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Highlights

e Learning curves are useful to diagnose data-model interactions.

e Phenology model predictions improve asymptotically with size of the calibration
dataset.

e More than 7-9 observations of anthesis did not improve model performance of
phenology models for 2050’s (RCP8.5)

e More abundant but less accurate measurements can lead to similar prediction

performance.
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Abstract

A prerequisite for application of crop models is a careful parameterization based on
observational data. However, there are limited studies investigating the link between quality
and quantity of observed data and its suitability for model parameterization. Here, we explore
the interactions between number of measurements, noise and model predictive skills to
simulate the impact of 2050’s climate change (RCP8.5) on winter wheat flowering time. The
learning curve of two winter wheat phenology models is analysed under different assumptions
about the size of the calibration dataset, the measurement error and the accuracy of the model
structure. Our assessment confirms that prediction skills improve asymptotically with the size
of the calibration dataset, as with statistical models. Results suggest that less precise but larger
training datasets can improve the predictive abilities of models. However, the non-linear
relationship between number of measurements, measurement error, and prediction skills limit
the compensation between data quality and quantity. We find that the model performance does
not improve significantly with a theoretical minimum size of 7-9 observations when the model
structure is approximate. While simulation of crop phenology is critical to crop model

simulation, more studies are needed to explore data needs for assessing entire crop models.

Key words: Learning curve, Anthesis, Triticum aestivum, Dataset, Climate Change
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1. Introduction

Models are increasingly used in impact assessments of climate change on crop production and
food security (Ruane et al., 2017). Models intended for these applications require suitable
datasets to minimize the error in the projections (Wallach, 2011). The crop modelling
community has repeatedly addressed and improved the definition of suitable datasets (Nix,
1983; Boote et al., 1999; Hunt et al., 2001; White et al., 2013). The latest efforts have been
made in the context of AgMIP (Rosenzweig et al, 2013) and MACSUR (Rétter et al., 2013)
projects. Boote et al., (2016) developed a generic qualitative method that ranks datasets based
on the presence or absence of input and state variables. Kersebaum et al., (2015) designed a
numerical classification approach where rules based on expert opinion provide scores for
several desirable features. The total quality score of a dataset is the summation of scores from
each feature. Further contributions to the definition of suitable datasets go through replacing
expert opinion by empirically based rules. Hence, further research is needed assessing the
impacts of dataset features on simulations and model performance. Confalonieri et al., (2016)
worked in this direction by introducing a method for assessing changes in model performance
depending on measurement errors. He et al., (2017) quantified the repercussions of the number
of seasons and state variables on their effectiveness to calibrate a crop model. The results of
these studies are key to elucidate the interactions between data and crop model but their

comparison with the rules in Kersebaum et al., (2015) is not straightforward. In order to favour
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this comparison, features of datasets should be changed and assessed in a progressive and

comprehensive manner.

The number of observations and the measurement error (as a proxy for number of replicates)
are two essential features of datasets in the scoring system by Kersebaum et al., (2015). This is
due to their critical role in estimating model parameters and their uncertainty (Wallach et al.,
2011; Confalonieri et al., 2016) and the relevance of parameter uncertainty in impact
assessments of climate change (Wallach et al., 2011; Wallach et al., 2017). Large and accurate
datasets could reduce parameter uncertainty but the crop modelling community has suffered
from chronic data scarcity exacerbated by ensemble modelling (Rotter et al., 2011; Jones et al.,
2017). The maturation of new information technologies, namely mobile technology and remote
sensing, and the implementation of new initiatives, such as crowdsourcing, could help solving
this situation (Janssen et al., 2017) at the cost of accuracy. An assessment of suitable datasets
for crop modelling in terms of number of observations and measurement error may bring light

to the potential benefits of these technologies to improve crop impact projection performance.

The learning curve approach evaluates in a progressive manner the impact of the size and
measurement error of the calibration dataset on model performance. Learning curves are graphs
displaying the evolution of simulation errors with the size of the training dataset (Perlich et al.,
2003; Perlich, 2011). Errors usually evolve asymptotically with the size of the training dataset,
increasing for the training dataset and decreasing for the testing dataset. The shape of the curves
can reveal, for instance, when the model is considered to have a sufficiently large calibration
dataset. The size is considered large enough when greater observations produce small changes
in the simulation skills. However, defining when the changes are small enough depends on the
model application. The learning curve approach has been used in the past with statistical
models in the field of machine learning (e.g. Perlich, 2011 or Figueroa et al., 2012). To our
knowledge, the method has not been applied yet for the assessment of dataset features in crop

modelling.

