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SUMMARY

Widespread remodeling of the transcriptome is a
signature of cancer; however, little is known about
the post-transcriptional regulatory factors, including
RNA-binding proteins (RBPs) that regulate mRNA
stability, and the extent to which RBPs contribute
to cancer-associated pathways. Here, by modeling
the global change in gene expression based on the
effect of sequence-specific RBPs on mRNA stability,
we show that RBP-mediated stability programs are
recurrently deregulated in cancerous tissues. Partic-
ularly, we uncovered several RBPs that contribute to
the abnormal transcriptome of renal cell carcinoma
(RCC), including PCBP2, ESRP2, andMBNL2.Modu-
lation of these proteins in cancer cell lines alters the
expression of pathways that are central to the dis-
ease and highlights RBPs as driving master regula-
tors of RCC transcriptome. This study presents a
framework for the screening of RBP activities based
on computational modeling of mRNA stability pro-
grams in cancer and highlights the role of post-tran-
scriptional gene dysregulation in RCC.

INTRODUCTION

Cancer is a complex disorder, with a large array ofmolecular fac-

tors involved. Global deregulation of genes is a hallmark of can-
C
This is an open access article und
cer cells, and a large number of the diagnostic, prognostic, and

therapeutic approaches target ‘‘master regulators’’ of gene

expression or their downstream effectors (Goolam et al., 2016;

Kim and Roberts, 2016; Perera et al., 2015). Nevertheless, unlike

extensive studies on diverse molecular factors involved in tran-

scriptional gene regulation, such as aberrations involving tran-

scription factors (TFs) or epigenetic patterns, our knowledge of

the mechanisms underlying post-transcriptional gene deregula-

tion in cancer is scarce. RNA-binding proteins (RBPs), as key

factors that modulate the stability and splicing of thousands of

mRNAs (Gerstberger et al., 2014), play central roles in post-tran-

scriptional gene regulation. Previous studies have linked a few

RBPs with transcriptome remodeling and disease progression

in cancer. For example, TARBP2 (Goodarzi et al., 2014) and

NELFE (Dang et al., 2017) have recently been identified as onco-

genic RBPs whose abnormal activation results in the progres-

sion of breast and hepatocellular carcinomas, respectively, by

dysregulating the stability of their target mRNA. Likewise overex-

pression of SNRPB leads to abnormal splicing of many genes

involved in DNA repair and chromatin remodeling pathways,

thereby contributing to enhanced cell proliferation in glioblas-

toma (Correa et al., 2016).

However, a systematic interrogation of RBP-mediated regula-

tory programs in cancer and the extent to which they shape the

cancer gene expression signature has not been performed,

despite evidence for widespread dysregulation of these proteins

in cancer (Kechavarzi and Janga, 2014). A recent analysis of eu-

karyotic RBPs has provided a regulatory model that links the

binding of 35 human RBPs to the decay rate of their target

mRNAs (Ray et al., 2013). This model identifies high-confidence
ell Reports 23, 1639–1650, May 8, 2018 ª 2018 The Authors. 1639
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Figure 1. Inferring Dysregulated Post-tran-

scriptional Programs from ccRCC Expres-

sion Data

(A) Schematic representation of inferring RBP

activities by combining the stability code (Ray

et al., 2013) with gene expression data. The plus

(+) signs represent stabilizing RBPs, and the

minus (�) signs stand for destabilizing RBPs.

(B) The inferred activity profiles of RBPs in ccRCC

tumors. Each row represents one patient from the

CAGEKID cohort (Scelo et al., 2014), and each

column represents one RBP. Plus (+) and minus

(�) signs denote RBPs that stabilize or destabilize

their targets, respectively. The color gradient

corresponds to the inferred ccRCC-associated

activity change (Z score obtained by boot-

strapping; see Experimental Procedures). Red

denotes increased activity of RBP in ccRCC tu-

mor relative to matching normal tissue, and blue

denotes decreased activity.

See also Figure S1.
regulatory targets of each RBP, including mRNAs that have a

functional RBP binding site at their 30 UTRs, and indicates

whether the binding of each RBP ‘‘stabilizes’’ or ‘‘destabilizes’’

its regulatory targets. Here, using this model, we present a gen-

eral computational framework for analyzing post-transcriptional

gene regulatory programs in cancer to identify key RBPs whose

aberrant function plays a central role in the establishment of can-

cer-associated expression signatures.

We applied our method to gene expression profiles of clear

cell renal cell carcinoma (ccRCC), which is the most common

type of kidney cancer. The incidence rate of ccRCC is increasing

worldwide, and its metastatic form is resistant to chemotherapy

and radiotherapies (Capitanio and Montorsi, 2016). A hallmark of

ccRCC is dramatic dysregulation of the transcriptome, which is

partly mediated by transcriptional programs governed by the

hypoxia-inducible transcription factor (HIF) and the malfunction

of the epigenome machinery (Riazalhosseini and Lathrop,

2016). However, our understanding of the mechanisms that un-

derlie the post-transcriptional gene regulation in ccRCC is very

limited. We show that RBPs contribute significantly to the regu-

lation of ccRCC transcriptome throughmodulation of mRNA sta-

bility, and we uncover key RBPs that regulate central ccRCC

pathways.
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RESULTS

Widespread Dysregulation of Post-
Transcriptional Regulatory
Programs in ccRCC
To identify RBP stability programs that

are dysregulated in ccRCC, we used

the RNA sequencing (RNA-seq) profiles

of tumor and patient-matched normal

tissue sample pairs from 45 ccRCC pa-

tients in the Cancer Genomics of the

Kidney (CAGEKID) cohort (Scelo et al.,

2014). These expression profiles quanti-

tatively measure the extent of increase
or decrease in the abundance of each mRNA in tumor cells

compared to matching normal kidney tissue. We modeled

the abundance of each mRNA as a function of the combinato-

rial effect of RBPs that bind to that mRNA (see Experimental

Procedures), with the mRNA-RBP interactions derived from a

previously reported ‘‘high-confidence’’ stability network (Ray

et al., 2013). Following previously described methods for

modeling gene regulatory networks (Lee and Bussemaker,

2010), we assumed that, in the logarithmic scale, the differen-

tial stability of each mRNA reflects the additive effect of the dif-

ferential activity of RBPs that bind to that mRNA (Figure 1A). In

this model, an increase in the ‘‘activity’’ of a stabilizing RBP or

a decrease in the activity of a destabilizing RBP can result in an

increase in the abundance of their target mRNAs. Conversely,

a decrease in the activity of a stabilizing RBP or an increase in

the activity of a destabilizing RBP can lead to a decrease in the

abundance of their target mRNAs. By combining this model

with ccRCC gene expression data, we predicted the change

in the activity of RBPs based on the change in the abundance

of their target mRNAs (Figure 1A). This model only considers

post-transcriptional regulation by RBPs and, therefore, can

only partially explain the changes in mRNA abundance.

