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a b s t r a c t

This paper investigates the emergence of lexicalized effects of word usage on word duration by looking at

parallel changes in usage and duration over 130 years in New Zealand English. Previous research has

found that frequent words are shorter, informative words are longer, and words in utterance-final posi-

tion are also longer. It has also been argued that some of these patterns are not simply online adjust-

ments, but are incorporated into lexical representations. While these studies tend to focus on the

synchronic aspects of such patterns, our corpus shows that word-usage patterns and word durations

are not static over time. Many words change in duration and also change with respect to frequency, infor-

mativity and likelihood of occurring utterance-finally. Analysis of changing word durations over this time

period shows substantial patterns of co-adaptation between word usage and word durations. Words that

are increasing in frequency are becoming shorter. Words that are increasing/decreasing in informativity

show a change in the same direction in duration (e.g. increasing informativity is associated with increas-

ing duration). And words that are increasingly appearing utterance-finally are lengthening. These effects

exist independently of the local effects of the predictors. For example, words that are increasing

utterance-finally lengthen in all positions, including utterance-medially. We show that these results

are compatible with a number of different views about lexical representations, but they cannot be

explained without reference to a production-perception loop that allows speakers to update their repre-

sentations dynamically on the basis of their experience.

� 2017 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

It is well-established that a number of usage factors affect word

duration – including frequency, the word’s predictability in con-

text, and the position of the word in relation to utterance bound-

aries. In theory, there are two ways in which such effects can be

realized (see, e.g. Bybee, 2002; Jaeger & Buz, in press). First, they

can manifest as context-dependent, local adjustments that apply

online during speech production. The existence of such local effects

is uncontroversial, and they are the main focus of a large portion of

the literature on variation in word duration. But usage-based

effects can also manifest as offline lexicalized changes that affect

words regardless of their context. Recent research based on syn-

chronic corpus data shows that such lexical effects may exist

alongside local effects (Seyfarth, 2014), and suggests that the two

are linked: changes to lexical representations arise through

repeated exposure to local effects (this idea is already anticipated

in Paul, 1880, p. 46).

This paper presents an empirical investigation of the emergence

of lexical effects on word duration. Such lexical effects likely exist

at all points in the history of a language, so it is not possible to look

at their ‘ultimate’ origin. Instead, we focus on a specific question

that can be investigated using relatively recent historical data:

what happens to word duration when a word’s usage patterns

are not stable over time? In such situations, it should be possible

to directly observe the emergence of lexical effects in the form of

co-adaptation between usage and form. Therefore, we ask the fol-

lowing questions: Can patterns of changing word usage predict

patterns of changing word production? Is there evidence that lex-

ical representations are directly impacted by changing word usage

patterns?

The research presented in this paper extends previous work

substantially by tracking word duration trajectories and changes

to word usage over time in a diachronic corpus. Our data set comes
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from the spoken Origins of New Zealand English corpus (ONZE,

Gordon, Maclagan, & Hay, 2007), which contains speech samples

from over 500 speakers born between 1851 and 1987. We track

changes to 698 content words represented by more than 270,000

tokens, focusing on word usage, word duration and the extent to

which they change together.

Using this unique data set, we are able to obtain a direct view of

the accumulation of usage-based effects in lexical representations

over time. These show up in the form of robust parallels between

changes in word duration and usage. We suggest that these find-

ings are compatible with a range of different views about lexical

representations, but are difficult to explain without reference to

the so-called production-perception loop (Pierrehumbert, 2001;

Wedel, 2007).

The paper is structured as follows. In Section 2, we summarize

observations about patterns of variation in word duration and

briefly describe the potential pathways that can lead to lexical pat-

terns, with special emphasis on the production-perception loop.

Section 3 sets out our synchronic and diachronic hypotheses rely-

ing on the discussion in the preceding section. Section 4 first gives

an overview of the spoken diachronic corpus that serves as the

basis of the project, and then defines our key variables. Section 5

plays a mainly descriptive role, presenting general patterns of

change in word duration and usage factors based on the corpus,

and setting the scene for the main statistical analysis presented

in Section 6. Section 7 concludes the paper with a discussion of

the results and an evaluation of the hypotheses, along with some

more general conclusions about the nature of language change.

2. Background

2.1. Word duration and usage factors

One of our key variables is word duration, defined as the dura-

tion of spoken word forms measured in seconds. Word duration

varies substantially as a function of frequency, predictability, rep-

etition, syntactic probability and a range of other variables (Bell

et al., 2003; Bell, Brenier, Gregory, Girand, & Jurafsky, 2009; Gahl,

2008; Jurafsky, Bell, Gregory, & Raymond, 2001; Seyfarth, 2014;

Tily et al., 2009; Whalen, 1991). This paper uses the term usage fac-

tor to refer to these variables collectively. We do not assign special

theoretical significance to variation in word duration, and simply

take it to be one of the many phonetic reflexes of more general pro-

cesses of hypo- and hyper-articulation (cf. Lindblom, Guion, Hura,

Moon, & Willerman, 1995) conditioned by usage factors. Other

examples of such reflexes include variation in segmental and syl-

labic duration, the peripherality of vowels and consonant deletion

(Aylett & Turk, 2006; Bybee, 2002; Cohen Priva, 2015; Jurafsky

et al., 2001).

As noted in the introduction, patterns of variation in word dura-

tion can be divided into two types based on the way they are

expressed: as differences between tokens of the same word in dif-

ferent local contexts, or as context-independent differences across

multiple lexical items. These patterns will be labelled local and lex-

ical, respectively.

An example of a local pattern is the effect of predictability from

the preceding or following context: words tend to be shorter in

predictable contexts (Bell et al., 2009; Jurafsky et al., 2001;

Seyfarth, 2014). Since words typically appear both in high and

low predictability contexts (e.g. the word hunt in witch hunt vs.

which hunt; Lieberman, 1963), they display within-item local vari-

ation based on predictability. There are a variety of proposals about

the mechanisms through which contextual predictability comes to

be related to reduced forms, some of which relate to speaker-based

factors such as ease of access or planning, and some of which are

more listener-oriented, relating to appropriately conveying the

intendedmessage. A good recent outline of various accounts is pro-

vided in Jaeger and Buz (in press). The topic of interest in this paper

is the potential accumulated consequences of these local forces at

the lexical level.

As opposed to local patterns, lexical patterns are stable across

contexts for each word, but vary across different words. A simple

example of a lexical pattern is the effect of unigram word fre-

quency: high-frequency items tend to be shorter than low-

frequency items (e.g. Bell et al., 2009; Gahl, 2008). Since the uni-

gram frequency of a word is not context-dependent, a given lexical

item will always show the same effect of frequency, and the effect

of frequency can only be seen by comparing multiple lexical items.

Before we take a closer look at the specific usage factors inves-

tigated in this paper, it will be useful to provide a brief overview of

the types of correlations we may observe between changes in

usage factors and word durations. There is a trivial sense in which

shifts in the distribution of local conditioning factors may lead to

changes in observed word durations. All things being equal, a word

that becomes more predictable in a given context will also undergo

more shortening in that context, which also lowers its average

duration. Such parallel changes between word duration and usage

factors are superficial in the sense that they do not affect lexical

representations. Although the surface distribution of word dura-

tions may change along with the word’s predictability in specific

contexts, this change simply and directly reflects the online local

reductive forces at work. Those tokens of the word that happen

to occur in low-predictability contexts will not undergo

shortening.

In this paper, we are particularly interested in lexical changes

that go beyond local conditioning factors and whose effects are

not dependent on the immediately local context – in other words,

changes that arguably take place at the level of lexical representa-

tions. An example of such an effect is presented by Seyfarth (2014),

who demonstrates that words which tend to occur in predictable

contexts are shorter even when their local predictability is low. He

argues that such lexical effects reflect stored patterns of reduction,

which come about through repeated exposure to local reductive

biases. The crucial step in his analysis is the separation of two dif-

ferent effects: local predictability and a cumulative measure of pre-

dictability calculated over all contexts for a given word, called

informativity (cf. below). He shows that informativity has an inde-

pendent contribution to word duration even after local predictabil-

ity and a range of other control variables have been taken into

account. This paper follows Seyfarth (2014) in separating local

and lexical measures and looking for an independent contribution

of the latter in an attempt to detect changes that affect lexical

representations.

We focus on three main groups of usage factors: predictability,

position within the utterance and frequency. Predictability can be

defined on many different levels and in many different ways. One

of the simplest definitions is based on immediately adjacent

words: the conditional probability of a word x given a preceding

or a following word y, which is usually approximated through

the following equation (where pðxjyÞ stands for the conditional

probability of x given y, cðxyÞ is the number of times x and y occur

together in a corpus and cðyÞ is the frequency of y in the same

corpus; see e.g. Bell et al., 2009; Jurafsky et al., 2001; Seyfarth,

2014):

pðxjyÞ ¼
cðxyÞ

cðyÞ
ð1Þ

As explained above, predictability is a local measure, with a cor-

responding lexical measure called informativity. Informativity is

closely related (although not identical) to average predictability.
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Following Piantadosi, Tily, and Gibson (2011) and Seyfarth (2014),

we define informativity as follows1:

infoðxÞ ¼ �
Xn

c¼1

pðycjxÞ log pðxjycÞ ð2Þ

In other words, informativity is the average surprisal (where

surprisal is a decreasing function of predictability) for a word x cal-

culated over all contexts yc that it appears in, weighted by the fre-

quency with which it appears in each context. Informativity is low

for words that tend to be predictable from their context, and high

for words that tend to be unpredictable. Seyfarth (2014) provides

two examples: the word current is often predictable from the fol-

lowing word (e.g. events, news, president), so it has low informativ-

ity based on the following context, while the word nowadays is

rarely predictable from the following word, so it has high informa-

tivity. As noted above, predictability has been shown to correlate

negatively with word durations (Bell et al., 2009; Jurafsky et al.,

2001; Seyfarth, 2014), while informativity has a slightly weaker

positive effect on word durations (Seyfarth, 2014). In English, these

effects are especially robust when predictability and informativity

are calculated on the basis of the following context (Bell et al.,

2009; Seyfarth, 2014).