Drawing the learning curves requires calibrating and evaluating the model repeatedly, changing
the size of the calibration dataset. This makes the process computationally demanding and data
intensive. Phenology combines its relevance for yield (Craufurd and Wheeler, 2009) with its
simple mathematical formulation and fast execution (e.g. Ceglar et al., 2011). Within the
phenology phases, flowering is particularly critical; it is a very sensitive phase to temperature

extremes (Ugarte et al., 2007) and it defines the balance between source-sink organs. Therefore,
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the simulation of flowering time represents a practical starting point to introduce the learning
curve approach into crop modelling. Phenology modelling offers several working solutions
with different mathematical formulations (Ceglar et al., 2011; Alderman and Stanfill, 2017).
Learning curves are likely influenced by model structures, since prediction skills of different
modelling hypotheses vary due to specific error compensations forged during calibration
(Wallach et al., 2011). Hence, robust conclusions about data-model interactions with the

learning curves require the assessment of multiple structures.

Our study aims to analyse the influence of datasets on model simulation performance. More
specifically, we seek to elucidate the impact of number and measurement error of crop state
variables on the prediction skills of a phenology model intended for climate change
applications. We apply the learning curve approach which allows the progressive assessment
of properties of datasets and brings the opportunity to compare the evolution of model
performance with the scoring rules specified in the data classification system. Additionally, we
inspect possible compensations between size and measurement error thanks to their joint

analysis.
2. Methods

The generation of learning curves is a two-step process repeated multiple times. The first step
is the calibration and evaluation of the models against the training (or calibration) dataset. The
second step is the evaluation of the predictive skills of the model against the testing (or
evaluation) dataset. The training dataset varies in number of observations (quantity of
observations) and levels of measurement error (quality of observations). Long series of records
(greater than 10 seasons) of flowering dates required to construct the learning curves are scarce.
Hence, data is replaced by the simulations of a “perfect model” with structure and parameter
values considered to be true. The simulations from such perfect models are masked with
different levels of noise. This perfect model approach gives us full control over the number of
seasons and errors introduced in the datasets. In addition, it allows the evaluation of the

simulation model predictive skills against the perfect model under climate change.

Two phenology models for simulating anthesis dates of winter wheat under climate change are
considered; the Broken-Sticks (BS) and Continuous Curvilinear (CC) (Wang and Engel, 1998)
models. The BS is a wide-spread practical model to simulate phenology whereas the CC model
is considered a more realistic version from a biological perspective (Streck et al., 2008).

Consequently, we assume that the CC model is the “perfect model” and the BS and the CC
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models are used as simulation models. Thus, two situations concerning model structures are
assessed; (S1) the structure of the simulation model is an exact representation of reality (the
simulation model and the “perfect model” are the same, both represented by the CC model),
and (S2) the structure of the simulation model approximates the reality (the BS and the CC
model correspond to the simulation model and the “perfect model” respectively). The results
are used to analyse the shape of the learning curves and understand the relationships between

measurements, errors and model structures.
2.1. Phenology models

The fundamental difference between the BS and the CC model is the smoother reaction of crop
development to changes in temperature and photoperiod with the latter model (Fig. 1b,c). In
addition, our CC model uses the vernalization response proposed by Streck et al. (2003). Here,
vernalization follows a sigmoidal curve instead of the linear response in the BS model (Fig.
la). Water or nitrogen limitations are not included, assuming models are applied under optimal

conditions.

(Fig. 1)
2.1.1. Vernalization response

The vernalization response (f,,_gs) in the BS model is represented from zero to one for un-
vernalized and fully vernalized wheat, respectively. The parameters in this model (Eq. 1) are
the base vernalization (V},,s.) and the vernalization saturation (V). Base vernalization is the
minimum vernalization required to start the accumulation of vernal degree days (VDD).
Vernalization saturation is the total accumulation of VDD at which the crop is considered fully

vernalised.

_ . (VDD—Vbase)
fv—ps = min Il,max [0, —(Vsat_Vbase)]] (Eq. 1)
In our version of the CC model, the vernalization response (f,,_c¢) follows the description in
Streck et al. (2003) (Eq. 2). Vernalization is accumulated based on a s-shaped curve. The
parameter of this model is the inflection for vernalization (V;5), that defines the VDD

accumulated when the crop is half-way vernalized.