Despite this limitation, as we will show here, this model
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Figure 2. Orthogonal Information Supports

the Inferred ccRCC-Associated RBP Activ-

ity Levels

(A) Correlation of the inferred activity profile of

each RBP with its mRNA abundance across the

CAGEKID cohort. See Figure S2 for individual

scatterplots for each RBP.

(B) Overall change in inferred activity versus

mRNA expression of RBPs. Each dot represents

one RBP. The x axis corresponds to the t score of

difference of mRNA abundance in tumor versus

matching normal tissues (paired t test of log-

transformed expression). The y axis corresponds

to the t score of inferred ccRCC-associated ac-

tivity changes: a positive value indicates that the

average of the corresponding column in Figure 1B

is above zero, and a negative value indicates that

the average is below zero. Circles with black

borders represent RBPs that have a motif that is

based on direct experimental evidence or based

on an analysis of a human paralog with >80%

sequence similarity at the RNA-binding domain

(Ray et al., 2013).

(C) Overlap of the RBPswhose stability targets are

significantly dysregulated (FDR < 0.01, t test of

average inferred RBP activity change) and RBPs

whose splicing targets are significantly enriched

for isoform switch events (FDR < 0.01, Fisher’s

exact test).

(D) Comparison of the inferred activity of RBPs, based on the stability code analysis, between CAGEKID and TCGA cohorts. The axes show the t statistic for

average inferred RBP activity change between tumor and normal tissue. RBPs with a direct motif or with a motif that is derived from a human paralog with >80%

sequence similarity (Ray et al., 2013) are shown. The circle size denotes the number of stability targets for each RBP.

See also Figure S2 and Table S1.
successfully identifies drivers of aberrant post-transcriptional

regulatory programs.

We observed that regulatory programs that are associated

with a large number of RBPs appear to be dysregulated in

ccRCC, based on the predicted activity levels of RBPs in

different patients (Figure 1B). To examine whether these esti-

mates are confounded by transcription, we also used a recent

approach for deconvolution of transcription and decay rates

based on the intronic and exonic reads in the RNA-seq data

(Alkallas et al., 2017). The RBP activities that were inferred

from estimated mRNA stability profiles were highly consistent

with the activities that we inferred from mRNA abundances

(Figure S1), suggesting that our inferences are not confounded

by the impact of transcription. These activity patterns were

different across patients for some of the RBPs, which may

reflect the inter-individual heterogeneity in ccRCC (Figure 1B).

As expected, the predicted activity levels for a majority of

RBPs correlated with the RBP mRNA abundances across indi-

viduals (p < 4 3 10�7, t test for average Pearson correlation;

Figures 2A and S2). Furthermore, the overall increase or

decrease of activity of RBPs in ccRCC was consistent with their

overall up- or downregulation at the mRNA level (r = 0.4,

p < 0.01; Figure 2B). These results suggest that the predicted

RBP activity levels are, in part, functional consequences of

the change in the expression of RBPs and can serve to predict

RBPs whose dysregulation govern abnormal post-transcrip-

tional gene regulation in ccRCC.
Identification and Validation of Recurrent Dysregulated
Post-Transcriptional Programs
We used multiple orthogonal sources of information to further

validate our prediction of the RBPs that contribute to the aber-

rant post-transcriptional gene regulation in ccRCC. First, we

reasoned that, for RBPs that have a dual role in regulating

mRNA stability and splicing (Ray et al., 2013), a change in the

RBP activity should, at the same time, affect the stability of the

mRNAs that have a binding site for that RBP in their 30 UTRs,
as well as the splicing of the mRNAs with a binding site near their

exon-intron junctions. We identified RBPs whose splicing tar-

gets, as defined previously based on the presence of binding

sites near exon-intron junctions of alternatively spliced exons

(Ray et al., 2013), overlap significantly with ccRCC-associated

‘‘isoform switch events’’ (Scelo et al., 2014) (Table S1). These

switch events represent changes in the identity of the most

abundant spliced variant of a given gene in tumors compared

to patient-matched normal tissue. Of the 10 RBPs whose

splicing target set had a significant (false discovery rate

[FDR] < 0.05) overlap with the ccRCC isoform switch events,

six RBPs were also among the ones whose stability programs

were dysregulated (Figure 2C), in agreement with the previously

observed dual role of these RBPs in regulating both mRNA

splicing and stability (Ray et al., 2013).

Next, we examined the reproducibility of RBP activity infer-

ence across different ccRCC datasets. For this, we used the

expression profiles of 72matching pairs of ccRCC tumor-normal
Cell Reports 23, 1639–1650, May 8, 2018 1641



tissues from The Cancer Genome Atlas (TCGA) dataset (Cancer

Genome Atlas Research Network, 2013) and inferred the change

in the RBP activity levels in tumor versus normal samples of each

patient. We observed a strong correlation in the ccRCC-associ-

ated change in RBP activity levels between the CAGEKID and

TCGA cohorts (r = 0.81 for RBPs with a direct motif or a motif

derived from a highly similar human paralog, p < 2 3 10�10; Fig-

ure 2D), confirming that our measurements are not dataset

specific.

This comparative analysis revealedmultiple RBPswith consis-

tently large up- or downregulation of activity levels in both the

CAGEKID and TCGA cohorts (Figure 2D; Table S1). In this

work, we focus on three RBPs with the largest and most repro-

ducible dysregulation of cancer-associated activity: ESRP2,

which showed the greatest decrease in activity; and MBNL2

and PCBP2, which showed the largest increase in activity.