Our second set of usage factors relates to the position of the

word in relation to the final utterance boundary. Words in

utterance-final position are considerably longer than they are

utterance-medially and initially (e.g. Klatt, 1976; Turk &

Shattuck-Hufnagel, 2007; Wightman, Shattuck-Hufnagel,

Ostendorf, & Price, 1992). Assuming that consistent exposure to

local biases can lead to lexical effects, we also expect that words

which are frequently utterance-final should be longer than words

which tend not to occur utterance-finally. An example of a content

word that is frequently utterance-final (at least in the ONZE cor-

pus) is today, which appears in final position nearly 20% of the

time; an example of a content word that rarely appears

utterance-finally is make, which only occurs in final position about

0.5% of the time. Gahl (2008) reports an effect that seems consis-

tent with this prediction: she finds that words that are frequently

prepausal are significantly longer than words that tend not to

occur before pauses (the presence of pauses is presumably strongly

correlated with utterance-final position). However, her model does

not control for the local effect of position in the utterance, which

makes it difficult to tell whether this is a local or lexical effect.

To separate these two effects, we look both at the local effect of

utterance-final position and the lexical effect of typical position

within the utterance (similarly to the case of predictability and

informativity).

The third usage factor that we investigate is unigram word fre-

quency. As noted above, word frequency has a negative effect on

word duration (Bell et al., 2009; Gahl, 2008), although recent stud-

ies have found that the effect of word frequency is less robust in

statistical models that also incorporate informativity (Piantadosi

et al., 2011; Seyfarth, 2014). Word frequency (as defined here) dif-

fers from our other lexical factors in that it does not have a corre-

sponding local factor. Thus, while the availability of local and

lexical factors makes it possible to isolate online versus lexicalized

contributions for predictability/informativity and position within

the utterance, we cannot do the same for frequency. It is not pos-

sible to tell whether the frequency effects we report below are due

to low-level distributional shifts or deeper representational

changes.

2.2. Pathways to lexical effects

Lexical effects go beyond local effects in that they rely on infor-

mation that forms part of lexical representations. There are two

interconnected but conceptually distinct issues concerning their

origins: what is the nature of the lexical information that underlies

these effects and how does it make its way into lexical

representations?

The lexical effects reported in the literature are small and gradi-

ent. This implies that lexical representations must contain at least

some additional information beyond a single abstract categorical

form. There are a number of different proposals as to the nature

of this information (cf. Seyfarth, 2014; Jaeger & Buz, in press). Per-

haps the most straightforward one is that lexical representations

incorporate fine-grained phonetic information. This information

could be stored in the form of phonetically detailed exemplar

clouds (e.g. Bybee, 2001; Pierrehumbert, 2002), word-specific

detail about the tightness of intergestural timing relations

(Lavoie, 2002) or a single phonetically detailed default form for

each word (Seyfarth, 2014, p. 151). An alternative view is that

words have multiple abstract categorical representations, and gra-

dient differences arise from differences in the relative frequencies

of these variants (Bürki, Ernestus, & Frauenfelder, 2010; Seyfarth,

2014, p. 150). Finally, it is also possible that lexical representations

do not contain any phonetic detail, but they do contain information

about cumulative usage statistics (e.g. average predictability;

Seyfarth, 2014, p. 151). Under this view, lexical effects are not off-

line but online, arising during production as a function of informa-

tion about word usage. We attempt to relate these different views

about the nature of lexical representations to our findings in

Section 7.

In this paper, the focus is on the second issue identified above:

how does this information become incorporated into lexical repre-

sentations? A plausible explanation comes from the so-called

production-perception loop (Oudeyer, 2006; Pierrehumbert,

2001; Sóskuthy, 2015; Wedel, 2006). The production-perception

loop is a hypothesized evolutionary pathway in speech. This path-

way requires two conditions to be met: (i) detailed lexical repre-

sentations of the type described above and (ii) an ability to

update these representations as a function of linguistic experience.

If these conditions hold, any production by a member of a given

speech community has some probability of influencing future pro-

ductions within that speech community, thereby creating a loop. If

a consistent bias in production or perception enters this loop (e.g. a

given word frequently appears in predictable contexts and there-

fore consistently undergoes a small amount of reduction), the

update of speech representations will be overwhelmed by biased

variants, and the bias may leave a permanent mark on these repre-

sentations. In the case of gradient biases, this could result in sub-

stantial shifts as the continuous incorporation of biased variants

into representations pushes production targets further and further

(see e.g. Pierrehumbert, 2001).

As noted above, the existence of gradient lexical effects alone is

a strong argument for the presence of some type of detail in lexical

representations. There is also a line of research indicating that

these representations are regularly updated to include information

about novel exemplars (Goldinger, 2000; Hay & Foulkes, 2016; Hay

& Maclagan, 2012). Moreover, there is a range of results that would

be very difficult to interpret without reference to some mechanism

akin to the production-perception loop. These include the finding

that frequent (and in some cases infrequent) words are not only

ahead of other words in sound changes, but also increase their

advantage over time (Hay & Foulkes, 2016; Hay, Pierrehumbert,

Walker, & LaShell, 2015); Seyfarth’s (2014) finding that low infor-

mativity leads to decreased word durations even after we control

for local predictability; and the general observation that extremely

1 We base our measure on the natural logarithm of predictability, which means

that the basic unit of informativity in this paper is the so-called nat. Previous research

has quantified informativity using other units such as bans (using base-10 logarithm;

Seyfarth, 2014). Since these values are linearly correlated, the choice of nats as

opposed to bans or bits (base-2 logarithm) does not affect the results from our

regression models.
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high-frequency words show a degree of reduction that far sur-

passes the online reduction effects found in studies of word dura-

tion (e.g. Bybee, 2001).

In sum, when a word undergoes systematic local biases on its

production, the production-perception loop provides a mechanism

through which these biases are predicted to accumulate in the

word’s lexical representation.

3. Hypotheses

While there are many examples of phenomena that are argu-

ably the result of the production-perception feedback loop, there

are few studies that look at the emergence of word-specific pat-

terns in real time, and no studies that connect the emergence of

these patterns to changes in usage. This study focuses specifically

on these areas.

One prerequisite for this research is to establish that our corpus

does, in fact, show lexicalized effects of frequency, informativity

and typical position within the utterance, which are independent

of local effects. If such synchronic lexical effects did not exist in

our data set, that would also mean that we cannot look at their dia-

chronic emergence. Therefore, although the main focus of this

paper is on changes to word duration, we will also attempt to repli-

cate previous findings about frequency and informativity effects

(Bell et al., 2009; Gahl, 2008; Seyfarth, 2014), and to extend this

line of investigation to the effects of typical position within the

utterance. As explained in Section 2.1, the synchronic hypotheses

would predict overall lexical effects, such that frequent and low-

informativity words will be shorter, while words that are often

utterance-final will be longer.

We now turn to our main diachronic hypotheses, which focus

on the idea that the emergence of lexical effects should be directly

observable when the usage of a word changes.

(3) Diachronic hypotheses:

a. informativity: words that are decreasing in informativity

will also decrease in duration compared to other words

b. utterance-final: words that are becoming increasingly fre-

quent utterance-finally will increase in duration com-

pared to other words

c. frequency: words that are becoming more frequent will

decrease in duration compared to other words

We expect to see these dynamic effects after controlling for

local predictability and position in the utterance.

These predictions follow straightforwardly from the notion of

the production-perception loop. Changes in usage lead to changes

in the distribution of local biases. If lexical effects reflect the accu-

mulation of local biases, and the changes in local biases are suffi-

ciently large, we expect to see concurrent changes in lexical

representations.

4. Data

4.1. Corpus and measurements

The data analysed in this paper come from the spoken diachro-

nic ONZE corpus (Gordon et al., 2007), which consists of three sub-

corpora: the Mobile Unit archive (collected between 1946–1948,

speakers born 1851–1900), the Intermediate Archive (collected

between 1960 and the 1990s, speakers born 1891–1963 – with

most born before 1935) and the Canterbury Corpus (collected after

1994, speakers born 1926–1987). The recordings in these archives

are predominantly informal interviews. Together, the three cor-

pora contain recordings from over 500 speakers born over a period

of 136 years (1851–1987).

Overall, the corpus contains 2.1 million word tokens. These

words were automatically aligned with corresponding ortho-

graphic transcriptions (using algorithms from the HTK Speech

Recognition toolkit; Young et al., 1997) and stored in a searchable

database using the LaBB-CAT software package (Fromont & Hay,

2008). The automatic alignments were then used to generate word

duration measurements and other measures (see below) for all the

words in the corpus with the help of LaBB-CAT. The fact that we

used automatic methods to extract word durations means that

the data set inevitably contains some measurement errors. How-

ever, forced-alignment tends to be relatively accurate at the word

level. Tests of the particular aligner we used show good levels of

accuracy for speech samples of over 5 min (Fromont & Watson,

2016), which is true of the majority of our recordings. Moreover,

while the errors introduced by forced-alignment likely decrease

the power of our statistical analyses by adding random noise to

the measurements, there is no reason to assume that they intro-

duce problematic systematic biases into our study.

