
This is a repository copy of The Superstatistical Nature and Interoccurrence Time of 
Atmospheric Mercury Concentration Fluctuations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/131332/

Version: Published Version

Article:

Carbone, Francesco, Bruno, A. G., Naccarato, A. et al. (13 more authors) (2018) The 
Superstatistical Nature and Interoccurrence Time of Atmospheric Mercury Concentration 
Fluctuations. Journal of Geophysical Research: Biogeosciences. pp. 764-774. ISSN 2169-
8961 

https://doi.org/10.1002/2017JD027384

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Journal of Geophysical Research: Atmospheres

The Superstatistical Nature and Interoccurrence

Time of Atmospheric Mercury

Concentration Fluctuations

F. Carbone1 , A. G. Bruno1,2, A. Naccarato1 , F. De Simone1 , C. N. Gencarelli1 ,

F. Sprovieri1 , I. M. Hedgecock1 , M. S. Landis3 , H. Skov4 , K. A. Pfaffhuber5 , K. A. Read6,

L. Martin7 , H. Angot8,9, A. Dommergue8 , O. Magand8, and N. Pirrone10

1CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, Rende, Italy, 2Dipartimento

di Fisica, Università della Calabria, Rende, Italy, 3U. S. Environmental Protection Agency, Office of Research and

Development, Research Triangle Park, Durham, NC, USA, 4Department of Environmental Science, Aarhus University,

Roskilde, Denmark, 5Norwegian Institute for Air Research (NILU), Kjeller, Norway, 6NCAS, National Centre for Atmospheric

Sciences, University of York, York, UK, 7Cape Point GAW Station, Climate and Environment Research and Monitoring,

South African Weather Service, Stellenbosch, South Africa, 8University Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France,
9Now at Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA,
10CNR-Institute of Atmospheric Pollution Research, Area della Ricerca di Roma 1, Monterotondo, Italy

Abstract The probability density function (PDF) of the time intervals between subsequent extreme

events in atmospheric Hg0 concentration data series from different latitudes has been investigated. The Hg0

dynamic possesses a long-term memory autocorrelation function. Above a fixed threshold Q in the data,

the PDFs of the interoccurrence time of the Hg0 data are well described by a Tsallis q-exponential function.

This PDF behavior has been explained in the framework of superstatistics, where the competition between

multiple mesoscopic processes affects the macroscopic dynamics. An extensive parameter 𝜇, encompassing

all possible fluctuations related to mesoscopic phenomena, has been identified. It follows a 𝜒2 distribution,

indicative of the superstatistical nature of the overall process. Shuffling the data series destroys the

long-term memory, the distributions become independent of Q, and the PDFs collapse on to the same

exponential distribution. The possible central role of atmospheric turbulence on extreme events in the

Hg0 data is highlighted.

1. Introduction

A number of studies using different methodologies have shown that long-termmemory in atmospheric pol-

lutant concentrations exists (Chelani, 2016; Lovejoy & Schertzer, 2013; Tuck, 2010), that is, up to a limit the

concentrations maintain a certain correlation over time. Usually a long-term memory process is defined by

a strong coupling between measured values at different time lags, 𝓁, and the system’s dynamics are char-

acterized by the presence of complex mesoscopic spatiotemporal patterns. These patterns are associated

with the generation of high-amplitude fluctuations over a broad range of spatial and temporal scales giving

rise to scale-free relationships for statistical quantities (Frisch, 1995; McComb, 1990; Monin & Yaglom, 2007).

These mesoscopic processes occur within macroscopic phenomena, and their behavior evolves into a power

law decay of the autocorrelation function. Conversely, in a short-term memory process the autocorrelation

function decreases exponentially or to zero after a certain time, 𝓁. The dynamics of pollutant concentration

variations depend on numerous processes, (for a review see Chelani, 2016); however, due to their complexity

it is not possible to precisely describe their behavior and properties over space and time. One of the prin-

cipal characteristics of complex dynamical systems is the intermittency (Briggs & Beck, 2007; Carbone &

Sorriso-Valvo, 2014; Carbone, Gencarelli, et al., 2016; Manshour et al., 2016; Warhaft, 2000). Intermittency rep-

resents the strongly correlatedfluctuations that lead todeviations fromanormal probability distribution func-

tion (PDF). In the atmospheric boundary layer, intermittency is an important part of a continuous spectrum of

atmospheric motions (Katul et al., 2006; Vindel & Yagüe, 2011; Wyngaard, 1992). Within large-scale temporal

variations of atmospheric motion, fluctuations in pollutant species concentrations result from interactions of

a large ensemble of mesoscopic phenomena, occurring contemporaneously in the atmosphere: turbulence