Modulation of RBP Levels Supports Their Role in
Remodeling ccRCC Transcriptome
We further investigated the roles of ESRP2, PCBP2, and MBNL2

in remodeling the ccRCC transcriptome and the potential contri-

bution to malignancy by analyzing pathways affected by their

modulation, along with associated cellular functions. For this

purpose, we performed an integrated analysis of ccRCC gene

expression profiles and the transcriptomes of the cells that

were specifically deficient (through RNAi) for candidate RBPs.

Overall, for all the three RBPs, we observed a significant agree-

ment between the transcriptome response that RBP knockdown

triggered in the cell and what we expected based on our analysis

of ccRCC expression profiles, as described in the following

sections.

Modulation of ESRP2 Partially Recreates the
Transcriptome Changes in ccRCC
In line with the reduced activity of ESRP2 that we had identified in

both CAGEKID and TCGA datasets (Figure 2D), we observed

that the mRNA of ESRP2 is significantly downregulated in tumor

tissues in both cohorts (Figure 3A). Likewise, we detected much

higher expression levels of ESRP2 in normal primary renal prox-

imal tubule epithelial cells (PRPTECs) compared to several

ccRCC cell lines (Figure 3B). Accordingly, we knocked down

the ESRP2 gene in PRPTECs using two independent short

hairpin RNAs (shRNAs) (Figure 3C) and investigated the changes

of the transcriptome using RNA-seq. We observed widespread

and reproducible remodeling of the PRPTEC transcriptome as

a result of ESRP2 knockdown (Figures 3D and S3A); specifically,

we observed overall upregulation of the stability of the mRNAs

that have potential ESRP2 binding sites in their 30 UTRs, partic-
ularly for genes that are also upregulated in ccRCC tumors at the

stability level (Figure S3B). This observation is consistent with the

previously suggested role of ESRP2 in destabilizing its target

mRNAs (Ray et al., 2013), suggesting that downregulation of

ESRP2 in ccRCC tumors leads to upregulation of its targets.

We note that the effect of this deregulation may spread beyond

the direct targets of ESRP2 and lead to the upregulation and

downregulation of downstream genes. Consistent with this

notion, we observed dysregulation of the mRNA abundances

for a considerable number of biological processes and genes af-
1642 Cell Reports 23, 1639–1650, May 8, 2018
ter ESRP2 knockdown, which largely mirrored those that are

dysregulated in ccRCC tumors (Figure 3E). These included upre-

gulation of components of extracellular matrix (ECM), in line with

previous reports on an increased deposition of ECM in cancer

(reviewed by Gilkes et al., 2014), as well as downregulation of

processes related to mitochondrial metabolism and oxidative

phosphorylation, which are most often downregulated in ccRCC

tumors (Cancer Genome Atlas Research Network, 2013; Scelo

et al., 2014) (Figure 3F). We further validated upregulation of

COL1A1, a major component of ECM, at the protein level upon

ESRP2 depletion (Figure 3G). These findings further support

the role of ESRP2 deficiency in the abnormal activity of

ccRCC-associated pathways.

PCBP2 Positively Regulates Cell-Cycle Progression
Our analysis of activity patterns of RBPs also highlighted PCBP2

as one of the RBPswith themost elevated activity in ccRCC (Fig-

ure 2D). Interestingly, however, analysis of the PCBP2 mRNA

levels did not show a significant change in the tumors as

compared to normal samples in any of the two cohorts (Fig-

ure 4A). To rectify this apparent discrepancy, we set out to

directly measure the protein abundance of PCBP2 in tumor

and normal tissues of an independent cohort of ccRCC patients,

using tissue microarrays (TMAs) (Xu et al., 2013). Through immu-

nohistochemistry (IHC) analysis, we were able to measure the

abundance of PCBP2 in a panel of 58 morphologically normal

and 77 tumor tissue samples from ccRCC patients. Our results

from these experiments revealed that PCBP2 shows a strong

increase in abundance in tumor cells (5.8-fold increase,

p < 7 3 10�8; Figures 4B and 4C), in agreement with the pre-

dicted increase in its activity levels. These findings suggested

that upregulation of PCBP2 occurs at post-transcriptional level.

Indeed, our analysis of a previously published dataset (Loayza-

Puch et al., 2016) revealed a strong increase (4.9-fold) in ribo-

some occupancy of PCBP2 mRNA in a ccRCC tumor compared

to matching normal kidney tissue, in line with translational upre-

gulation of PCBP2 in tumors (Figure S4A).

To gain insight about the functional significance of PCPB2

abnormal activation in ccRCC, we explored cellular pathways

whose activity is influenced by PCPB2. We observed that, in

HepG2 cells, whose gene expression profile is correlated with

that of common ccRCC cell lines (Figure S4B), PCBP2 knock-

down induces a change in the transcriptome that is in the

opposite direction of the transcriptome remodeling in ccRCC

(r =�0.07, p < 63 10�24; Figure 4D; PCBP2-knockdown expres-

sion data are from the ENCODE Project Consortium [2012]).

Furthermore, genes that are downregulated after PCBP2 knock-

down are enriched for pathways that are relevant to cell prolifer-

ation in cancer, including cell cycle and related pathways

(Figure 4E). The genes in these pathways are also correlated

with inferred PCBP2 activity levels across the 45 CAGEKID sam-

ples (p < 43 10�5, t test for average Pearson correlation), but not

with PCBP2mRNA levels (Figure 4F), further highlighting the bio-

logical relevance of the inferred activity levels in contrast to

mRNA abundance for this RBP. In line with these results, we

observed G1 cell-cycle arrest upon the inhibition of PCBP2

through RNAi in 786-O and A-498 renal cancer cell lines (Figures

4G and 4H), which resulted in reduced cell viability and induction
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Figure 3. ESRP2 Deficiency Results in Dys-

regulation of ECM and Metabolic Pathways

(A) The ccRCC-associated mRNA abundance

change for ESRP2. The y axis corresponds to a

p value obtained from paired t test of mRNA

abundance between ccRCC tumors and match-

ing normal tissue, either from the CAGEKID cohort

(light gray) or the TCGA cohort (dark gray). The

p value of upregulation is shown above baseline,

and downregulation is shown below baseline, in

logarithmic scale.