This study is based on a smaller subset of the ONZE word dura-

tion data set containing measurements for 271,764 word tokens

representing 698 word types. We only include content words in

our data set. The rationale for this decision is that the durations

of content and function words show differential conditioning with

respect to usage factors (Bell et al., 2009), and content words are

much more diverse in terms of word frequency, informativity

and other predictors. The set of content words was further filtered

to only include word types that occurred at least 50 times in the

ONZE corpus and were well represented over the entire time per-

iod. A range of further filters were applied to the data to remove

word duration outliers (likely due to measurement errors) and

other problematic data points. The full details of the filters that

we applied to the data set are presented in the supplementary

materials.2

Following previous research (Bell et al., 2009; Gahl, 2008;

Seyfarth, 2014), our data set is based on word forms, not lemmas

(e.g. both year and years are included). This decision was motivated

by the fact that word forms representing the same lemma often

differ substantially with respect to usage factors (e.g. years is

nearly twice as frequent as year). Word forms were defined on

the basis of the orthographic transcripts. Since the ONZE corpus

did not include any semantic or syntactic labels, no attempt was

made to deal with cases where a given spelling could represent

more than one lexeme (e.g. block N vs. block V; see e.g. Gahl

(2008) for a similar approach). It is unlikely that this shortcoming

of the data set had a substantial impact on our results. While we

have no way of estimating the extent of within-word-class homo-

nymy (e.g. chest N ‘body part’ vs. chest N ‘large box’), we performed

an informal analysis of across-word-class homonymy based on

automatic part-of-speech tags generated by the NLTK toolkit

(Bird, Klein, & Loper, 2009). This analysis suggests that tokens

belonging to the most frequent word class for a given spelling

account for over 95% of the data set. The remaining 5% along with

the presumably even smaller proportion of within word class

homonyms is unlikely to be a source of major biases.

4.2. Definitions of key variables

This section is an overview of the key predictors related to our

hypotheses. The statistical models presented later in this paper

also contain some additional control variables, which will be dis-

2 The complete data set and the code for the main analysis are available from

https://osf.io/q5wgh/.
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cussed in Section 6 as part of the model descriptions. Predictors

marked by the label log are transformed logarithmically.

Following standard practice in sociolinguistics (Bailey, 2008),

the variable YEAR OF BIRTH (the year of birth of the speaker who

uttered the word form) is used as a tool for tracking change over

time. As discussed elsewhere (Hay et al., 2015), using time of

recording would not be practical in this corpus, as it would simply

cluster speakers into three main groups, in a way that is highly col-

linear with year of birth. Note that if speakers move in the direc-

tion of change during their lifespan, then the main danger of

using year of birth as a proxy for change is that it may somewhat

underestimate the speed of change.

4.2.1. Local predictors

While we control for many local predictors, the following local

predictors are key to our hypotheses. This is because we separately

hypothesize that there are cumulative word-level effects of these

local biases (cf. the related lexical predictors in Section 4.2.2).

PREVIOUS AND FOLLOWING PREDICTABILITY (log): Abbreviated as PREV/FOLL

PREDICTABILITY in tables. Two separate variables representing the

bigram probability of the word form based on the previous and

the following word (cf. Eq. (1) in Section 2.1). These values were

calculated using all 2.1 million words in our corpus. Following

Jurafsky et al. (2001) and Seyfarth (2014), we smoothed the prob-

abilities using the modified Kneser-Ney algorithm in the SRILM

toolkit (Stolcke, Zheng, Wang, & Abrash, 2011).

UTTERANCE-FINAL: A binary variable indicating whether the word is

utterance-final or not. As part of the transcription and alignment

process for ONZE, transcribers manually demarcated the inter-

views into a series of intervals. The guidelines were open to inter-

pretation, asking transcribers to ‘start each major utterance with a

breakpoint.’ The guidelines provide an example showing intervals

containing 2–11 words, with breaks at substantial pauses or major

clause boundaries. Transcribers also likely used intonational cues

to guide their decisions about utterance breaks. As these guidelines

are not very specific, this variable is highly correlated with true

utterance-finality, but also contains some noise. There is no reason

to think that this noise might be unevenly distributed, however, or

bias the results in any systematic way.

4.2.2. Lexical predictors

The following variables are designed to test the role of lexical

factors, including lexical factors that result from accumulated local

distributions.

PREVIOUS AND FOLLOWING INFORMATIVITY: Abbreviated as PREV/FOLL INFOR-

MATIVITY in tables. Calculated from previous and following pre-

dictability using Eq. (2) in Section 2.1.

PROPORTION UTTERANCE-FINAL (log): Abbreviated as PROPORTION UTTR-FINAL

in tables. The proportion of tokens that were utterance-final for a

given word form in our corpus.

FREQUENCY (log): The frequency of the word based on the British

subset of the Google Books N-gram Corpus (Michel et al., 2011;

restricted to texts published between 1851 and 1987). The British

subset of Google N-grams contains frequency counts for words

extracted from books published in Great Britain, with separate fre-

quency counts for each year of publication. We obtained our static

word frequency measure by averaging over the counts across the

entire time period. Although using frequency estimates from a

written corpus that is based on a different dialect is not without

problems, there are two good reasons for relying on Google N-

grams instead of our own corpus. First, Google N-grams contains

between 300 million and one billion word tokens for every year,

which makes both our static and dynamic estimates extremely

robust. Second, as we show in Section 5, our corpus displays a sub-

stantial overall decline in average word duration over time. As a

result, a word that is more frequent in later recordings will be,

on average, shorter than other words simply because it is more

strongly represented in the later section of the corpus (which

shows shorter word durations in general). Word duration slopes

are also likely affected by this confound. Although Google N-

grams frequencies are correlated with within-corpus frequencies,

this correlation is only medium-strength (Pearson’s r ¼ 0:45),

which means that the confounding effects described above can

be attenuated by using the former in the place of the latter. In order

to prevent issues due to major discrepancies between Google N-

grams estimates and actual frequencies in spoken NZE, a small

number of frequent New Zealand place names were removed from

our corpus at the filtering stage.

4.2.3. Dynamic lexical predictors

The variables designed to test the main hypotheses in Section 3

are derived from the lexical predictors as follows:

CHANGE IN PREVIOUS/FOLLOWING INFORMATIVITY: We first divided the cor-

pus into two halves according to speaker year of birth. The first

half contained data from speakers born before or in 1930, and

the second half contained data from speakers born after 1930.

We decided to place the dividing line at 1930 in an effort to cre-

ate two sections that each spanned a substantial time period and

contained roughly equal numbers of tokens. Separate bigram lan-

guage models were fit to the pre-1930 and the post-1930 sections

of the corpus. The smoothed estimates of predictability from

these models were then used to calculate following and previous

informativity for each half of the corpus. Change in these predic-

tors was calculated simply by subtracting the pre-1930 value

from the post-1930 value. Both of these predictors are approxi-

mately normally distributed.

CHANGE IN PROPORTION UTTERANCE-FINAL: Again, proportion utterance-

final was calculated separately for the pre-1930 and post-1930

sections of the corpus. Change in proportion utterance-final is

the logarithm of the ratio of the post-1930 value and the

pre-1930 value, and is approximately normally distributed.

CHANGE IN FREQUENCY: The slope of a regression line fit through log

frequency as a function of year of publication in the Google

N-grams corpus. This is more or less equivalent to the logarithm

of the expected growth/decrease in frequency over a single year

expressed as a ratio. It is approximately normally distributed with

a slight positive skew.

Admittedly, the way we have operationalized these measures

results in a loss of information about potential non-linearities in

the development of the relevant quantities. For instance, word

frequencies (or, indeed, any of the other measures) may show

U-shaped trajectories, starting high, falling and then rising again.

Our dynamic predictors cannot capture such tendencies.

In the case of informativity and proportion utterance-final, it is

not possible to reliably estimate non-linear changes. Both of these

measures are derived from our own corpus, where a substantial

number of words are only represented by 50–100 tokens. Such a

small sample is not sufficient to generate robust non-linear

estimates of change over time.

Our estimates of changes in frequency come from the Google

N-grams corpus, and are based on many millions of tokens for each

word, which makes them more suitable for a non-linear analysis.

In order to keep the presentation of our results more streamlined,

we will not attempt such an analysis in the main body of this

paper. However, we have included a systematic comparison of esti-

mation methods with varying degrees of non-linearity in Appendix

B. This comparison shows that linear estimators actually perform

better than non-linear ones, which suggests that short-term non-

linearities in Google N-grams frequencies do not affect changes

in word duration in our corpus.
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5. An overview of changes to word duration and usage

In this section, we present a brief outline of general patterns of

word-level change in our corpus. This overview will clarify the size

and direction of observed changes to word duration and usage fac-

tors, and will therefore serve as a useful baseline for the discussion

in the following sections. An investigation of the relationship

between changing usage and changing duration is only likely to

bear fruit in a corpus in which these factors are indeed somewhat

in flux.

Fig. 1 plots the distribution of word durations against speaker

year of birth in the form of a heatmap, and also displays median

word durations at three different time points. The median word

duration decreases by more than 20% (around 60 ms) between

the oldest and youngest speakers, showing an especially steep

decline after 1920. This pattern is mirrored by changes in speech

rate: the median syllable duration decreases by about 20% from

202 ms (1851–1871) to 166 ms (1967–1987). These changes are

probably due to the following factors. Speakers from the first two

corpora (the Mobile Unit and the Intermediate Archive) were gen-

erally older at the time when they were recorded. Moreover, being

recorded was an unusual experience for them, and the strangeness

of the situation would likely elicit more formal speech. For some

proportion of the interviews in the most recent collection of

recordings (the Canterbury Corpus), the interviewee and inter-

viewer were known to each other, which is likely to have further

affected formality levels. Both older age (Horton, Spieler, &

Shriberg, 2010; Yuan, Liberman, & Cieri, 2006) and higher formality

(Jacewicz, Fox, & Wei, 2010) have been shown to correlate with

slower speech. Therefore, it is unlikely that the patterns of increas-

ing speech rate and decreasing word duration observed in our sam-

ple reflect general changes that have affected NZE. Nonetheless, it

is important to take this trend into account when looking at raw

word duration trajectories, as it implies that certain words that

show an apparent decrease in duration (e.g. 10% over the observed

time period) are, in fact, getting longer relative to the rest of the

words in the corpus. To adjust for this confound, the mixed models

in Section 6 include speaker year of birth as a main predictor and

corpus as a random intercept. Additionally, graphs of raw word

duration trajectories in this paper all include a line that represents

the baseline decrease for words of a similar duration.