(Wyngaard, 1992), variation in anthropogenic and natural emission sources (Carbone, Landis, et al., 2016;
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Pirrone et al., 2010), variation in deposition velocity, loss through chemical reactions that is in turn deter-

mined by fluctuating reactant/oxidant concentrations, and other extreme events. In the specific case of Hg0

these extreme events would include phenomena such as convective storms, forest fires, and atmospheric

Hg0 depletion events (De Simone et al., 2017; Dvonch et al., 2005; Holmes et al., 2016; Lindberg et al., 2002;

Schroeder et al., 1998). Understanding the dynamics of these emergent extreme events, meteorological,

chemical, and anthropological, represents the key to understanding complex dynamical systems.

Due to their complexity, the analysis of these systems has focused on the understanding of where certain

features are exhibited by a large class of phenomena, regardless of the details of their structure (Manshour

et al., 2016). Beck and Cohen (2003) have shown that complex nonequilibrium systems, which possess a spa-

tiotemporally fluctuating intensive quantity, can oftenbe effectively describedby a superposition of statistics,

so-called “superstatistics.” The core idea is to characterize the system under consideration as a superposition

of several statistics, which act on different time scales (Beck et al., 2005; Beck, 2010). Importantly for this

study, it has been shown that a suitable intensive parameter 𝜇 of the complex system, (e.g., a local variance

parameter extracted from an experimental data set) exists, which generates a Tsallis q-distribution if 𝜇 is a

𝜒2-distributed random variable (Abe & Okamoto, 2001; Briggs & Beck, 2007; Manshour et al., 2016; Tsallis,

1988; Tsallis et al., 1998). Therefore, an understanding of sudden (intermittent) atmospheric events could pro-

vide useful information about climatological phenomena, teleconnections, and atmospheric transport pro-

cesses (Bunde et al., 2005). Although the atmosphere is a relatively minor reservoir of Hg0 compared to other

environmental compartments, it is an important pathway by which Hg0 is distributed globally over relatively

short timescales, once thought to be roughly a year, but more recently closer to 6 months (Horowitz et al.,

2017; Schroeder & Munthe, 1998). Efforts to measure Hg concentrations in monitoring networks worldwide

and interpret these data with models have increased recently, seeking to elucidate the way Hg cycles in

the environment (Pirrone et al., 2010). A number of important issues remain unexplained due to the com-

plex interactions of Hg species, with and within, a multiphase atmospheric matrix that is in a constant state

of flux. The focus here is on the long-term memory of atmospheric Hg0 concentrations observed at dif-

ferent latitudes and their sudden or extreme (intermittent) events through analysis of the interoccurrence

times (IOTs) of Hg0 concentration fluctuations. The superstatistical nature of these extreme events has been

investigated and demonstrated.

1.1. Hg0 Measurements Methods

The atmospheric Hg0 data used in this analysis were all obtained using automated Tekran (Toronto, Canada)

Model 2537A cold vapor atomic fluorescence spectrometer instruments. Tekran equipment provides a detec-

tion limit below 0.1 ng/m3 and a linear response over the range 1–200 ng/m3 within 2%. The instruments are

calibrated periodically using the internal permeation source in accordance with the Global Mercury Obser-

vation System (GMOS) standard operating procedure (every 72 h with a permeation time of 120 s). Details

of the instrument operating parameters can be found in Carbone, Landis, et al. (2016), Landis et al. (2002),

Sprovieri et al. (2016), and Steffen et al. (2015). An exhaustive description ofmost of the sampling sites includ-

ing their location, altitude, and climatology, as well as the Hg0 data quality assurance/quality control (QA/QC)

protocols, for data quality assessment, can be found in Sprovieri et al. (2016). The original data set had a

temporal resolution ofΔt = 300 s; however, some data were excluded by the QA/QC procedure employed in

order to ensure data quality. There, the temporal resolution was reduced toΔt = 3, 600 s; this allowed a good

compromise between the sample length and data set sampling at different thresholds, Q.