(B) Comparison of the abundance of ESRP2

mRNA between normal primary renal proximal

tubule epithelial cells (PRPTECs) and seven

common cell line models of RCC, measured by

qRT-PCR.

(C) ESRP2 mRNA abundance, measured by qRT-

PCR, in PRPTECs infected with a control shRNA

(Ctrl) or with two different shRNAs that specifically

target ESRP2.

(D) Widespread and reproducible change in

mRNA abundance as a result of ESRP2 knock-

down in PRPTECs. Each row represents one

gene, and each column represents either trans-

fection of PRPTECs with an ESRP2-specific

shRNA or with a control shRNA. Only genes that

had at least 10 reads in each RNA-seq dataset

and showed a minimum of 20% increase or

decrease of expression in both of the ESRP2

shRNA transfections compared to both of the

control shRNA transfections are included. A total

of 667 genes match these criteria for reproducible

up-/downregulation of expression; the probability

of observing this number of reproducible changes

by chance is 4 3 10�6 based on permutation

of expression fold-change values within each

condition.

(E) Comparison of dysregulated processes and

cell compartments in ccRCC tumor and in

ESRP2-knockdown PRPTECs. Each dot repre-

sents either a Gene Ontology (GO) (The Gene

Ontology Consortium, 2015) biological process or

a GO cell compartment. The axes show the

Z score fromMann-Whitney U test for change in the abundance of mRNAs of each GO term, with positive values representing overall upregulation of the GO term

and negative values representing downregulation. The x axis corresponds to dysregulation in ccRCC tumor relative to normal tissue (CAGEKID dataset), and the

y axis corresponds to dysregulation in ESRP2 knockdown (average of two shRNAs) relative to the Ctrl condition. GO terms that are significantly upregulated

(Z score R 3.5, red) or downregulated (Z score # �3.5, blue) in both ccRCC tumor and ESRP2-knockdown cells are highlighted.

(F) The mRNA abundance of genes that belong to both extracellular matrix (ECM) and endoplasmic reticulum lumen (ER) compartments (bottom) or genes that

belong to the tricarboxylic acid (TCA) cycle (top). The color gradient represents the average logarithm of fold change between tumor and normal tissue (based on

CAGEKID) or logarithm of fold change for each of the ESRP2 shRNA infections relative to control shRNA. The color map is shown on the right.

(G) Abundance of COLA1 after ESRP2 knockdown in PRPTECs, as measured by ELISA.

All error bars represent SD. *p < 0.05 (one-sided Wilcoxon test).

See also Figures S3 and S5.
of apoptosis (Figure 4I). These observations confirmed that

PCBP2 enhances cell-cycle progression and proliferation in

ccRCC.

MBNL2 Is Essential for ccRCC Cells
Lastly, we investigated the dysregulation and the role of MBNL2

in ccRCC,which had exhibited a strong enhanced activity in both

CAGEKID and TCGAdatasets (Figure 2D).We noted thatMBNL2

mRNA is significantly upregulated only in the CAGEKID cohort,

with the TCGA cohort showing an overall consistent, albeit not

statistically significant, trend (Figure 5A). Therefore, we interro-
gated MBNL2 protein levels using IHC as described earlier.

Measuring MBNL2 expression in a panel of 35 morphologically

normal and 76 tumor tissue samples from ccRCC patients

showed a strong overexpression in tumor cells (16.8-fold in-

crease for MBNL2, p < 7 3 10�8; Figures 5B and 5C), corrobo-

rating the predicted increase in its activity levels.

To study MBNL2 function, we inhibited the expression of

MBNL2 in 786-O and A-498 cells (Figure 5D), which resulted in

a global effect on the transcriptome, with significant overlap be-

tween genes dysregulated in the two cell lines (Figure S3C).

Given the well-characterized role ofMBNL2 in regulating splicing
Cell Reports 23, 1639–1650, May 8, 2018 1643



A B C G H

I

FD

E

Figure 4. PCPB2 Is Upregulated at Translational Levels in ccRCC and Contributes to the Cell-Cycle Progression

(A) PCBP2mRNA abundance does not show a significant change in ccRCC tumor compared tomatched normal kidney tissue samples. See Figure 3A for the plot

details.

(B) Comparison of protein abundance between ccRCC tumor (TM) and normal kidney (N) tissue for PCBP2, measured using tissue microarrays (TMAs), shows

upregulation in tumors. See the Supplemental Experimental Procedures for the definition of H-score. p values are based on t test.

(C) Representative TMA images for measuring the abundance of PCBP2 in normal and tumor tissues.

(D) Comparison of mRNA abundance change between tumor and normal tissues (CAGEKID dataset, y axis) and mRNA abundance change as a result of PCBP2

knockdown in HepG2 cells (x axis, average of two shRNAs).

(E) Representative pathways that are significantly enriched among the top 50 most downregulated genes after PCBP2 knockdown. The fraction of the 50 genes

that belong to each pathway is shown in parentheses, followed by enrichment p value (Fisher’s exact test). Pathway annotations are based on Reactome (Croft

et al., 2014).

(F) Correlation of the ccRCC-associated mRNA abundance of cell-cycle genes with the mRNA abundance of PCBP2 (solid bars) or inferred PCBP2 activity (open

bars). Correlations are calculated across 45matching pairs of tumor-normal tissues from the CAGEKID dataset. Only cell-cycle genes that are among the 50most

downregulated genes after PCBP2 knockdown are shown.

(G)Western blot analysis of PCBP2 protein in 786-O and A-498 cells after knockdown using two different siRNAs, as well as using a control (non-targeting) siRNA.

(H) Change in the proportion of cells in different cell-cycle phases after PCBP2 knockdown in 786-O and A-498 cells.

(I) Viability (left) and caspase-3/7 activity (right) after PCBP2 knockdown.

Values are normalized to control (non-targeting) siRNA in (H) and (I). Error bars in (B) represent SEM. Other error bars represent SD.