Table 1 presents overall trends in how words change with

respect to the key usage factors involved in our hypotheses. We

use fold changes to express these patterns, which, in this paper,

are defined as the ratio of the higher value and the lower value.

The direction of the change is indicated by the sign of the value:

positive values indicate increases, while negative values indicate

decreases (as a result of this definition, fold change values are

not defined in the interval ð�1;1� Þ. As noted above, estimates of

the CHANGE IN PREVIOUS/FOLLOWING INFORMATIVITY and CHANGE IN PROPORTION

UTTERANCE-FINAL were obtained by comparing predictor values for

speakers born before 1930 and those born after 1930. Since the

separate predictor values are essentially averages over two differ-

ent halves of the corpus, their differences do not necessarily repre-

sent changes across the entire time period. If we were to assign a

single time point to the average PREVIOUS/FOLLOWING INFORMATIVITY and

PROPORTION UTTERANCE-FINAL values calculated within the two halves of

the corpus, the best choice would be the midpoint of each period.

These midpoints are separated by about 65–70 years. Therefore,

the estimates for CHANGE IN PREVIOUS/FOLLOWING INFORMATIVITY and CHANGE

IN PROPORTION UTTERANCE-FINAL in Table 1 are best interpreted as fold

changes over a period of 65–70 years. CHANGE IN FREQUENCY is opera-

tionalized in a slightly different way, by fitting regression lines to

log frequency values over speaker year of birth. In order to make

these values comparable with the estimates for the other predic-

tors, they are rescaled to represent fold changes over a period of

68 years.

As shown by the medians in Table 1, all four usage factors show

a very slight overall increase. However, the degree of this increase

is relatively small compared to the degree of overall variation in

the usage factors, which is indicated by the 2.5th and the 97.5th

percentiles in Table 1 (these provide a relatively good sense of

the range of variation without including outliers). CHANGE IN PREVI-

OUS/FOLLOWING INFORMATIVITY values range roughly between twofold

decrease and twofold increase. Decreasing CHANGE IN FREQUENCY values

are similar to decreasing CHANGE IN PREVIOUS/FOLLOWING INFORMATIVITY val-

ues, but we see much more substantial, nearly fourfold increases.

CHANGE IN PROPORTION UTTERANCE-FINAL shows even more extreme values,

ranging between 5-fold decrease and 5-fold increase. Thus, we see

evidence of relatively small adjustments over time to the informa-

tivity of individual words, and evidence of somewhat more sub-

stantial adjustments to word frequencies, and the proportion of

tokens occurring utterance-finally.

While frequency and informativity are relatively straightfor-

ward notions that have been explored before, it will be useful to

provide a few examples for how a word may change with respect

to typical position within the utterance. The word awful shows a

9-fold increase in PROPORTION UTTERANCE-FINAL, moving from 1.7% in

the pre-1930 half of the corpus to 15.4% in the post-1930 half. Per-

haps the main reason for this change is that speakers born earlier

appear to use awful mainly attributively or as an adverb (e.g. awful

frightened, awful lot, awful smell), while a predicative use becomes

more frequent for speakers born later (e.g. bloody awful!, it was
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Fig. 1. A heatmap showing changes in the distribution of word durations (vertical

axis) as a function of speaker year of birth (horizontal axis). Yellow represents

higher density areas, while blue represents lower density areas. Density distribu-

tions at given time points were calculated by generating kernel density estimates

for all word tokens within a 10 year window centred on the time point. The three

horizontal lines represent median word duration values calculated for speakers

born between 1951–1971 (left), 1910–1930 (middle) and 1967–1987 (right). Both

the median values and the density estimates show a clear pattern of shortening

over time.

Table 1

The distribution of changes in usage factors calculated over all 698 words in the data

set. The second column shows the median, the third column the 2.5th percentile and

the fourth column the 97.5th percentile. The figures show fold changes, that is, the

ratio of the higher and the lower values, along with an indicator of the direction of the

change (positive values indicate increases, while negative values indicate decreases).

For instance, words at the 2.5th percentile of the variable change in proportion

utterance-final show a 4.76-fold decrease in how often they occur utterance-finally

(e.g. 10%? 2%).

CHANGE IN MEDIAN 2.5% 97.5%

PREV INFORMATIVITY 1.04 �1.7 2.03

FOLL INFORMATIVITY 1.03 �1.7 1.93

PROPORTION UTTR-FINAL 1.01 �4.76 4.74

FREQUENCY 1.12 �1.68 3.92
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awful). The word beer shows the opposite trend: it moves from 14%

to 2.3% PROPORTIONUTTERANCE-FINAL. This change is likely motivated by a

combination of two factors: a shift in the length of the noun

phrases in which the word beer appears, and a widely observed

correlation between the length (or weight) of noun phrases and

their position within the sentence. While beer is often quantified

in the first half of the corpus (e.g. a bottle of beer, a barrel of beer),

it tends to occur without quantification in the second half (e.g. a

beer, the beer). By Behaghel’s (1909) law of increasing length, we

expect longer noun phrases to be found nearer the end of the utter-

ance (cf. the generative notion of heavy NP shift; Ross, 1967;

Wasow, 2002), which could bring about the observed change in

proportion utterance-final. While these explanations are admit-

tedly speculative, they at least provide examples of plausible sce-

narios under which we may observe changes in the typical

position of a word within the utterance.

Fig. 2 shows two examples that illustrate the types of parallels

that we hypothesize to exist between changes in usage factors and

changes in word durations. All panels plot time along the horizon-

tal axis. The vertical axis represents frequency for the top panels,

and word duration for the bottom panels. The panels on the left

show how the word alright changed over time: its frequency

increased, while its duration decreased (even in relation to the rest

of the words; compare the solid blue regression line with the red

dashed line, which is an estimate of the baseline decrease in dura-

tion). The panels on the right represent the word terrible, which

displays the opposite pattern, slightly decreasing in frequency

and increasing in duration (relative to the rest of the words). These

words were handpicked as examples of the predictions in Section 3.

There are, of course, many other words that do not fit the predicted

patterns as closely, or that actually go against them. The models

presented in the next sections were designed to evaluate our

hypotheses in a statistically more robust way. We suggest that

the reader should take a mental note of Fig. 2, as similar illustra-

tions will be used as insets in our model prediction graphs in

Section 6.2.2.

The example words in Fig. 2 exhibit almost entirely linear

changes in both log frequency and word duration. However, as

noted in the previous section, not all changes in our corpus are lin-

ear. Appendix B provides a brief overview of non-linear changes in

frequency, and demonstrates that short-term fluctuations in our

frequency measure are generally not matched by corresponding

fluctuations in word duration.

6. Statistical analysis and results

Our main approach to statistically evaluating our hypotheses

will be to use a two-stage modelling strategy. The first stage is to

fit a control model, which accounts for the many local and lexical

factors that affect word duration in the corpus. From this model,

we extract by-word random slopes over year of birth, representing

the degree of durational change for each word, once these factors

are held constant. These slopes form the input to a treatment

model, which assesses each of our key predictors, in order to deter-

mine whether any of these predictors significantly contribute to

word-level changes in duration. Word duration slopes are simply

real numbers, with positive values indicating an increase in dura-

tion, and negative values a decrease. To give an example, we expect

that word duration slopes will be positive and relatively high for

word forms that are increasingly frequent in final position (cf.

Hypothesis 2b in Section 3).

The control model is a large linear mixed-effects regression

model based on all 271,764 observations in the data set. This

model has two goals. First, we want to extract word duration

slopes adjusted for nuisance variables and the local effects of pre-

dictability and position within the utterance. These adjustments

are required because of our focus on changes to lexical representa-

tions: it is not sufficient to look at raw word duration trajectories,

as these may reflect trivial non-lexical changes due to local effects

(cf. Section 2.1). Our second goal is to verify that static lexical fac-

tors such as frequency, informativity and typical position within

the utterance contribute to overall word durations independently

of local effects (cf. Section 3). The outcome variable in the control

model is word duration. The predictor variables include year of

birth, nuisance variables such as speech rate, local factors such as

predictability and lexical factors such as informativity. A fuller list

of predictors is presented in the next section. We also include ran-

dom intercepts for speakers, word forms and for the three separate

corpora, random slopes for speaker year of birth by words and for

each lexical measure by speakers. The full model specification is

presented in the supplementary materials.

The treatment model is a linear fixed-effects regression model.

This model is fit to the word duration slopes obtained by extracting

the by-word random slopes for year of birth. These residual ran-

dom slopes capture the direction and the magnitude of word dura-

tion changes for each word relative to the rest of the words after

controlling for local effects and other variables. The predictor vari-

ables in this treatment model are the lexical and dynamic lexical

predictors listed in Section 4.2. The former are included as control

variables, while the latter test our main diachronic hypotheses.

Since changes in word duration are also likely to be affected by

the baseline duration of the words (e.g. a word that is short to start

with may be less likely to show further shortening), baseline dura-

tion is also included in the model, as well as its interactions with

each lexical and dynamic lexical predictor. We did not perform

variable selection (e.g. stepwise regression) in order to avoid the

inflated rate of false positives associated with such methods

(Harrell, 2001).

There are several reasons for following a two-stage approach in

our analysis. While it is possible to test our main hypotheses using

a single model, this requires complex two and three-way interac-

tions that are somewhat difficult to plot or interpret. In contrast,

using word duration slopes as a dependent variable in our treat-

ment model makes the coefficients easily interpretable and allows

us to create relatively straightforward plots that show both model

predictions and individual data points (see Fig. 3). Moreover, since
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Fig. 2. Two examples of parallels between changes in usage factors and word

duration: alright (left) and terrible (right). The top panels plot word frequency

(adjusted for a million-word corpus) against year of publication in the Google N-

grams corpus. The bottom panels plot word duration against year of speaker birth.

All panels include regression lines (blue solid lines) fitted to the data along with 95%

confidence intervals. The bottom panels also show the expected decrease in

duration for words of similar length (red dashed lines).
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the treatment model is not a mixed model, it is possible to estimate

how much of the variance in word duration slopes is accounted for

by individual predictors (we will refer to this value as DR2; cf. Sec-

tion 6.2.2). This would be much less straightforward to calculate

for a single mixed effects regression model.