2. Superstatistics and Interoccurrence Times

Superstatistics seeks to represent a complex nonequilibrium system as a superposition of two (or several)

statistics, described by an intensive parameter 𝜇 that fluctuates on a relatively large spatiotemporal scale

(Beck & Cohen, 2003; Briggs & Beck, 2007). Thus, 𝜇 might itself be a stochastic variable that incorporates all

thepossible fluctuations (a local emergentdynamicor competition in themesoscopic subparts of the system),

which produces a sudden variation in the collective dynamic (Beck, 2010). If 𝜇 is distributed according to a

probability density f (𝜇), then the long-term associated marginal probability of the physical process P(𝜏)

(𝜏 being the time lag between two subsequent events) may then defined as a mixture of exponential

distributions within which 𝜇 fluctuates (Beck, 2010; Manshour et al., 2016; Tsallis & Souza, 2003):

P(𝜏) = ∫
∞

0

𝜇f (𝜇)e−𝜇𝜏d𝜇 (1)
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As defined by Beck and Cohen (2003), f (𝜇) cannot be a generic function but must be a normalized proba-

bility density, a physically relevant density from statistics (for instance, Gaussian, uniform, chi-squared, log

normal but potentially others also), andmust be normalizable (the integral ∫ ∞

0
P(𝜏)d𝜏 must exist). The super-

statistical parameter 𝜇 does not necessarily have to be a variable such as inverse temperature, but it could

be an effective parameter in a stochastic differential equation, a volatility measure in finance or simply a local

variance parameter extracted from an experimental time series, as in the case described here (Beck, 2010).

In this last case, 𝜇 can be extracted from an experimental data series by partitioning the original data set in

M nonoverlapping windows of fixed size and taking the inverse variance of the data contained within each

window (Kosun & Ozdemir, 2016; Rabassa & Beck, 2015).

When aprocess is randomor uncorrelated, the PDF collapses on to an exponential distribution, and in general,

the zeroth-order theoreticalmodel for thedistribution P(𝜏) canbewritten as P(𝜏)=𝜇e−𝜇𝜏 (Briggs&Beck, 2007;

Manshour et al., 2016; van Kampen, 1981). In that case, equation (1) reduces to the exponential model if there

are no fluctuations of the intensive parameter 𝜇, and the distribution f (𝜇) is a delta function. Any deviation of

f (𝜇) from a delta function yields a nonexponential P(𝜏).

If f (𝜇) follows a 𝜒2 distribution (equation (2))

f (𝜇) ∼ 𝜇k∕2−1exp

[
−

k𝜇

2𝜇0

]
, (2)

with k degrees of freedom (𝜇0 is a constant), the corresponding superstatistics, obtained by integrating over

all 𝜇, is described by a q statistic (Abe & Okamoto, 2001; Tsallis, 1988; Tsallis et al., 1998).

Hence, the behavior of the PDF is described by a Tsallis q-exponential function (equation (3)) and possesses

asymptotic power laws (Briggs & Beck, 2007; Manshour et al., 2016):

P(𝜏) =
𝛼

[1 + 𝛽(q − 1)𝜏]1∕(q−1)
, (3)

where 𝛼 is a normalization factor (Beck, 2010; Wilk & Włodarczyk, 2000), q is a measure of the deviation from

an exponential distribution, and q> 1 indicates a long-tailed distribution. A number of authors have shown

that the limit of validity for the parameter q lies in the range 1≤q≤2. The upper limit arises from the normal-

ization condition of P(𝜏) to the unit area and the requirement that the normalization constant, 𝛼, is positive

(Briggs & Beck, 2007; Douglas et al., 2006; Tsallis, 1988; Wilk & Włodarczyk, 2000). The behavior of the q expo-

nential is principally related to a long-term memory process and also to the presence of strong ramp-cliff or

extreme events in the data. The atmosphere is a complex system, described by a large number of variables,

which are nonlinearly coupled by competing physical and chemical processes. The competition among pro-

cesses becomes evident once the observations of a single variable are dominated by sudden and intermittent

fluctuations. Variables can be either active or passive, transported by the atmospheric flow, or feeding back

(and thus modifying) the flow itself (Celani et al., 2004; Mazzitelli & Lanotte, 2012).

This study focuses on fluctuations in Hg0 concentration, which is hypothesized to be governed by a com-

bination of large-scale atmospheric flow and mesoscopic (small-scale) processes. The aim is to investigate

whether the statistics of the Hg0 data series can provide insights into the similarities or differences between

the measurement sites. Such an investigation requires that the data set is suitable for the proposed analysis.

Rabassa and Beck (2015) lay out a series of criteria that may be used in this context. These criteria concern

the skewness and kurtosis of the data set, the existence of an appropriate time scale separation, and the rea-

sonableness of a local Gaussian approximation. Applying the strategy proposed in Van der Straeten and Beck

(2009), the short time scale tS has been found to be between ts∈[6 ÷ 11] h, while the long time scale found is

tL > 50h. The ratio of tS∕tL≈0.2 is comparablewith the case presented in Rabassa and Beck (2015). As a further

check on the assumption that during long-range transport, Hg0 concentration may be considered a real pas-

sive scalar quantity, and the Hurst exponent can be evaluated. This can then be compared to the value of

H= 5∕9 predicted by generalized scale invariance, see Tuck (2010). The average Hurst exponent extracted

from the data series used here is in good agreement with the value H= 5∕9 (Istas & Lang, 1997; Tuck, 2010):

Troll (TRL 72∘S, 2∘E) H= 0.58 ± 0.02, Mauna Loa, Hawaii (MLO 19∘N, 155∘W) H= 0.49±0.10, and Ny Alesund

(NYA 78∘N, 11∘E) H=0.53 ± 0.01.