See also the Supplemental Experimental Procedures and Figure S4.
(Charizanis et al., 2012), we first examined the splicing targets of

this protein and observed significant dysregulation of their tran-

script isoform distributions after MBNL2 knockdown (Fig-

ure S3D). Next, we examined the effect of MBNL2 knockdown

on its stability targets. Inference of mRNA stability from the

RNA-seq data revealed an overall destabilization of predicted

MBNL2-binding mRNAs after MBNL2 knockdown (Figure S3E),

consistent with a role of MBNL2 in stabilizing its targets. Interest-

ingly, MBNL2 knockdown partially reversed the gene expression

signature of ccRCC, leading to an overall decrease in the expres-

sion of genes that are upregulated in ccRCC (r = �0.11, p < 3 3

10�62; Figure S3F). These genes are highly enriched for path-

ways with well-established roles in ccRCC, including the HIF-a

TF network (Harris, 2002), the FOXM1 TF network (Wu et al.,
1644 Cell Reports 23, 1639–1650, May 8, 2018
2013; Xue et al., 2012), and the PLK1 signaling pathway (Ding

et al., 2011; Zhang et al., 2013) (Figure 5E). The HIF-a network

genes that showed the greatest downregulation after MBNL2

knockdown included vascular endothelial growth factor A

(VEGFA), a well-known angiogenic factor, along with four other

genes (Figure 5F). In agreement with a potential role of MBNL2

in regulating these genes, they showed strong correlation with

MBNL2 expression across the 45 tumor samples from the

CAGEKID dataset (Figure 5G), with VEGFA showing the stron-

gest correlation (r = 0.49, p < 3 3 10�4). Through a pull-down

assay using an antibody against MBNL2, we confirmed that

MBNL2 directly binds to VEGFA mRNA (Figure 5H), consistent

with a previously identified interaction between mouse Mbnl2

and the 30 UTR of Vegfa (Charizanis et al., 2012). We also
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Figure 5. MBNL2 Upregulation Enhances HIF-Responsive Gene Expression and Cell Proliferation Pathways in ccRCC

(A) The ccRCC-associated mRNA abundance change for MBNL2. See Figure 3A for the plot details.

(B) Comparison of protein abundance between ccRCC tumor (TM) and normal kidney (N) tissue for MBNL2, measured using TMAs. See the Supplemental

Experimental Procedures for the definition of H-score. p values are based on Student’s t test.

(C) Representative TMA images for measuring the abundance of MBNL2 in normal and tumor tissues.

(D) Western blot analysis of MBNL2 abundance in 786-O and A-498 cells infected with a control shRNA (Ctrl) or with two different shRNAs specifically targeting

MBNL2.

(E) Comparison of dysregulated pathways in ccRCC tumor and MBNL2-knockdown ccRCC cell lines. Each dot represents a pathway from the PID database

(Schaefer et al., 2009). The x axis shows theMann-Whitney U test Z score for up- or downregulation of pathways in ccRCC tumor versus normal tissue (CAGEKID

dataset), and the y axis shows the Z score for dysregulation of pathways after MBNL2 knockdown relative to control shRNA.

(F) Among genes that are upregulated in tumor (average log2 fold change R 1.5), the overlap of the HIF-a network genes (based on PID) with those that are

downregulated after MBNL2 knockdown (average log2 fold-change # �1.5) is shown.

(G) Comparison of the expression of HIF-a network genes with MBNL2 across 45 ccRCC tumors in the CAGEKID dataset. Each row represents a gene, and each

column represents a matching pair of tumor-normal tissues. Columns are sorted based on MBNL2 expression. The color gradient denotes log2 of fold change

between ccRCC tumor and normal tissue, with values transformed so that the average of each column becomes zero. Only the HIF-a network genes that are

upregulated in ccRCC tumor and downregulated in MBNL2-knockdown cells are shown.

(H) Interaction of VEGFA mRNA with MBNL2, as measured by qRT-PCR in an MBNL2 pull-down assay.

(I) Downregulation of MBNL2 after knockdown (left) leads to downregulation of VEGFA (right), as measured by qRT-PCR.

(J) Colony formation assay for 786-O and A-498 cells infected with a control shRNA (shCtrl) or with two different shRNAs that specifically inhibit MBNL2.

Representative images are shown on the left, and colony area measurements from independent experiments are shown using the bar plots (n = 3).

(K) Change in the cell-cycle distribution after MBNL2 knockdown in 786-O cells.

(L) Caspase-3/7 activity after MBNL2 knockdown.

Values are normalized to control (non-targeting) shRNA in (I-L). Error bars in (B) represent SEM. Other error bars represent SD.

See also the Supplemental Experimental Procedures and Figures S3 and S5.
observed significant reduction of VEGFA mRNA levels after

MBNL2 knockdown (Figure 5I), corroborating a role of MBNL2

in stabilizing the VEGFA mRNA.

In addition, we observed that MBNL2 inhibition significantly

reduced the colony-forming ability of both 786-O and A-498 cells

(Figure 5J), in agreement with the downregulation of FOXM1 and
PLK1 pathways, which regulate cell-cycle progression and cell

proliferation in ccRCC (Ding et al., 2011; Xue et al., 2012). Further

analysis of cell-cycle status revealed that knockdown of MBNL2

in 786-O cells impairs cell cycle and induces an increase in the

sub-G1 population of cells, indicative of increased apoptotic

cells (Figure 5K). Indeed, we observed an induction of activated
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caspase-3/7 in MBNL2-deficient cells, confirming the activation

of the apoptosis pathway (Figure 5L).