To ensure that our findings are not an artefact of the two-stage

design, we repeated the analysis with a single-stage model. We

report the results from this model in Section 6.2.2 alongside results

from the treatment model. Although it has been argued that

regressing on random coefficients extracted from another model

may lead to anti-conservative results (Hadfield, Wilson, Garant,

Sheldon, & Kruuk, 2010), in our case the results from the two-

stage approach appear more conservative than those from the

single-stage one, in the sense that the predicted effects are some-

what smaller.

6.1. Control model

6.1.1. Methods

As outlined above, the primary motivation for the control model

is to obtain estimates of changes in word duration, which hold

extraneous and local predictors constant. The outcome variable

for the control model is raw word duration measured in seconds.

Although some previous research used the logarithm of word dura-

tion instead of an untransformed measure (Bell et al., 2009;

Kuperman & Bresnan, 2012; Seyfarth, 2014), we found that the

raw word duration trajectories in our data set do not show clear

logarithmic properties. The results of the control model are the

same regardless of whether it is fit to untransformed or log dura-

tions. We decided to use raw durations, since the treatment model

is more directly interpretable if the slopes that serve as its outcome

variable are extracted from a control model fit to untransformed

word durations.

Our control model tested the key local and lexical predictors

introduced in Section 4.2. The local predictors are UTTERANCE-FINAL

and PREVIOUS/FOLLOWING PREDICTABILITY, while the lexical predictors are

PROPORTION UTTERANCE FINAL, PREVIOUS/FOLLOWING INFORMATIVITY and FREQUENCY.

The control model also includes speaker YEAR OF BIRTH, used as a

proxy for the time dimension of change. In addition, we also

included the following control variables: part-of-speech based on

automatic parsing using NLTK (Bird et al., 2009) (POS); the number

of segments in the word form based on a phonemic transcription of

the citation form (SEGMENT NUMBER); the number of syllables (SYLLABLE

NUMBER); the average length of a syllable in the utterance that the

token came from (i.e. the inverse of speech rate, which correlates

more linearly with word duration; AVG SYLL DURATION); whether the

token was utterance-initial (UTTERANCE-INITIAL); whether the word

form had been produced by the speaker in the last 20 s (i.e.

whether it is a repeated word form; REPETITION); and the baseline

duration of the token in its five-word context (in seconds; BASELINE

DURATION). As for the last predictor, we follow Demberg, Sayeed,

Gorinski, and Engonopoulos (2012) and Seyfarth (2014) in using

the MARYTTS speech synthesis toolkit (Schröder & Trouvain,

2003) to generate baseline durations. BASELINE DURATION is simply

the duration of the token in a synthesized speech segment where

it occurs in the same context as in the real recording. Including

BASELINE DURATION in the model allows us to ‘control for the segmental

length, content and context of each word form’ (Seyfarth, 2014, p.

144). All continuous variables are scaled and centred. We did not

test any interactions in this model.

6.1.2. Results

Table 2 presents a summary of the fixed effects in the control

model.

The significance values in this table all come from log-likelihood

ratio tests using the v2 statistic (cf. Seyfarth, 2014). For each pre-

dictor, we compared the full model containing the predictor and

a nested model without it. We report p-values for each predictor

based on this comparison. The p-value thus relates to the predictor

as a whole. As a result, we only report a single p-value for POS,

despite the fact that it is represented by more than a single coeffi-

cient in the model.

As is evident from Table 2, all factors in the model reach signif-

icance by this criterion, with the exception of FREQUENCY. We con-

ducted careful checks on collinearity for the model and found

that the signs for two of the predictors were substantially affected

by collinearity. Values for these predictors from models which

exclude collinear predictors (as outlined in Appendix A) are shown

below the original estimates in italics.

Since the control model is not the main focus of this paper, we

only discuss effects that are related to the synchronic predictions

outlined in Section 3. The majority of our predictions are borne

out by the model: FOLLOWING and PREVIOUS INFORMATIVITY both have a sig-

nificant positive effect on word duration (although, in the case of

PREVIOUS INFORMATIVITY, only when collinear predictors are removed),

and PROPORTION UTTERANCE-FINAL also has a significant positive effect

on word duration. These effects are significant regardless of

whether by-speaker random slopes for the relevant predictors

are included in the model or not (the summary in Table 2 shows

the results with random slopes).

However, one of our predictions does not seem to be supported

by the model: although the effect of FREQUENCY is in the right direc-

tion (i.e. it is negative), it does not reach significance. While this

seems to go against previous findings in the literature, this contra-

diction is only apparent. Previous research that has reported signif-

icant frequency effects on word duration has relied on models that

did not control for informativity (e.g. Gahl, 2008; Bell et al., 2009).

Seyfarth (2014), on the other hand, also included informativity as a

predictor alongside frequency, and failed to find a significant fre-

quency effect (Seyfarth, 2014). He argues that this is likely due to

collinearity between frequency and informativity. In line with

these observations, when PREVIOUS and FOLLOWING INFORMATIVITY are

removed from our control model, FREQUENCY becomes a significant

Table 2

Summary of fixed effects in control model. The p-values were generated using model

comparisons based on v2 tests. For UTTERANCE-FINAL and PREVIOUS INFORMATIVITY we display

both values from the original model (black) and from a model where collinear

predictors (BASELINE DURATION for UTTERANCE-FINAL; FOLLOWING PREDICTABILITY and FOLLOWING

INFORMATIVITY for PREVIOUS INFORMATIVITY) were removed (italics).

b SE t p(v2)

INTERCEPT 0.281 0.0055 51.32

YEAR OF BIRTH �0.012 0.0016 �7.79 < 0.0001

BASELINE DURATION 0.014 0.0005 27.66 < 0.0001

SEGMENT NUMBER 0.033 0.0021 15.37 < 0.0001

SYLLABLE NUMBER 0.011 0.0020 5.61 < 0.0001

AVG SYLL DURATION 0.032 0.0002 172.74 < 0.0001

UTTERANCE-FINAL �0.010 0.0011 �8.94 < 0.0001

0.012 0.0008 14.65 < 0.0001

UTTERANCE-INITIAL �0.010 0.0014 �7.48 < 0.0001

PROPORTION UTTR-FINAL 0.008 0.0023 3.34 0.0009

PREV PREDICTABILITY �0.002 0.0002 �9.67 < 0.0001

FOLL PREDICTABILITY �0.017 0.0002 �78.50 < 0.0001

PREV INFORMATIVITY �0.004 0.0021 �1.89 0.0588

0.006 0.0020 3.08 0.0020

FOLL INFORMATIVITY 0.015 0.0026 5.66 < 0.0001

FREQUENCY �0.002 0.0017 �1.10 0.2749

REPETITION �0.007 0.0004 �17.65 < 0.0001

POS = ADVERB �0.014 0.0059 �2.33 < 0.0001

POS = NOUN 0.007 0.0042 1.59 –

POS = VERB �0.015 0.0050 �3.02 –
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factor (b ¼ �0:004, SE = 0.0016, t ¼ �2:23; pðv2Þ ¼ 0:0266). This

suggests that while informativity-based predictors (and FOLLOWING

INFORMATIVITY in particular) are more robust than frequency, the sep-

arate contributions of these predictors are not easy to estimate due

to issues of collinearity.

In sum, our data set shows the same effects reported by

Seyfarth (2014), Bell et al. (2009) and Gahl (2008) and an addi-

tional lexical effect of the frequency with which a form occurs

utterance-finally. Note also that previous informativity is a weaker

predictor of word duration than following informativity, which is

in line with Seyfarth’s (2014) findings.

6.2. Treatment model

6.2.1. Methods

The outcome variable for the treatment model is word duration

slope, obtained by extracting by-word random slopes for speaker

year of birth from the control model.

To aid interpretability, the slopes were re-scaled so that they

represent the expected degree of deviation from the overall trend

in word duration trajectories over a period of 100 years. For

instance, a value of 0.02 would indicate that a given word

increased its duration by 20 ms over 100 years compared to the

rest of the words.

The predictors include all of the lexical predictors outlined in

Section 4.2: PREVIOUS and FOLLOWING INFORMATIVITY, PROPORTION UTTERANCE-

FINAL, and FREQUENCY. These were included mainly as control variables

to allow for the possibility that word durations may change differ-

ently as a function of static usage factors (e.g. a frequent word may

become shorter over time even if its frequency does not change).

We also include the key dynamic lexical predictors: CHANGE IN

FREQUENCY, CHANGE IN PREVIOUS/FOLLOWING INFORMATIVITY, and CHANGE IN

PROPORTION UTTERANCE FINAL. These predictors constitute a test of

Hypotheses 3a-3c.

In addition, the model also includes AVERAGE BASELINE DURATION

(calculated by averaging the context-specific baseline duration val-

ues for a given word) and its interactions with all other predictors.

This allows the estimated effects of our predictors to vary as a

function of the words’ baseline duration. All predictors were scaled

and centred.

We also fit an alternative single-stage model to the data. This

model is a mixed effects regression model, which is identical to

the control model in terms of its general structure, including the

data set, the outcome variable and its random effects structure.

The only difference between the control model and the single-

stage model is that the latter also includes interactions between

year of birth and all the lexical and dynamic lexical predictors

listed in the previous paragraphs (including interaction terms

between lexical/dynamic lexical variables and average baseline

duration, yielding three-way interactions). These added interaction

terms capture the degree to which the slope of the regression line

corresponding to year of birth changes as a function of lexical and

dynamic lexical predictors, providing an alternative test of our

hypotheses. The resulting model is slightly unusual in that it con-

tains interaction terms between year of birth and dynamic predic-

tors, but does not contain the dynamic predictors themselves as

main terms. This is because these main terms are theoretically

meaningless in the context of the current model. Although we

expect a correlation between changes in usage factors and changes

in word duration, we do not expect a correlation between changes

in usage factors and a word’s average duration (which is what the

main terms would capture). Note, however, that we also ran the

model with the main terms included, and obtained exactly the

same results (with no significant main terms for dynamic

predictors).