Three sample Hg0 concentration data sets are shown in Figure 1, for Villum Research Station at Station Nord,

Greenland (81∘N, 17∘W), Mauna Loa, Hawaii, and Troll, Antarctica.
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Figure 1. Hg0 data measured at three different sites: (left) Villum Research Station at Station Nord (VRS 81∘N, 17∘W), (middle) Mauna Loa Observatory (MLO 19∘N,

155∘W), and (right) Troll (TRL 72∘S, 2∘E).

The intermittent nature of the Hg0 data is characterized by alternating periods of strong fluctuations and

smoother periods characterized by smaller fluctuations. This behavior is determined by a large ensemble of

mesoscopic phenomena occurring in the atmosphere. Despite this intermittent dynamic, the phenomenon

preserves its non-Markovian nature, since a power law decay in the autocorrelation function is observed

(Figure 2) (Alder &Wainwright, 1970; Bunde et al., 2005; Chelani, 2016; Schertzer & Lovejoy, 1985, 1987). If x(t)

represents the instantaneous concentration of Hg0 at time t, the associated autocorrelation function may be

written as

C(𝓁) =
1

𝜎2
x
(T − 𝓁)

T−𝓁∑

t=1

(x(t) − ⟨x⟩)(x(t + 𝓁) − ⟨x⟩) ∼ 𝓁
−𝛾 , (4)

where 𝓁 represents the time lag, and 𝜎x is the standard deviation of x(t). Due to the passive scalar nature of

Hg0, the standard deviation of the concentration is related to atmospheric eddy diffusivity and represents a

measure of the characteristic width of the plume (Hayley et al., 2002).

All the stations in a given hemisphere present the same scaling, and those close to the equator (tropics)

present a scaling faster than those at higher latitudes, 𝛾E ≈0.4, 𝛾N ≈0.3, and 𝛾S≈0.1, respectively, for tropics,

Northern Hemisphere, and Southern Hemisphere. It appears that C(𝓁)within either of the three zones is inde-

pendent of latitude. A slight difference occurs in the tropical stations, the Cape Verde Observatory (CVO) and

Figure 2. Power law decay of Hg0 data with slopes 𝛾N=0.3, 𝛾E=0.4,

and 𝛾S = 0.1, respectively for the Northern Hemisphere, tropics, and

Southern Hemisphere. The curves have been vertically shifted for clarity.

MLO, at small scale (small𝓁). At larger scales (longer𝓁) the scaling is in perfect

agreement for both stations 𝛾E ≈ 0.4. The curves C(𝓁) in Figure 2 have been

vertically shifted for clarity.

The presence of long-range correlations suggest that there might be some

other fundamental process (or processes) embedded in the temporal evolu-

tion of the Hg0 data series, as seen with other pollutants (Chelani, 2016).

The greater the irregularity of themesoscale processes occurring in the atmo-

sphere the faster the system “loses its memory.” In this case these processes

would include sources, sinks such as dry deposition or wet scavenging, and

chemical transformations. One possible hypothesis to explain the differences

in the slopes in the three latitude zones may be the different characteristics

of Hg0 emissions in each. Hg0 emission in the tropics includes biomass burn-

ing that is irregular, another factor may be the different characteristics of Hg0

emissions in each. Hg0 emission in the tropics includes biomass burning that

is irregular, another factor may be that meteorological phenomena also tend

to be of shorter duration (De Simone et al., 2015). The Northern Hemisphere

is the home to most of the world’s anthropogenic emission sources and also

has biomass burning events. The Southern Hemisphere in comparison has

less variable and lower Hg0 emissions, and synoptic rather than local weather

conditions often dominate in large regions.
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Figure 3. Sample illustration of IOT, 𝜏i , obtained from a synthetic data set. Horizontal dashed lines represent the

selected threshold Q in the data. By increasing Q, two sets of IOT 𝜏1,2 can be identified in the data, characterized by

an increasing average ⟨𝜏i⟩ and standard deviation 𝜎𝜏 , respectively.