DISCUSSION

By combining ccRCC expression profiles with a model of the

RBP-regulated stability programs (Ray et al., 2013), we identified

several RBPs that have significant roles in modulating the

ccRCC gene expression signature, affecting the abundance of

mRNAs in pathways that are critical to the development and pro-

gression of cancer. We investigated three RBPs with highly sig-

nificant cancer-associated activities—ESRP2, PCBP2 and

MBNL2—for their function and potential mechanisms of action

in ccRCC. PCBP2 is of particular interest, given that the mRNA

level of this protein is not different between ccRCC tumor and

normal kidney tissues. We observed a very significant increase

in the abundance of PCBP2 protein in ccRCC tumors, despite

a lack of change at the mRNA level, suggesting that this RBP

is potentially upregulated at the translation level, which is sup-

ported by data showing increased PBCP2 ribosome occupancy

in ccRCC. This candidate would be missed had we relied on dif-

ferential expression at the mRNA level for discovering RBPs with

a gene regulatory function in cancer. This example highlights the

value of inferring RBP activity levels based onmodeling the post-

transcriptional regulatory programs in order to identify RBPs

driving transcriptome aberrations. Interestingly, PCBP2 has

recently been shown to be upregulated at both the mRNA and

protein levels in glioma where its inhibition slowed down cancer

cell growth by impairing cell-cycle progression (Han et al.,

2013b). Results from our transcriptomic analysis of ccRCC tu-

mors and cell-cycle analysis of knockdown cells corroborate

the oncogenic function of PCBP2 shown in this report and sug-

gest that the expression of RBPs can be dysregulated by

different mechanisms in different tissues; e.g., at the transcrip-

tional level in glioma and at the post-transcriptional level in

ccRCC.

Our study has also highlighted ESRP2 as a putative tumor sup-

pressor in ccRCC with reduced activity levels in tumors. Sup-

porting our results, a recent report has shown that the ESRP2

function suppresses ccRCC progression (Mizutani et al., 2016).

ESRP2 expression is also associated with favorable prognosis

in ccRCC (Figure S5A). Moreover, suggesting a general tumor-

suppressive function for ESRP2, previous literature has reported

that the deficiency of this protein promotes epithelial-mesen-

chymal transition (EMT), a process with a central role in cancer

progression and metastasis (Shapiro et al., 2011; Warzecha

et al., 2009, 2010). In line with the fact that EMT involves the dys-

regulation and remodeling of ECM (Gonzalez and Medici, 2014),

we observed elevated expression of collagens, which are among

the major constituents of ECM (Frantz et al., 2010), following

ESRP2 suppression in kidney epithelial cells. Furthermore,

whereas previous studies have focused only on the splicing reg-

ulatory function of ESRP2, our data reveal that the functional

consequences of ESRP2 deficiency are broader than previously

recognized; involve dysregulation of its stability activity; and lead

to additional aberrations, including a metabolic shift toward the

Warburg-effect, a characteristic feature of ccRCC (Zaravinos

and Deltas, 2014).
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Finally, MBNL2 displayed significant elevated activities in

ccRCC in both the CAGEKID and TCGA datasets. MBNL2 plays

an important role in the differentiation of embryonic stem cells

(Han et al., 2013a), as well as in neuronal differentiation (Talia-

ferro et al., 2016). Although not previously linked to ccRCC,

MBNL2 expression increases themigratory capacity of lung can-

cer cells (Adereth et al., 2005), suggesting a role in metastasis.

Our IHC analyses also show that MBNL2 is upregulated in met-

astatic ccRCC tissues compared to primary tumors (Figure S5B).

Furthermore, MBNL2 positively regulates levels of colony-stimu-

lating factor receptor 1 (CSF1R) (Adereth et al., 2005), whose in-

hibition decreases the proliferation of renal cancer cells (Menke

et al., 2012). Corroborating these reports, our analysis of the

ccRCC transcriptome suggests an oncogenic function for

MBNL2, which is at least partly due to the effect of MBNL2 on

the abundance of cancer-associated transcripts and is sup-

ported by further functional validation in ccRCC cell lines. Spe-

cifically, we established that suppression of MBNL2 impairs

cell proliferation and activates the apoptosis pathway in renal

cancer cells.

PCBP2, MBNL2, and ESRP2 have widespread effects on the

transcriptome based on our knockdown experiments followed

by RNA-seq. Our analyses confirmed that the mRNAs that

have target sites in their 30 UTRs for these RBPs are enriched

in the altered transcriptome following knockdown experiments.

Of significance, we established that MBNL2 directly binds to

the mRNA that encodes VEGFA and is essential for maintaining

its expression in ccRCC cells. VEGFA is a prominent angiogenic

factor that plays important roles in cancer metastasis. In addition

to direct binding and dysregulation of VEGFA in MBNL2-knock-

down cells, we observed a significant correlation between

MBNL2 activity and the expression of VEGFA in tumor samples,

supporting the notion that the upregulation of MBNL2 leads to

higher levels of VEGFA. We note the potential clinical applica-

tions of this finding, given that VEGFA and downstream path-

ways are therapeutic targets in ccRCC (Riazalhosseini and

Lathrop, 2016).

In addition to the direct effects of RBPs, a large fraction of the

global remodeling of the transcriptome in our knockdown exper-

iments appears to reflect indirect downstream effects, since

many of the affected mRNAs do not have a binding site for the

RBPs. This widespread dysregulation may potentially stem

from the effect of RBPs on regulatory hubs, which can amplify

and propagate across thousands of genes. For example, in addi-

tion to direct targeting by MBNL2 (e.g., in the case of VEGFA),

downregulation of HIF-a network genes after inhibition of

MBNL2 can be a result of downregulation of the HIF-a TF itself.

Indeed, we observed that in A-498 cells, the mRNAs encoding

the HIF-1a and HIF-2a proteins, which share many transcrip-

tional targets in the HIF-a network (Schödel et al., 2011; Shino-

jima et al., 2007), are reproducibly downregulated after MBNL2

knockdown (Figure S5C). Similarly, in 786-O cells, which only ex-

press the full-length HIF-2a (Maxwell et al., 1999; Shinojima

et al., 2007), MBNL2 knockdown results in downregulation of

this gene (Figure S5C). This is further highlighted by a strong cor-

relation between the MBNL2 abundance/activity and the abun-

dance ofHIF-1/2-a transcripts in the ccRCC tumors (Figure S5D).

In addition, by analyzing genes that have a binding site for HIF-1a



but not for HIF-2a (Schödel et al., 2011), we found that these

genes are responsive to MBNL2 only in A-498 cells, which ex-

press full-length HIF-1a transcript (Shinojima et al., 2007). In

contrast, in 786-O cells, which do not express a full-length

HIF-1a transcript (Maxwell et al., 1999; Shinojima et al., 2007),

MBNL2 knockdown does not alter the expression of genes

that are specifically bound by HIF-1a (Figure S5E), further sup-

porting an indirect effect of MBNL2 on these genes that requires

modulation of HIF-a TFs. Genes that are specifically bound by

HIF-2a but not HIF-1a, on the other hand, were downregulated

after MBNL2 knockdown in both A-498 and 786-O cells, consis-

tent with the notion that HIF-2a is expressed and functional in

both of these cell lines (Shinojima et al., 2007). The importance

of hypoxia in progression of ccRCC and its driving role in cancer

metastasis, as extensively described previously (reviewed by

Keith et al., 2011), warrants the need for further studies to

delineate the mechanisms through which MBNL2 can directly

or indirectly modulate the expression of HIF-a TFs and their

downstream targets.