6.2.2. Results

Table 3 shows a combined model summary for the treatment

model and the single-stage model. Both sets of estimates are taken

from full models, but the table only includes terms that were sig-

nificant in at least one of the two models (and CHANGE IN FREQUENCY,

which is not significant as a main term, but is part of a significant

interaction with AVERAGE BASELINE DURATION). The left-hand side of

Table 3 shows each of the estimates from the treatment model

along with the corresponding standard error, t-value and p-value.

The right-hand side of the table shows estimates, standard errors,

t-values and p-values from the single-stage model.3 Although not

shown in the table, all of the terms from the single-stage model

are interactions with year of birth. In order to make the results more

comparable across the two models, the estimates and standard

errors from the single-stage model were rescaled to represent pre-

dicted deviations from the general decrease in word duration over

a period of 100 years (see Section 6.2.1). All of the non-dynamic lex-

ical factors were included in these models, but none of them reached

significance.

Fig. 3 provides a visual summary of the same findings in the

form of model prediction plots. The solid lines and the confidence

intervals represent model predictions from the treatment model,

while the dashed lines represent model predictions from the

single-stage model. Separate plots are presented for CHANGE IN

PREVIOUS INFORMATIVITY, CHANGE IN PROPORTION UTTERANCE-FINAL and CHANGE IN

FREQUENCY. The latter two also display interactions with baseline

duration. Although the predictors were centred and scaled in both

models, the prediction plots show the original untransformed

scales to aid interpretability. In addition, the horizontal axes also

show equivalent fold changes calculated in the same way as in

Section 5. The plots also include insets that illustrate predicted

changes in word duration (blue solid lines) at different values of

the predictor variable, along with the baseline decrease in word

duration observed in the corpus (red dashed line; see previous

section). These lines were generated from the raw word duration

data by averaging over regression lines fit to multiple words with

slope values in a specific range.

Collinearity is not an issue for the treatment model. There is

only one pair of variables that are correlated at jRj > 0:5, FOLLOWING

INFORMATIVITY and PROPORTION UTTERANCE-FINAL. Removing either of these

variables did not affect the estimates for any of other the variables.

Collinearity is a more complex matter for the single-stage model,

as it includes a wide range of control variables alongside our main

predictors. We did not perform separate collinearity checks for this

model as it only plays a supporting role in our analysis and the

results from this model are quantitatively very similar to those

from the treatment model.

The results support all three hypotheses in Section 3. All the

observed patterns are in the expected direction. The descriptions

in the summary below should all be interpreted in relation to the

overall decrease in word duration. Thus, when a given set of words

is described as ‘increasing in duration’, this increase is relative to

the rest of the words (i.e. the red line in the insets). In absolute

terms, the words may still be getting shorter, although less so than

other words.

Words that are becoming less informative based on the previ-

ous context are becoming shorter, while words that are becoming

more informative show the opposite pattern (Fig. 3a; cf. Hypothe-

sis 3a in Section 3). Short words that are increasingly frequent in

utterance-final position are becoming longer, while long words

do not seem to be affected by CHANGE IN PROPORTION UTTERANCE-FINAL

3 The t-values and p-values for the single-stage model are not in full correspon-

dence as the p-values for this model are based on log-likelihood ratio tests, not t-tests

(cf. Section 6.1.2).
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(Fig. 3b; cf. Hypothesis 3b in Section 3). Note also that short words

in general seem to show an increase in duration relative to the rest

of the words, which is likely due to slight non-linearities in the way

word durations vary (i.e. long words have more room to shorten,

while short words have more room to lengthen). Finally, long

words that are becoming more frequent show a decrease in

Table 3

Summary of effects in the treatment model (left) and the single-stage model (right). Effects with an � symbol are interaction terms. The numeric columns provide standard

information about the estimated effects.

TREATMENT MODEL SINGLE-STAGE MODEL

b SE t pð> jtjÞ b SE t pð> jv2jÞ

CHANGE IN PREVIOUS INFORMATIVITY 0.0016 0.0008 2.02 0.0434 0.0034 0.0013 2.61 0.0094

CHANGE IN PROPORTION UTTERANCE-FINAL 0.0018 0.0008 2.36 0.0185 0.0026 0.0012 2.24 0.0252

CHANGE IN FREQUENCY �0.0012 0.0010 �1.26 0.2087 �0.0021 0.0015 �1.42 0.1553

AVERAGE BASELINE DURATION �0.0059 0.0013 �4.40 <0.0001 �0.0060 0.0019 �3.21 0.0017

CHANGE IN PROPORTION UTTERANCE-FINAL � AVERAGE BASELINE DURATION �0.0017 0.0006 �3.07 0.0022 �0.0029 0.0009 �3.03 0.0060

CHANGE IN FREQUENCY � AVERAGE BASELINE DURATION �0.0012 0.0006 �2.24 0.0254 �0.0023 0.0009 �2.44 <0.0001

R2 ¼ 0:147 (14.7%); Fð17;680Þ ¼ 6:877; p < 0:0001.

Fig. 3. Raw data from the treatment model and model predictions from the treatment and single-stage models. The three main panels are set up as follows: the vertical axis

indicates change in word duration (the outcome variable); the horizontal axis indicates (a) change in previous informativity, (b) change in proportion utterance-final, (c)

change in frequency. To aid interpretability of dynamic predictors, equivalent fold changes are indicated above the values on the horizontal axes. Panel (a) shows the data

points (grey dots) along with model predictions from the treatment model (solid black line) and the corresponding 95% confidence intervals (grey areas around regression

line) as well as model predictions from the single-stage model (dashed grey line). Panels (b) and (c) also display the interaction between baseline duration and the relevant

predictors by (i) including separate regression lines for short words (orange; at the lower quartile of baseline duration values) and long words (aqua; at the upper quartile of

baseline duration values), and (ii) using the same colours to distinguish data points representing short and long words. As before, solid lines and the grey areas show

predictions and confidence intervals from the treatment model, while the dashed lines show predictions from the single-stage model. For all panels, the insets show the

baseline decrease in word duration (red dashed line) and the predicted change for words with a given value along horizontal axis (blue solid line). Note that the insets show

predicted values, not specific words.
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duration, while short words are more or less unaffected by changes

in frequency (Fig. 3c; cf. Hypothesis 3c in Section 3).4 Somewhat

surprisingly, of the two dynamic informativity-based predictors only

CHANGE IN PREVIOUS INFORMATIVITY is significant and not CHANGE IN FOLLOWING

INFORMATIVITY. This is unexpected in light of the observation that the

synchronic effects of following predictability and informativity are

stronger than the effects of previous predictability and informativity.

The effect sizes vary both across predictors and models. The

single-stage estimates are consistently more extreme than those

from the treatment model, which is especially clear in Fig. 3. Fol-

lowing Bell et al. (2009), we use DR2 to quantify how much of

the variability in the word duration slopes is accounted for by

specific predictors. This value is calculated by comparing the R2

value of a version of the treatment model including the relevant

predictors and another version excluding them. R2 is measured in

percentages in order to make the figures easier to interpret. We

compare the full model with nested models where both the rele-

vant main term and its interaction with AVERAGE BASELINE DURATION

are dropped.

The DR2 value for CHANGE IN PREVIOUS INFORMATIVITY is relatively low

at 0.64. Looking at the predictions from the more moderate treat-

ment model, it appears that even large changes in this predictor

only lead to small changes in word duration slopes. For instance,

the difference between the two solid black dots in Fig. 3a is only

about 10 ms, meaning that words that are evolving in opposite

directions with respect to previous informativity are predicted to

diverge only by 10 ms in duration over a hundred years. To put this

figure into perspective, 10 ms is only about 4% of the median word

duration (260 ms) in the corpus. The effects of CHANGE IN PROPORTION

UTTERANCE-FINAL and CHANGE IN FREQUENCY along with their interactions

with baseline duration are substantially more robust, with DR2 val-

ues of 1.29 and 3.59, respectively. The strength of these effects is

also clearly visible in the prediction plots in Section 3. For instance,

words whose frequencies are changing in opposite directions may

diverge by more than 20 ms in duration over a hundred years (cf.

the solid black dots in Fig. 3c). The estimates from the single-

stage model are even more extreme, and are nearly twice the size

of those from the treatment model.

7. Discussion and conclusions

Let us briefly summarize the main findings presented in the

previous sections.

In Section 6.1.2, the data set was shown to exhibit robust over-

all synchronic lexical effects of informativity and typical position in

the utterance, replicating and extending previous findings in the

literature (Bell et al., 2009; Gahl, 2008; Seyfarth, 2014). The effect

of frequency was found not to be significant in the full model (in

line with Seyfarth’s 2014 findings), but did reach significance when

the model was fitted without collinear informativity-based predic-

tors (similar to Bell et al., 2009; Gahl, 2008). These results reinforce

a number of existing results showing that local biases exert a

cumulative effect on the lexicon, leading to variation in lexical

representation.

Our primary hypotheses regarded the degree to which changing

usage might predict change over time. Indeed, we found evidence

for dynamic effects for all three of our predictors (Hypotheses 3a-

3c). Words that were increasing/decreasing in informativity (based

on the previous contexts) showed a change in the same direction in

duration (e.g. increasing informativity is associated with increasing

duration). Long words that were becoming more frequent were

also becoming shorter. Short words that were increasingly appear-

ing utterance finally were also becoming longer. It is important to

recall that the treatment model holds constant the local effects of

the predictors. Thus, the results show – for example – that words

that are increasing in utterance-finality are also increasing in dura-

tion, even when the local position of each token is accounted for.