An optimal method used to obtain information concerning extreme events in physical or chemical processes

is IOT, 𝜏 , series analysis. IOTs are a measure of the time between the occurrence of two or more subsequent

events in the data that exceed a fixed, threshold Qi (Figure 3). The events exceeding Q are defined as rare or

more usually extreme. If a long-range correlation exists in the data, then the IOTs, 𝜏i , are also long-range corre-

lated (Bogachev & Bunde, 2008; Bogachev et al., 2007; Eichner et al., 2007; Ferri et al., 2010, 2012; Santhanam

& Kantz, 2005).

Before performing the IOT analysis, the standard normalization procedure, (subtracting themean value of the

data and dividing by the standard deviation) was applied to the Hg0 data. Following this strategy, performing

the analysis at a generic thresholdQ implies performing the analysis at a fixed standard deviation value of the

data. This procedure is required in order to facilitate the comparison of concentration data measured at dif-

ferent latitudes. For every Q, an average ⟨𝜏⟩ and standard deviation 𝜎𝜏 are defined, and by increasing Q, ⟨𝜏⟩
and 𝜎𝜏 become larger. The higher the Q, the rarer or more extreme are the events. Also, there is a one-to-one

correspondence between Q and the ⟨𝜏⟩, 𝜎𝜏 values (Figure 4, middle and right columns) (Chelani, 2016).

The differences between the three normalized data sets are shown in Figure 4, second row. At MLO the

Figure 4. (first row) Dependence on the threshold Q of the parameters Ntot
Q

, 𝜎𝜏 , and the average ⟨𝜏⟩ of the IOT, measured at three very different latitudes:

Mauna Loa (MLO 19∘N, 155∘W), Troll (TRL, 72∘S, 2∘E), and Ny Alesund (NYA 78∘N, 11∘E). (second row) Comparison of the three normalized data set.
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dynamic is characterized by a large number of spikes where Q> 0, which can be related to volcanic (Landis

et al., 2013), oceanic (Carbone, Landis, et al., 2016), Hg0 emissions or to long-range atmospheric transport

phenomena. TRL and NYA data show a very different dynamic, characterized by strong fluctuations at both

positive and negative Q. The negative fluctuation is related to Hg depletion events (Steffen et al., 2008).

However, in the rangeQ ∈ [0÷1.5] the data set fromeach site demonstrates the samebehavior, characterized

by awide distribution of IOTwith the same ⟨𝜏⟩ and 𝜎𝜏 (Figure 4, first row). The strong departure of the value of
𝜎𝜏 and ⟨𝜏⟩ for the NYA data set is related to the lower number of positive (Q> 0) fluctuations (Figure 4, bottom

right). In this case, by increasing the threshold Q>1 (dotted line in Figure 4, second row) the IOT duration

becomes longer, but at the same time the number of IOT Ntot
Q

decreases due to the distance between two

subsequent peaks, resulting in a rapid increase in 𝜎𝜏 .

Investigating a real passive scalar such as Hg0 is also interesting from a fundamental point of view, because

its dynamics are mainly, if not completely, related to turbulent eddies in the atmosphere.

3. Discussion

ThePDFsof the IOT,P(𝜏), from thenormalizedHg0 datawere evaluatedbyusinganumberof bins,Nbins (Nbins∈

[10 ÷ 15]), depending on the specific data set; this choice being principally due to the temporal resolution

of the data (Δt = 3, 600 s). For every threshold Q, the range of the PDF bins was set between the minimum

and maximum values of 𝜏 in logarithmically spaced bins of length Abins. However, as it is the PDFs that are

calculated, the number of bins and their width are irrelevant to the analysis. The histogram of the IOT, NQ(𝜏),

has been used to calculate the PDF P(𝜏)=NQ(𝜏)∕(AbinsN
tot
Q
), where c is the total number of observations (IOT)

at a fixed threshold Q (Figure 4, top left). Figure 4 shows the standard deviation 𝜎𝜏 and the average ⟨𝜏⟩ of the
IOT for three very different latitudes. All the experimental data sets demonstrate universal scaling for these

two quantities over the range Q ∈ [0 ÷ 1.5]. For this reason all the following analyses were performed using

this range of Q.

The sampling uncertainty on each bin of P(𝜏) is calculated from the statistical (Poisson) error on the histogram

Err[N(x)]=
√
N(x), which, following the error on the probability density, becomes Err[P(𝜏)]=

√
P(𝜏)∕(AbinsN

tot
Q
).

Outside a given range, roughly Q≥2.5 ÷ 3 (related to the size of the Hg0 data set), the statistics are too poor

to permit accurate analysis, since the relative statistical error becomes too large.

Due to the strong fluctuations a threshold Q> 0.5 (site dependent) is sufficient to observe an interesting

dynamic. At this value a large number of IOTs can be identified, characterized by 𝜎𝜏 = 15 ± 1 days (Figure 6).