_ (vDD)5
fo-cc = G5ty (Eq. 2)



190
191
192
193
194

195

196

197

198

199
200

201

202

203
204
205
206
207

208

209

210

211

212

213
214
215

216

The BS and CC models are analogous when; (1) the V,,; in the BS model has twice the value
of V5 in the CC model and V4., in the BS model is considered zero. The accumulation of
vernal degree days (VDD) is computed by summing daily rates of vernalization. The daily rates
are calculated using the Eq. 6-8 for the BS model and Eq. 9-11 for the CC model (see section
2.1.3). In these equations, the cardinal temperatures, i.€. Tpase, Topr and Trpqy, €qual -4, 6.5,

and 17°C, for the BS model (Weir et al., 1984).
2.1.2. Photoperiod response:

In the BS model, the photoperiod response (f,—ps) ranges from 0 to 1 when the daylight hours
(dh) are higher than the minimum threshold and lower than the maximum threshold (Eq. 3).
These minimum and maximum thresholds are named base photoperiod (Pp4s.) and optimum

photoperiod (P,y;), respectively.

. (dh —-P ase)
fy—ps = min [1, max [0 o ;’base)” (Eq. 3)

In the CC model, the response (f,—¢¢) also varies between 0 and 1 (Eq. 4), but its shape is

negatively exponential (Fig. 1-B). The model parameters are the base photoperiod (P45 ) and
the sensitivity to changes in photoperiod (w). Changes of P, in the BS model involve
modifications in the sensitivity to photoperiod. In the CC model, the sensitivity (w) is
independent from P, ... To resemble the reaction in both models, an empirical relationship

was established between w and P4, and P,y in the CC model (Eq. 5).
f,=1- el—w(dh—Ppase)] (Eq. 4)

w =149 —2.96-1072Ppyqe — 1.14 - 107P, . + 2.82 - 1073 Py, + 2.41 - 1073P,
(Eq. 5)

With Eq. 5, the BS and CC model are defined by Py and P,y
2.1.3. Temperature response:

The response of the crop development (f;_gs) to the daily air temperature (T,) in the BS model
is considered proportional when air temperatures are between the base (T ,5.) and optimum
(Topt) cardinal temperatures (Eq. 6). If the temperature is above the optimum, but below its

critical temperature (T,,,), the rate of development reacts inversely proportional to the
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difference between the air temperature and its optimum (Eq. 7). If the air temperature is below
its base temperature or above its critical temperature, the daily rate of development is zero (Eq.

8).

if Tpase < Ta < Tope then fo_ps = (Ty — Thase) (Eq. 6)
if Tope < Tq < Trax then fr_ps = (Tope — Tpase) Tmax = Ta) /(Tmax — Tope) (Eq. 7)
if Tpase > Tqor Tq > Tope then fr_pgs = 0 (Eq. 8)

In the CC model, the response of the crop development (f;_.c) to the daily air temperature
oscillates between 0 and 1. The daily rate of development is described by a curve (Eq. 9)
between a minimum and maximum temperatures (Tp,ge and Ty, gy, respectively). The term a

allows to peak the daily rate of development at T,,,,; (Eq. 10). The daily rate of development is

zero if the air temperature does not reach T}, or exceeds Tpq, (Eq. 11).

Z(Ta Tbase) (Topt Tbase) _(Ta Tbase)

lf Tbase < T < Tmax then ft cc — (Eq~ 9)
(Topt Tbase)
(Tmax Tbase) (Eq 10)
Topt_Tbase
if Tyase > Tq 01 Ty > Thpax then fi_cc =0 (Eq. 11)

Thase> Topt and Tpyqy are 0, 24 and 35°C in both models (Wang and Engel, 1998).
2.1.4. Development phase duration

A development stage is reached when the accumulation of the daily rates equals a threshold
(TT) in the BS model. Eq. 12 shows the accumulation of daily rates between emergence and
terminal spikelet. The value of the threshold (TTgyrs) 1s estimated from field observations

during calibration and is expressed in degree days (°Cd).