7.1. Effect sizes

Although there is good evidence for the role of the dynamic pre-

dictors, the effect sizes are not large. Neither the individual DR2

values, nor the overall R2 value for the treatment model are partic-

ularly high, indicating that there is a substantial amount of varia-

tion in word duration slopes that is not explained by static and

dynamic predictors based on usage factors. Some of the predicted

differences in word duration slopes shown in Fig. 3 are also small,

although CHANGE IN PROPORTION UTTERANCE-FINAL and CHANGE IN FREQUENCY

have a more robust influence on durations, leading to differences

in word duration slopes that peak around 20–30 ms/100 years.

The relatively small contribution of usage factors to word duration

variation is not surprising given previous findings in the literature.

Although frequency and predictability are more or less consistently

found to be significant predictors of word duration (see Sec-

tion 2.1), the multiple regression models presented by Bell et al.

(2009) show that individual predictors based on frequency and

predictability rarely account for more than 1–2% of the variance

in word durations (Bell et al., 2009, 101). These figures are very

similar to the DR2 values reported in Section 6.2.2. Since syn-

chronic effects based on usage factors are relatively small, there

is no reason to expect that changes in word duration should show

more pronounced effects.

An important distinction is between informativity versus fre-

quency and position within the utterance. The hypotheses related

to CHANGE IN FREQUENCY (3b) and CHANGE IN PROPORTION UTTERANCE-FINAL (3c)

receive strong support from the treatment model. Note that both

of these effects are mediated by baseline duration. Our predictions

based on informativity receive less support from the data. While

CHANGE IN PREVIOUS INFORMATIVITY is significant in the final treatment

model, CHANGE IN FOLLOWING INFORMATIVITY is not, even though one would

expect this effect to be stronger based on the synchronic results.

We elaborate on these observations below.

The relative robustness of CHANGE IN FREQUENCY and CHANGE IN PROPOR-

TIONUTTERANCE-FINAL as opposed to informativity-related dynamic pre-

dictors is likely linked to the observation that the former exhibit a

much wider range of changes than the latter. As shown in Table 1,

changes in frequency and proportion utterance-final are often

around 2–3 times greater than changes in previous and following

informativity (when quantified using fold changes). Although it is

difficult to say whether such a comparison across different types

of predictors is meaningful, it appears that informativity is some-

what more stable in our corpus than frequency and typical position

in the utterance. This relative stability may contribute to the small

size of informativity-based effects on word duration slopes.

We suspect that there is also another, slightly more mundane

reason for these differences in effect size. While CHANGE IN PROPORTION

UTTERANCE-FINAL and especially CHANGE IN FREQUENCY were estimated in a

robust way, the reliability of the language models required to cal-

culate predictability and informativity decreases when separate

models are constructed for the two halves of the corpus. This

makes the CHANGE IN INFORMATIVITY measures rather noisy, which can,

in turn, lead to smaller effect sizes and non-significant estimates.

4 Since the distribution of CHANGE IN FREQUENCY values is positively skewed with a few

outliers at the positive end, we have refit the model to a data set where 18 words with

the highest CHANGE IN FREQUENCY values were removed (this constitutes 2.5% of the data

set). This actually slightly increased the strength of the effect for long words, and did

not change the effect for short words at all.
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This may also explain the apparent contradiction that FREQUENCY is

less robust than PREVIOUS/FOLLOWING INFORMATIVITY in the control model,

but CHANGE IN FREQUENCY is more robust than CHANGE IN PREVIOUS/FOLLOWING

INFORMATIVITY in the treatment model. The informativity measures in

the control model are robust and therefore act as suppressors for

the frequency effect. However, our estimates of change in informa-

tivity are noisier, allowing the effect of CHANGE IN FREQUENCY to surface.

It is perhaps also a result of this noisiness that the effect of CHANGE IN

FOLLOWING INFORMATIVITY is weaker than that of CHANGE IN PREVIOUS INFORMA-

TIVITY, which is the opposite of what we would expect based on the

synchronic results and previous observations in the literature.

7.2. Interactions with baseline duration

As noted above, the effects of CHANGE IN FREQUENCY and CHANGE IN PRO-

PORTION UTTERANCE-FINAL vary as a function of AVERAGE BASELINE DURATION.

Specifically, only long words are affected by the former and only

short words are affected by the latter. This finding is relatively easy

to interpret if we look more carefully at the effects of these two

predictors. As shown in Fig. 3b, the main manifestation of the effect

of CHANGE IN PROPORTIONUTTERANCE-FINAL is a lengthening of words that are

becoming more frequently utterance-final. On the other hand, the

main manifestation of the effect of CHANGE IN FREQUENCY is a shortening

of words that are becoming more frequent in general. The interac-

tion with baseline duration follows straightforwardly from these

observations: long words have simply more room to shorten, while

short words have more room to lengthen.

7.3. Possible accounts

We interpret these results as evidence in favour of the accumu-

lation of local effects at the lexical level. As outlined in Section 2.2,

there are a number of different views about the nature of the infor-

mation that accumulates in lexical representations. The most

straightforward interpretation is that details of fine phonetic vari-

ation are directly represented in the lexicon. However, it is worth

reviewing possible alternate accounts of the results. We do this

by stepping through the different approaches considered by

Seyfarth (2014) (and briefly discussed in Section 2.2) to account

for his finding that informativity is a robust predictor of word-

duration.

One potential account invokes abstract lexical representations

in which a word may be represented by a non-reduced and one

or more reduced variants (Bürki et al., 2010). In such an account,

increased usage of a reduced variant due to changing local factors

would lead to the reduced variant being more easily accessible.

This variant would then be more likely to be selected even in the

absence of favouring local factors. In principle, such an account

would predict that word duration distributions should be bimodal

or multimodal (representing the different reduced and non-

reduced variants), and that the durational shifts we have observed

should simply represent shifts in the frequencies of the modes. In

practice, these predictions are impossible to test in our highly vari-

able data set, where individual modes are likely obscured by the

large amount of noise due to measurement errors, across-speaker

variation, fluctuations in speech rate, and so on.

Another possibility raised by Seyfarth is that speakers construct

lexical representations relying on a ‘rational speech production’

strategy. This strategy consists in choosing a default form for any

given word that minimizes the overall need to deviate from that

form in production. The representation does not contain a distribu-

tion of past encounters of a word, but is nonetheless still shaped by

past experience. In such an account, deviations from the default

representation involve planning costs, and are minimized

(Seyfarth, 2014). This emphasis on motor planning is consistent

with the model of speech production advocated in MacDonald

(2013). An account based on ‘efficient articulation’ would posit a

similar mechanism at the level of the articulatory gesture, which

allows speakers to learn how tight the gestural timing needs to

be for a particular word (cf. Lavoie, 2002). Our results would

require the ‘default’ form of these accounts to be highly dynamic,

shifting gradually in order to keep track of changes in usage pat-

terns. Therefore, these accounts still need to rely on a tight feed-

back loop at the lexical level, which is highly responsive to the

distribution of experiences of a particular word.

Finally, Seyfarth suggests that it is also possible to account for

the informativity results without phonetically detailed lexical rep-

resentations. In such an account, individuals store not the overall

phonetic detail of previous encounters, but rather some abstracted

information about the average predictability of a word. Any indi-

vidual production, then, would be influenced by this probability,

such that words that are overall more probable are produced in a

more reduced way. This account requires tracking of usage pat-

terns at the word level in order to establish the overall probability.

In addition, as pointed out by Seyfarth, it also requires speakers to

balance multiple types of local and lexical probability in order to

settle on a production target. Our own results add further to this

complexity, by requiring that the probabilities are constantly

updated, and also that they exist at multiple levels, including the

likelihood of a word occurring utterance-finally.

Regardless of the exact nature of lexical representations, any

account of our results must involve updating of something at the

word level – be it phonetic detail, probability distributions, default

productions or gestural patterns. The evidence presented here for a

feedback loop between local usage patterns and lexical representa-

tions is unequivocal. We believe the storage of fine phonetic detail

is the most parsimonious account. It is also consistent with a myr-

iad recent results in the literature, showing that word-level repre-

sentations are shaped in phonetically gradient ways by the

distribution of linguistic and social environments in which we

encounter them (Hay & Foulkes, 2016; Hay & Maclagan, 2012;

Raymond, Brown, & Healy, 2016; Sóskuthy, Foulkes, Haddican,

Hay, & Hughes, 2015; Walker & Hay, 2011).

7.4. Implications for language change

The observed patterns of co-adaptation between usage and

duration also have important implications for studies of language

change. Following Weinreich, Labov, and Herzog (1968), many

scholars argue that the selection of a specific pathway of change

in a given language at a given point in time is a fundamentally

social affair (e.g. Croft, 2000; Labov, 1994, 2002; Milroy & Milroy,

1985). Otherwise, how could it be that different languages and

varieties undergo different sets of changes seemingly at random,

even in cases where the same changes could be applicable? While

we acknowledge the crucial role of social factors in language

change, the results in this paper suggest another potential contrib-

utor to such cross-linguistic differences. We have demonstrated

that changes in one linguistic domain (the distribution of a word

across different contexts) can be related to changes in a different

domain (word duration). While two languages or varieties may

appear very similar in a given linguistic domain (e.g. they have

the same phoneme inventories), they may be quite different in

other domains (e.g. the frequency distributions of different words).

The types of mechanisms that we have identified could lead to sit-

uations where such differences in one domain result in different

patterns of change in another domain (cf. Sóskuthy, 2013, 2015).
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7.5. Conclusions

Taken together, our data provide solid evidence that lexical rep-

resentations respond to changes in usage factors. The parallel

changes we have found are not simply the result of superficial

shifts in exposure to local effects, but manifest themselves at a dee-

per level. To our knowledge, this is the first diachronic demonstra-

tion of the emergence of lexical effects on word durations based on

quantitative evidence.