Figure 6 shows the PDFs, for three different sites, of the Hg0 IOT extremes (log-log plot). The plots have

been shifted vertically for clarity. It is worth noting that for each Q, the values of 𝜏 can be drastically differ-

ent. Rather than P(𝜏), in order to compare the different distributions of the IOT, the PDF of the normalized

IOT P(𝜏∕𝜎𝜏 ) was evaluated. This procedure ensures that for every Q the values of 𝜏∕𝜎𝜏 always lie in the

same interval. To check the universality of the q exponential, the analysis has been performed at different

values of Q for each normalized data set. Figure 5 shows the PDF P(𝜏∕𝜎𝜏 ) (symbols), obtained for differ-

ent sites at various thresholds Q. The same figure also shows the relative q exponential fit obtained from

equation (3). The fitting procedurewas performedbyminimizing the𝜒2 statistic by varying themodel param-

eters (equation (3)): q within the closed interval q∈ [1 ÷ 2], while the other parameters in the open interval

𝛼, 𝛽 ∈ (0 ÷ ∞). As stated in section 1.1, uncertainties should be minimized to obtain an accurate estimate of

P(𝜏). A large number of gaps in the data set could potentially mask the real distribution. Long gaps give raise

to a fat-tailed PDF, because the length of a certain number of IOTs can be overestimated, and the exponent

q in equation 3 can exceed the theoretical value q>2. In case of multiple short gaps, especially for Q ≈ 0,

the exponent q tends to unity. In this case the theoretical distribution, equation (3), is characterized by a fast

decay, and the fitting procedure is unable to fully capture the tail of the PDF.

The value of 𝜏 ranges from 1.21×104 s to 2.42×107 s (approximately 3 h to 9months, the latter being roughly

compatible with the average residence time of Hg0 in the atmosphere), which in terms of 𝜏∕𝜎𝜏 is translated

into an interval 𝜏∕𝜎𝜏∈ [10−2 ÷ 101]. The values of 𝜎𝜏 , used for the normalization, are shown in Figure 6. The

behavior of the PDFs illustrates the good agreement between the q exponential (equation (3)) and the data

over the whole range of normalized IOTs 𝜏∕𝜎𝜏 ∈ [10−2 ÷ 101] (Figure 5). The value of q exponential reported

in Figure 5 represent the average obtained over the different thresholds Q reported in the figure.
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Figure 5. Log-log plot of PDF P(𝜏∕𝜎𝜏 ) for the normalized IOT extracted from Hg0 data recorded at different latitudes and different threshold Q. Dashed line is the

averaged q exponential fit (equation (3)).

Figure 6. Log-log plot of PDFs P(𝜏∕𝜎𝜏 ) for the normalized IOT obtained

at three different sites and at three different thresholds Q: VRS 81∘N,

17∘W), CVO, and TRL 72∘S, 2∘E). The plots have been arbitrarily shifted

vertically for clarity. For VRS, Q=0.6, 1.3, 1.5; CVO, Q=0.7, 0.9, 1; and TRL,

Q=0.9, 1.1, 1.3. For these thresholds all the data possess the same 𝜎𝜏 .

Dashed lines are the q exponential fit (equation (3)).

From Figure 5 it is evident that the normalization process is robust since

no difference can be observed in the distribution P(𝜏∕𝜎𝜏 ) when varying the

threshold Q.

In Figure 6 the PDFs P(𝜏∕𝜎𝜏 ) have been grouped according to the value of 𝜎𝜏 :

𝜎𝜏 = 15±1, 𝜎𝜏 = 20±1, and 𝜎𝜏 = 26 ± 3 days, respectively. In this way it may

easily be observed that for three very different latitudes: VRS (Arctic), CVO

(Tropics), and TRL (Antarctica) all the PDFs converges on the same universal

q-exponential distribution3. The curveshavebeenvertically shifted for clarity.

The normalization factor 𝛼 (equation (3)) reflects the value 𝛼th = 𝛽(2 − q) as

found inManshour et al. (2016): for MLO atQ=1 the values obtained from the

q–exponential fit for𝛼=18.7±1,q=1.55±0.1, and 𝛽=40±3, using the relation

above, give 𝛼th = 18 ± 3. The same result is obtained for the other stations:

VRS Q = 1.2, 𝛼 = 47±1, q = 1.53±0.07, 𝛽 = 81±6, and 𝛼th = 38.1±6.1; CVO

Q=1.2, 𝛼=17±2, q=1.54±0.12, 𝛽=37± 7, and 𝛼th=17.02± 7. Similar agree-

ment was found for all the other stations. These results assure the goodness

of the q statistics in describing extreme events in the Hg0 time series at dif-

ferent latitudes. The PDFs clearly display the same behavior and could be

represented by the universal law, equation (3), with the same q parameter.

