Figure 10. The metadata link is then passed to the next 11 

workflow task which extracts the data from the document for input to the GSHeatmap 12 

density map process. The result of this process in turn inserted in the catalogue.  13 



 1 

Figure 10. Extract of the MD_DigitialTransferOptions metadata after WPS execution 2 

has completed and the metadata has been inserted in the catalogue. 3 

 4 

5.3 Results 5 

Figure 11 and Figure 12 show the results of global mapping workflow. For the map 6 

covering 21st June 2016 we can identify clear hot spots of activity over United States 7 

and South Africa. Interrogation of the data confirms that multiple geocoding of GDELT 8 

records are apparent in the result sets. 9 

The ability to orchestrate big data type analyses is a key advantage in adopting 10 

the use of meta-objects in workflows. The removal of the need for the workflow engine 11 

to understand data types enables passing of URI strings between processes, rather than 12 

the object itself. When data volumes are large, or bandwidth is restricted and processes 13 

and workflow engine are distributed, then this can improve processing times. Table 1 14 

illustrates the processing time for our two proposed approaches against using a 15 

customised BPMN engine for reading and writing geospatial data at the workflow level, 16 

as proposed by Meek et al (2016). As can be seen, the FMO WPS nor BPMN profile 17 

architecture complete in similar processing times. However, using the non-profiled 18 

version of BPMN engine is slower. This is due to the passing of data between the 19 

engine and the WPS for each execution of a workflow task. 20 



 1 

Figure 11. Heat map (kernel density normalised between 0 and 1, 100 pixel radius) of 2 

GDELT protest events for 21st June 2016. 3 

 4 

Figure 12. Heat map (kernel density normalised between 0 and 1, 100 pixel radius) of 5 

GDELT protest events for 28th June 2016. 6 

Scenario date 

# of features 

extracted 

Execution time (seconds) 

BPMN FMO 

profiling 

WPS FMO 

profiling 

BPMN 

(non-profiled) 

21st June 2016 1826 84 93 142 

28th June 2016 1352 77 91 139 



Table 1. Execution times of the BPMN and WPS Full Meta Object profile approaches 1 

and a non-profiled BPMN execution (i.e. WPS invocation using data embedded in the 2 

Execute request as proposed by Meek et al (2016)). 3 

6 Conclusion 4 

Orchestrating geoprocessing using an integrated catalogue service aims at facilitating 5 

the creation, composition, execution and documentation of scientific geoprocessing 6 

workflows. Direct access to metadata of the processes and datasets involved in a 7 

workflow eases the syntactic interoperability and if semantic annotations are included in 8 

that metadata, could improve the semantic interoperability too. This work developed 9 

two novel approaches for coupling a metadata catalogue within a workflow 10 

environment and applied them to an analysis workflow comprised of distributed 11 

services. Open-source software and standardised interfaces were adopted for this 12 

architecture with details of how such approaches can be applied to modern big data 13 

analysis platforms.  14 

Several assumptions were made in our approaches with potential disadvantages 15 

and areas requiring further research. In one approach, the use of wrappers was presented 16 

as a method for avoiding the need to modify existing WPS services. We created these 17 

manually for our WPS examples but in practice the use of a broker would be needed to 18 

automatically generate the necessary wrapper processes (Boldrini, Papeschi, Santoro, & 19 

Nativi, 2015). Furthermore, using the BPMN standard with web service tasks i.e. 20 

WSDL with the Full Meta Object profiling methods requires further investigation as the 21 

BPM software used did not implement this part of the standard (a method of 22 

customisation  provided by the platform was adopted instead). This would be important 23 

for interoperability when sharing of BPMN files between workflow engines. Lastly, the 24 

standardised cataloguing of the complete workflow definition itself was not addressed 25 

in this work and would be a valuable area of future work.  26 



The use of a standardised workflow representation together with the potential to 1 

integrate processing (both to re-use existing algorithms and exploit new techniques such 2 

as big data analysis) is significant, and likely to be of increasing importance as greater 3 

numbers of stakeholders in geoprocessing tasks are required to provide input to and 4 

share scientific models.  5 
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