The production-perception feedback loop provides a straight-

forward account of the observed phenomena by suggesting that

lexical effects are simply the cumulative consequences of local

biases in cognitive representations. The current study is unique

in that it provides a view of the production-perception feedback

loop in action, looking directly at the emergence of lexicalized

effects. It thereby provides even stronger evidence for this mecha-

nism than previous studies, which have only been able to investi-

gate it by looking at its end results.
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Appendix A. Checks on control model collinearity

The estimates in the control model summary need to be treated

with a certain amount of caution, as collinearities in linear regres-

sion models are known to distort parameter estimates (Friedman &

Wall, 2005). In certain extreme cases these distortions may mani-

fest as a change of sign for variables that are less strongly corre-

lated with the outcome variable than another collinear predictor

(Friedman & Wall, 2005; Wurm & Fisicaro, 2014; see also

Seyfarth, 2014 for examples of such cases from a related study).

Whether such distortions are problematic from the point of view

of model interpretation depends on the role of the predictors in

question. If the distorted predictors are included in the model

purely as controls, there is no reason to worry about their esti-

mates, as they do not affect the interpretation of the treatment

variables or the model as a whole (Tabachnick & Fidell, 2007;

Wurm & Fisicaro, 2014). One such case arises with UTTERANCE-FINAL,

which has a surprising negative estimate in the control model, sug-

gesting that words in utterance-final position are, in fact, shorter

than elsewhere (see the values in black next to UTTERANCE-FINAL in

Table 2). This estimate goes against previous observations in the

literature, and is also the opposite of what we observe in the raw

data (without controlling for other variables): utterance-final

words are on average 36 ms longer than other words, and this rela-

tionship is strong and significant by an unpaired two-tailed t-test

(t ¼ 27:663; df ¼ 11914:12; p < 0:0001). The negative estimate

in the original model turns out to be an artefact due to the inclu-

sion of BASELINE DURATION. The baseline durations generated by the

MARYTTS system already include contextual effects such as

lengthening in final position, which makes them highly collinear

with the variable UTTERANCE-FINAL. When the model is refit without

BASELINE DURATION, the estimate for UTTERANCE-FINAL changes sign in the

expected direction (see the values in italics next to UTTERANCE-FINAL

in Table 2).

Particular caution has to be exercised when at least one of the

collinear predictors is a treatment variable. Therefore, we have per-

formed two checks for each of the lexical variables that are essen-

tial to the hypotheses presented in Section 3: PROPORTION UTTERANCE-

FINAL, PREVIOUS INFORMATIVITY, FOLLOWING INFORMATIVITY and FREQUENCY. First,

for each lexical variable we compared the model estimate to the

zero-order correlation between the lexical variable and the out-

come variable (word duration; cf. Wurm & Fisicaro, 2014, fn. 4).

Only one discrepancy was found: PREVIOUS INFORMATIVITY is positively

correlated with word duration when other control variables are

not included (R ¼ 0:35; df ¼ 271;763; p < 0:0001), but the model

shows a negative estimate (see the values in black next to PREVIOUS

INFORMATIVITY). This suggests that the model estimate for PREVIOUS

INFORMATIVITY may have been biased by collinear variables. Second,

we checked for strong correlations between each lexical variable

and all other variables. If any variable x in the model was found

to correlate with one of the lexical variables at around jRj > 0:5,

we refit the model without x and checked whether there were

any substantial changes to the estimate or the significance value

for the lexical variable. Again, there was only one case where a

change was found: when both FOLLOWING PREDICTABILITY and FOLLOWING

INFORMATIVITY (both relatively strongly correlated with PREVIOUS INFOR-

MATIVITY: R ¼ 0:64; df ¼ 271;763; p < 0:0001 for FOLL INFORMATIVITY

and R ¼ �0:44; df ¼ 271;763; p < 0:0001 for FOLL PREDICABILITY) were

removed from the model, the sign of the estimate for PREVIOUS INFOR-

MATIVITY changed to positive (see the italics values next to previous

informativity in Table 2). All other lexical variables remained stable

when collinear predictors were removed, though, as noted in the

main text, the effect of FREQUENCY increases in strength when PREVI-

OUS and FOLLOWING INFORMATIVITY are removed. We interpret these find-

ings as a strong indication that the negative estimate for PREVIOUS

INFORMATIVITY in the model is simply due to collinearities, and

assume that the estimates obtained after the removal of collinear

predictors are a better reflection of the real effect of PREVIOUS INFOR-

MATIVITY (which was also found to be positive in Seyfarth’s (2014)

study).

Appendix B. Non-linear changes in frequency

Our corpus does not allow us to study how non-linear changes

in informativity or proportion utterance-final affect word duration

(cf. Section 4.2.3). However, it is possible to look at non-linearities

in word frequency thanks to the level of detail in the Google N-

grams data. In this appendix, we look at the degree to which words
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in our corpus show non-linear changes in frequency, and then

attempt to see whether these non-linearities have any visible

effects on the evolution of word durations in our corpus.

The analyses in this section use generalized additive models

(GAMs; Wood, 2006). GAMs are an extension of linear regression

modelling, which allow the inclusion of so-called smooth terms

in regression models alongside traditional linear terms. Smooth

terms in GAMs are similar to more conventional ways of represent-

ing non-linearity in regression models, such as polynomial regres-

sion. In the case of polynomial regression, several transformed

versions of the same variable are created by raising them to differ-

ent powers, and all of these are included as predictors in the same

model. The degree of the polynomial (i.e. the number of trans-

formed terms in the model; e.g. y � xþ x2 vs. y � xþ x2 þ x3 þ x4)

has to be decided on somewhat arbitrarily before the analysis is

performed, and this directly affects the amount of non-linearity

or ‘wiggliness’ that the model can support. In contrast, smooth

terms in GAMs use penalty terms to determine the degree of ‘wig-

gliness’, and estimate these penalty terms directly from the data

using generalized cross-validation (Wood, 2006).

In this analysis, we use very simple GAMs with Google N-grams

word frequency as the output variable, and a single smooth term

corresponding to year of publication as the only predictor variable.

The number of basis functions (i.e. the maximum amount of wig-

gliness allowed by the models) is set to 90 for all of the models

described below.

In the first set of models, we fit separate GAMs to each of the

698 word frequency trajectories, and extracted the estimated

penalty term from each model. Since lower penalty terms corre-

spond to more wiggly word frequency curves, we can use the

estimated values as a rough measure of non-linearity. Fig. B.4

shows a density plot of the smoothing penalties and word fre-

quency trajectories over time for three words exemplifying differ-

ent levels of smoothness. The bulk of the penalty values lie in a

region with at least some degree of non-linearity, as shown by

the trajectory for dry, which comes from the centre of the distri-

bution. Since a single penalty value can correspond to many dif-

ferent trajectory shapes, there are plenty of other types of curves

near the median value, but they are all characterized by a certain

amount of wiggliness. There are relatively few words that show

no non-linearity at all (i.e. words with penalty values close to

or higher than that of rich). In sum, the majority of the frequency

trajectories corresponding to the words in our corpus show at

least some level of non-linearity.

This leads us to ask whether non-linear changes in frequency

are reflected in word duration trajectories. In order to answer this

question, we need to return to our control model (cf. Section 6.1.2).

The control model contains log frequency as a predictor. Since

changes in frequency have been shown to affect word durations

in Section 6.2.2, we expect that replacing this static measure with

a time-varying measure (i.e. one that provides different values for

two tokens of the same word produced by speakers born in differ-

ent years) would improve the performance of the treatment model.

Moreover, we can construct different versions of this dynamic fre-

quency measure with different levels of smoothing over time. If

non-linearities in the frequency trajectories affect changes in word

duration, we expect that non-linear versions of the dynamic mea-

sure should outperform those that smooth over the trajectory in a

linear fashion.

We implemented this comparison by fitting different sets of

GAMs to the frequency trajectories corresponding to the words

in our corpus. The smoothing penalty was fixed at the same value

for all words within a single set, and was varied systematically

between sets. For each set of GAMs, we refit the control model

replacing the static measure of word frequency with model predic-

tions from the by-word GAMs. These model predictions represent

dynamic estimates of word frequency that are smoothed over time.

The top panels in Fig. B.5 illustrate different degrees of smoothing

over the same trajectory corresponding to different smoothing

penalties. At low values, the smoother essentially links individual

data points without any smoothing. At intermediate values, we

see higher degrees of smoothing, moving towards a straight-line

approximation (cf. the third panel from the left). At very high val-

ues, the smoother becomes a flat line, which corresponds to a static

estimate of frequency (cf. the fourth panel). This flattening occurs

as a result of using a thin plate regression spline with shrinkage

(otherwise the smoother would converge to a linear regression line

at high values).
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The bottom panel in Fig. B.5 shows AIC values from different

versions of the control model, which all include dynamic esti-

mates of word frequency based on model predictions from by-

word GAMs. The smoothing penalty for the GAMs increases

gradually from left to right. Two important observations can be

made about this graph. First, true dynamic estimates of fre-

quency clearly result in better model fits than static estimates.

This is shown by the fact that AIC values are markedly lower

in the first two-thirds of the graph, before the GAM estimates

flatten out. Second, the lowest AIC value comes from a model

with a relatively high smoothing penalty, where the smoother

is close to a linear regression line. In fact, an even lower AIC

value can be obtained by using linear regression models instead

of GAMs to calculate the dynamic estimates of frequency

(�585110:4 for linear models vs. �585109:8 for GAMs). This

means that linear estimates of frequency yield better model fits

than non-linear ones.

In sum, the first set of models show that changes in word fre-

quency include substantial non-linearities, while the second set

of models show that word durations only seem to react to broad

changes in frequency, and are not affected by non-linearities. This

does not necessarily imply that short-term changes in frequency

are irrelevant to changes in word duration. It may simply be the

case that our corpus-based estimates of frequency and word dura-

tion are too course-grained to capture such finer parallels. More-

over, our frequency estimates come from a written corpus

representing a different (though closely related) variety, which

may further weaken short-term interactions between the two

measures. Since our measures of informativity and typical position

in utterance are even noisier, it is safe to conclude that our data set

is not sufficiently detailed to look for very short-term parallels

between word usage and duration.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.cognition.2017.

05.032.
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