The values of q obtained over all latitudes lie in the range q∈ [1.3 ÷ 1.7] and

are distributed around an average value ⟨q⟩≈1.59±0.05 (Figure 7). This result

makes evident the universality of the mechanism that lies behind the IOTs

within the Hg0 concentration time series. The results shown in Figure 2, on

the other hand, demonstrate the variation with latitude of the local, that

is mesoscale, phenomena. Figure 7 shows that the formation of IOTs is a
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Figure 7. Average ⟨q⟩ ent Q thresholds. All values are distributed

around the dashed line ⟨q⟩=1.59 ± 0.05. Dash-dotted lines represent

the standard deviation of the experimental q values. Hg0 data from

the following sites were included: TRL 72∘S, 2∘E), Dumont d’Urville

(DDU 66∘S, 140∘E), Cape Point (CPT) 34∘S, 18∘E), CVO 16∘N, 24∘W),

Mace Head (MH 53∘N, 9∘W), Waldhorf (WAL 52∘N, 10∘E), Ny Alesund

(NYA 78∘N, 11∘E), Andoya (ADY 69∘N, 16∘E), VRS (81∘N, 17∘W), and

Alert (ALT 82∘N, 62∘W).

large-scale characteristic of the time series, and that it is universal and inde-

pendent of latitude.

This q value is significant since a similar value has been reported in a dif-

ferent context, namely velocity fluctuations in fully developed turbulence

experiments (Manshour et al., 2016), where q ≈ 1.6 was obtained from the

IOT statistics. In light of this, it becomes clear that atmospheric turbulence,

although it is never fully developed in the atmosphere, potentially plays a

central role in the Hg0 IOT dynamic.

For comparison Figure 8 shows the PDFs of the normalized IOT 𝜏W , obtained

from 1 min (top row) and 1 h (bottom row), wind velocity data recorded at

Mauna Loa Observatory. The analysis was performed on two different data

sets sampled during the years 2015 and 2016, while a third data set covers the

period 2012–2016. In these cases the q values obtained are in perfect agree-

ment with the results from laboratory experiments (Manshour et al., 2016),

demonstrating the universality of the phenomenon. The q values found were

q=1.58, 1.59 and 1.61 for the 2015, 2016, and 2012–2016 1min data sets, and

q=1.6, 1.55 and 1.6 for the 1 h data sets. It should be pointed out that the full

data series were used and not selected to use only daytime or nighttime data

even though the wind regimes change significantly between day and night

on MLO, see Ryan (1997) and Sharma and Barnes (2016).

In light of this result, it becomes evident that the variation from q≈1.6 could

be related to other factors that influence the dynamics. For example, at MLO

⟨q⟩=1.67, however, volcanic emissions near MLO are known to emit Hg0 and may act as a local perturbation

to the large-scale dynamics. Continuous perturbations of this nature could shift the exponent q away from

the dominant dynamic, where the exponent should be q≈1.6.

Figure 8. (top row) A log-log plot of PDFs P(𝜏W∕𝜎W
𝜏
) for the normalized IOT evaluated from 1 min wind speed data at MLO, for three different data sets.

(bottom row) Log-log plot of PDFs relative to the 1 h wind speed data, the same data sets has been used. Dashed line is q-exponential fit 3.
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Figure 9. Log linear plot of PDFs P(𝜏∕𝜎𝜏 ), for four stations, after the

random permutation of the original data. The PDFs are independent of

the threshold Q and collapse on the same exponential distribution,

exposing their uncorrelated nature. Numbers next to the station label in

legend represent the Q value. The stations reported in the plot are Mace

Head (MH 53∘N, 9∘W), MLO, Cape Point (CPT 34∘S, 18∘E), TRL, and VRS.

All the other stations show the same behavior but have not been

included for figure clarity.

In the case of a nonexponentially decaying PDF, the shape indicates the

presence of correlated structures in the process (long-term memory in the

phenomenon) (Bogachev&Bunde, 2008; Bogachev et al., 2007; Chelani, 2016;

Eichner et al., 2007; Ferri et al., 2010, 2012). To check the dependence of the

correlated structure in the data set, the Hg0 data were randomly rearranged

over a large number of trials, keeping the random seed fixed. Figure 9 shows

the PDF of the shuffled data set in a log linear plot. The random permutation

destroys the correlation in the data, and moreover, the distribution becomes

independent of the threshold Q and collapses onto the same exponential

shape: P(𝜏)=𝜎−1
𝜏

exp−𝜏∕𝜎𝜏 .