It is notable that the model of RBP-mediated stability network

that we used covers only 9% of all sequence-specific human

RBPs with known RNA-binding domains, and even a smaller

fraction of all human RBPs (Gerstberger et al., 2014). Therefore,

the actual landscape of RBP dysregulation in ccRCC is probably

more complex than the analysis presented here. Nonetheless,

our study presents a general framework for analysis of RBP sta-

bility programs in ccRCC and highlights the regulatory mecha-

nisms of the central pathways that underlie ccRCC progression,

including hypoxia signaling and the switch to aerobic glycolysis.

Given that these pathways are among the most attractive thera-

peutic targets for ccRCC (Riazalhosseini and Lathrop, 2016;

Srinivasan et al., 2015), our results may open new avenues for

targeted therapy in ccRCC. Similarly, our approach can be

used for systematic analysis of post-transcriptional gene regula-

tion in other cancers, and in other diseases in general.

EXPERIMENTAL PROCEDURES

Additional details on the experimental procedures and reagents used in

this study are provided in the Supplemental Experimental Procedures and

Table S2.

Expression Data and the Stability Code

Expression data were obtained for 45 pairs of ccRCC tumors and patient-

matched normal tissues from CAGEKID (Scelo et al., 2014) and for 72 pairs

of tumors and patient-matched normal tissues from TCGA (Cancer Genome

Atlas Research Network, 2013). Gene-level measurements (fragments per

kilobase per million [FPKM] for CAGEKID and RSEM-based transcript per

million [TPM] for TCGA) were used to calculate log10 of fold change between

each tumor and its patient-matched normal tissue (after adding a pseudocount

equal to 1% of the median of each sample). Gene symbols were mapped to

Ensembl v84 gene IDs, and genes with ambiguous ID mapping were

discarded.

We obtained the set of high-confidence stability targets of 35 RBPs from a

previous study (Ray et al., 2013), consisting of 3,483 mRNAs that contain at

least one functional binding site in their 30 UTR for at least one RBP. Of these,

3,376 genes had gene-level measurements in the CAGEKID dataset (1,151 for

the TCGA dataset). This stability code was converted to a 3,376 3 35 ‘‘bind-

ing’’ matrix B (Figure 1A), in which +1 and �1 indicate functional binding of

RBPs resulting in the stabilization and destabilization of the mRNA, respec-

tively, and in which zero indicates no functional binding.
Modeling mRNA Stability and Inferring RBP Activity

For simplicity of modeling mRNA stability, we assume that all mRNA isoforms

encoded by each gene have the same decay rate. This assumption is reason-

able, considering that the stability code that we used consists of genes that

have no alternative 30 UTRs (Ray et al., 2013), and therefore, 30 UTR-mediated

regulation of mRNA stability should apply uniformly to all isoforms of each

gene. With this assumption, at steady state, the abundance of the mRNA for

gene g in tissue t can be expressed as:

½g�t = rp;tðgÞ
�
rd;tðgÞ;

where rp,t and rd,t denote rates of production (transcription) and decay in tissue

t, respectively. Therefore, the logarithm of abundance can be expressed as:

log½g�t = logrp;tðgÞ--logrd;tðgÞ= logrp;tðgÞ+ logsg;t ;

where sg,t represents the stability of mRNA g in tissue t, defined as the multi-

plicative inverse of decay rate. We model the mRNA stability as the combina-

torial effect of binding of RBPs to the 30 UTR, similar to previous studies on

modeling gene expression based on TF binding (Lee and Bussemaker, 2010):

sg;t =
Y

i
ai;t

bðg;iÞ

Here, ai,t represents the activity of RBP i in tissue t, and b(g,i) denotes the func-

tional binding of RBP i to the 30 UTR of mRNA g (+1 for stabilizing binding, 0 for

no binding, and �1 for destabilizing binding, as indicated earlier). Therefore,

the abundance of g can be modeled as:

log½g�t = logrp;tðgÞ+
X

i
logðai;tÞ3bðg; iÞ;

and the differential abundance of g between patient-matched tumor and

normal tissue can be modeled as:

Dlog½g�=DlogrpðgÞ+
X

i
DlogðaiÞ3bðg; iÞ;

where Dlog(ai) is the differential activity of RBP i in tumor versus normal tissue.

We assume that the differential rate of transcription is independent of the dif-

ferential rate of decay (Alkallas et al., 2017), allowing us to estimate the values

of Dlog(ai) for the RBPs in each tumor-normal tissue pair by regression, using

Dlog [g] (logarithm of fold change) as the response variable and the matrix B

(RBP binding matrix) as the covariate. In other words, we assume that Dlog

rp(g) is not correlated with Dlog rd,t(g), and, therefore, the regression coeffi-

cients in Dlog [g] �Si Dlog(ai) are equal to the regression coefficients in the

full model. For each tumor-normal tissue pair, least-squares regression was

performed with bootstrapping to estimate the RBP differential activities as

well as the confidence intervals. Specifically, we repeated the regression

1,000 times, each time sampling 3,376 mRNAs for CAGEKID (or 1,151 mRNAs

for TCGA) with replacement. The average (m) and SD (s) of regression coeffi-

cients were estimated from the 1,000 bootstrapped regressions and were

used to calculate a Z score in each tissue for each RBP as m/s. This Z score

forms the core measurement of inferred differential RBP activities in this

article.

To estimate the overall increase or decrease of RBP activities across all in-

dividuals, we calculated the Student’s t score of the set of Z scores obtained

for each RBP across the individuals. A large positive t score indicates that the

inferred Z scores are overall above zero across the individuals, and a large

negative t score indicates that the inferred Z scores are overall below zero.