In this framework a single measurement can be related to a local emergent

dynamic in the system or can encompass all the possible mechanisms capa-

ble of producing a sudden variation in the collective dynamic of the system.

Recalling equation (1), 𝜇=𝜎−1
𝜏

is the parameter that incorporates all the pos-

sible fluctuations due to competing processes in themesoscopic dynamics of

the system. Since most IOTs are very sharp for large values of 𝜇(𝜎𝜏 ), whereas

small values of𝜇 correspond to the frequent occurrence of long IOTs, the exis-

tence of correlations in the dynamics makes 𝜇 a fluctuating random variable

with a probability density f (𝜇) (Briggs & Beck, 2007; Manshour et al., 2016).

To evaluate the distribution f (𝜇), the IOTs obtained from each data set were

collected in a large number of windowsW𝜇 wider than 48 h and 𝜇=𝜎−1
𝜏

was

measured in each window (Rabassa & Beck, 2015; Van der Straeten & Beck,

2009). Their distributionwas evaluated for both the original and shuffled data

sets. Figure 10 (left and middle) shows the distribution of f (𝜇) obtained for

different W𝜇 and different Q. The thresholds Q have been selected in order

to compare different sites possessing the same value of 𝜎𝜏 . The good agree-

mentwith the theoretical𝜒2 distribution is clearly observable. The number of

degrees of freedom k can be related to the exponent q of equation (3) with the relation qth=1 + 2∕(k + 2)

(Beck, 2010; Briggs&Beck, 2007; Kosun&Ozdemir, 2016). ForMLOatQ=1,q=1.67±0.10, and k=2.797±0.40,

using the relation, qth=1.4±0.4was obtained that, within the error bars, is in good agreementwith the exper-

imental estimation (for CVO Q= 1, q= 1.690±0.07 and k = 2.7±0.5 giving qth = 1.42±0.50; for VRS Q= 1.5,

q=1.582±0.1, k=2.823±0.5, and qth=1.41±0.5was obtained; and forMHQ=1.5, q=1.61±0.2, k=2.88±0.2,

and qth=1.41±0.2).

Figure 10 (right) shows the distribution f (𝜇) for the shuffled data set. In this case the distribution collapses

onto the same narrow distribution, completely differently from the other cases, and independent of the

Figure 10. (left) The probability density f (𝜇) for the normalized IOT sequences obtained for different window sizes W𝜇 at a fixed threshold Q, dashed line 𝜒2

distribution with k≈3∘ of freedom. (middle) Distribution f (𝜇) for different sites and different thresholds Q obtained for a window length, W𝜇=12 days.

The dashed line represents a theoretical 𝜒2 distribution with k=3∘ of freedom. (right) The probability density f (𝜇) for shuffled data for different sites and

different thresholds Q.
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threshold Q. This profile is in good agreement with the theoretical assumption of a delta function; however,

the low data sampling rate and gaps in the data set can affect this shape and introduce a small broadening of

the peak.

4. Conclusions

Through an extensive analysis of Hg0 concentration data, measured at different latitudes and in different

climatological regions, the universal behavior of the IOT extremes has been identified. The Hg0 dynamic is

characterized by a long-term memory (power law) autocorrelation function, and above a fixed threshold Q

the PDFs of the IOT are described by the Tsallis q-exponential function. The PDF behavior can be explained

in terms of the superstatistical nature of the IOTs, where the competition between multiple mesoscopic pro-

cesses affects the macroscopic dynamics. Additionally, it seems possible that atmospheric turbulence plays a

central role in the dynamics of extreme Hg0 concentration events, since the average ⟨q⟩=1.59 is comparable

with the value obtained in fully developed turbulence experiments. The small differences seen in the q values

obtained from the q-exponential functionmay be attributable to differences in the evolution of the Hg0 con-

centration at each site, which would depend on the specific mesoscopic processes that occur locally and

their interactions. All processes occurring in atmosphere (e.g., emission, scavenging, chemical reactions, etc.)

act as aperturbationon themacroscopicdynamics of thepredominantphenomenon, in this case, atmospheric

transport. The extensive parameter 𝜇 encompassing all the possible fluctuations related to the mesoscopic

phenomena followsa𝜒2 distribution,which is effectively a “fingerprint,” identifying the superstatistical nature

of the overall process. By destroying the long-termmemory in the data (by shuffling), the PDFs become inde-

pendent from the threshold Q and the distributions all collapse on to an exponential distribution P(𝜏∕𝜎Q) =

𝜎−1 exp[−𝜏∕𝜎−1] exposing the uncorrelated nature of the shuffled data. However, it is worthmentioning that

the q values may change slightly depending on the data resolution.
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