All data files and scripts for measuring RBP activities are available at http://

csg.lab.mcgill.ca/sup/ccRCC_RBP/.

TMAs

TMA specimens used in this study have been described previously (Xu et al.,

2013). Immunohistochemistry (IHC) was performed using a Ventana auto-

mated system and the iVIEW DAB Detection Kit (Ventana Medical Systems,

Tucson, AZ, USA) at the IHC laboratory of McGill University Health Centre

(MUHC). See the Supplemental Experimental Procedures for additional

details.
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Cell Culture

The established renal cancer cell lines 786-O and A-498 and the non-tumori-

genic PRPTEC cells were purchased from the American Type Culture Collec-

tion (ATCC; Rockville, MD, USA). These cell lines were cultured according to

the recommendations of ATCC in the appropriate cell culture media and

were incubated at 37�C in a humidified incubator with 5% CO2.

Real-Time qPCR

For each sample, 1 mg total RNA was used for reverse transcription followed

by real-time qPCR reactions in triplicates. Expression of each mRNA was

normalized to the expression of the housekeeping gene actin and was re-

ported as 2�DDCt. See the Supplemental Experimental Procedures for addi-

tional details.

RBP Knockdown

The shRNA-mediated knockdown (KD) of ESRP2 and MBNL2 was carried out

based on previously described protocols (Papadakis et al., 2015). Briefly, lentivi-

ral supernatants producedbyHEK293Tcells were used to infect cells. In parallel,

supernatant harboring pLKO.1wasgenerated and usedascontrol. Infectedcells

were selectedwith puromycin (2 mg/mL, Sigma) for 4–5 days. For PCBP2 knock-

down, reverse transfection with 35 nM siRNA using Lipofectamine RNAiMAX

(Invitrogen) was performed according to the manufacturer’s instructions.

Western Blot Analysis

Protein extraction and western blotting from cell lines were performed as pre-

viously described (Jandaghi et al., 2016). See the Supplemental Experimental

Procedures for additional details.

ESRP2- and MBNL2-Knockdown RNA-Seq

Total RNA was extracted from cells infected with MBNL2 or ESRP2 or control

shRNAs, using the miRNeasy Mini Kit (QIAGEN) according to the supplier pro-

tocols. The RNA was used to generate rRNA-depleted first-strand cDNA li-

braries using TruSeq Stranded Total RNA-LT (Ribo-Zero Gold, Illumina). The

libraries were sequenced on a HiSeq 2000 platform, producing a minimum

of 50 million paired-end 100-bp reads per sample. Reads were mapped to

the GRCh37 human genome assembly using STAR (Dobin et al., 2013). Num-

ber of reads mapping to each gene was calculated using HTSeq (Anders et al.,

2015) based on gene annotations from GENCODE v19 (Harrow et al., 2012),

and genes with fewer than an average of 10 reads per sample were discarded.

The variance-stabilized logarithm of read counts was calculated using DESeq

(Anders and Huber, 2010), and the values were normalized to have an average

of zero for each sample. The effect of knockdown on the abundance of each

mRNA was calculated as the difference of normalized values between KD

and control shRNA samples, representing logarithm of fold change between

the two conditions.

For functional enrichment analysis, GeneOntology (GO) (TheGeneOntology

Consortium, 2015) and pathway interaction database (PID) (Schaefer et al.,

2009) annotations were obtained from ConsensusPathDB (Kamburov et al.,

2011). The annotations were intersected with the expression measurements,

and genes with no annotations were removed from the analysis. To measure

the overall upregulation or downregulation of a particular gene category (i.e.,

a GO biological process, GO cell compartment, or PID pathway), the distribu-

tion of logarithm of fold change of genes that belonged to that category was

compared to the distribution of logarithm of fold change of genes that did

not belong to that category, using the Mann-Whitney U test. The p values

were corrected for multiple testing using the Benjamini-Hochberg procedure.

RNA-seq data are deposited under accession number GEO: GSE83999.

RBP Immunoprecipitation

MBNL2 immunoprecipitation was performed using the Magna RIP Kit (Milli-

pore) according to the manufacturer’s protocol with slight modifications, as

explained in the Supplemental Experimental Procedures. RNA abundances

were normalized to the 18S rRNA as the internal control.

Pro-Collagen I Alpha 1 Detection by ELISA

An ELISA Kit from Abcam was used to quantify human COL1A1 protein in cell

lysate. Total protein of the non-tumorigenic PRPTEC cells was isolated using
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M-PER lysis buffer and quantified using the BCA Protein Assay. 0.1 mg total

protein and the antibody cocktail were loaded into each well of the 96-well

plate and shaken gently for 1 hr at room temperature. Each well was washed

four times with wash buffer and incubated 10 min with TMB ELISA Substrate.

To detect horseradish peroxidase (HRP) activity, stop solution was added into

each well, and the optical density (OD) was recorded at 450 nm using Tecan

Infinite Microplate Reader.

Colony-Formation Assay

Cells infected with shRNA constructs were trypsinized and plated in a 6-well

plate as single cells (2,000 cells per well), and colony formation was assessed

after 10 days. See the Supplemental Experimental Procedures for additional

details.

Fluorescence-Activated Cell Sorting Cell-Cycle Analysis

After 48 hr, knockdown and control cells were harvested with Accutase cell

detachment solution (Sigma) and washed with cold PBS. Cold Nicoletti buffer

(Nicoletti et al., 1991) was used for staining, and the DNA content of single

nuclei was analyzed by BD FACSCanto II Flow Cytometry Analyzer Systems

with collection of at least 10,000 events for each sample. The experiments

were performed in triplicates.

Cell Viability and Caspase-3/7 Activity

Cell viability and apoptosis induction were examined using CellTiter-Glo and

Caspase-Glo 3/7 Assay Kits (Promega), respectively, 48 hr (apoptosis) or

96 hr (cell viability) after transfection (PCBP2) or puromycin cell selection

(MBNL2), as previously described (Jandaghi et al., 2016).

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data generated in this study and re-

ported in this paper is GEO: GSE83999. Additional data files are available at

http://csg.lab.mcgill.ca/sup/ccRCC_RBP/.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and two tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.04.031.
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