TTgmrs = sz=1 fe-Bc " fo-BC 'fp—Bc (Eq. 12)

In the CC model, a development stage is reached when the accumulation of daily rates (TTN)
equals 1 (e.g., Eq. 13). This is achieved by using a scaling parameter (7,4, ) that represents the

maximum daily development rate. The maximum development rate has an exponential form
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based on a parameter k (Eq. 14). Eq. 13 is an example of the computation between emergence

and terminal spikelet.
TTNgyrs = Tmax,EMTS Z?=1 fe—cc " fo—c ° fp—cc (Eq. 13)
Toax = €% (Eq.14)

In both models, the period from sowing to anthesis was divided into three phases; (1) from
sowing to emergence, (2) from emergence to terminal spikelet and (3) from terminal spikelet
to anthesis. The first phase is responsive to temperature, the second to temperature,
vernalization and photoperiod and the last one to temperature and photoperiod. We assume that
the duration, i.e. TT Ngy 5, between sowing and emergence is a constant. We also considered
that 45% of the duration between emergence and anthesis corresponds to the development from
emergence to terminal spikelet (TTNgyrs), and 65% corresponds to the development from

terminal spikelet to anthesis (TTNrgan)-
2.1.5. Phenology model parameters

Key parameters in the BS model reflecting genotypic differences in flowering time are
vernalization saturation, base photoperiod and thermal time (Vu¢, Ppgse and 77, respectively)
(Bogard et al., 2014). Therefore, we selected these parameters for calibration. We picked
analogous parameters to calibrate the CC model; half-way vernalized, base photoperiod and

maximum daily rate of development (Vo.5, Ppase and k, respectively).
2.2. Perfect models and artificial flowering date records

A “perfect model” will be used in subsequent steps in substitution of the lacking long series of
records of flowering dates. The “perfect model” has a structure and parameter values
considered to be true. Parameter values for this “perfect model” were derived from calibration
using actual data. These data were collected and used in simulations of the Agricultural Model
Inter-comparison Project (Asseng et al., 2015). The information available covered the average
flowering date during 1980-2010 (y%<t“al) the average sowing date, daily maximum and
minimum temperatures for the same period, latitude and longitude and qualitative descriptions
of the sensitivities to vernalization and photoperiod of the varieties being grown. A subset of 8
locations (Table 1) was selected among the 60-major wheat producing regions worldwide
available. The locations are Netherlands, Argentina, USA, China (with continental and oceanic

climates), Russia, Turkey and Canada, showing a wide diversity of environmental conditions.
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The “perfect model” was calibrated independently for each location using Ordinary Least
Squares (OLS). The calibration concerned the parameters related to vernalization, photoperiod
and thermal responses (see section 2.1.5). The OLS method searched iteratively for those
parameter values (6) that minimize the squared distance between the actual flowering date
(yetualy and the simulation (£ (6, x;)) for every season (i) between 1980 and 2010 (Eq. 15).
The calibration was carried out in R (version 3.3.1) using the optim function (R Core Team,

2016).
07 € argmin{X2,[y* — £(6,x)1%} (Eq. 15)

Then, we used the calibrated “perfect model” to generate two artificial datasets: (1) A training

dataset consisting of annual dates of anthesis (y;"#¢,;,,) for all seasons between 1980 and 2010

using observed weather data from the AgCFSR dataset

p://data.giss.nasa.gov/impacts/agmipct/) an a testing datase i consisting o
http://dat / ts/ f/) and (2) a testing dataset (y;"He, ting of

annual dates of anthesis over 30 years of bias-corrected weather data. The weather data was
sampled from the predicted 2050’s climate under the RCP8.5 by the GDFL-CM3 Global
Climate Model (Asseng et al., 2015). We assume that there is no adaptation to climate change,

hence sowing dates and cultivars were fixed for both time periods in each location.
(Table 1)

To mimic the sampling error that exists in field measurements (Kersebaum et al., 2015), we
added noise (&;) to the flowering time datasets created with the “perfect model” (Eq. 16 and 20
in Fig. 2). Noise values were sampled from normal distributions with mean at zero and
variance 02. We assume hereinafter that the resulting values (yMé%S¥re or yM€asire) represent
the long series (i = {1, ...,30}) of records of anthesis dates under baseline and future climate.

The artificial datasets generated for the simulation experiment are listed in Table 2.
(Table 2)
2.3. Steps to generate the learning curves

The models were recalibrated (Fig. 2) using OLS (Eq. 17) and n randomly sampled seasons
from the training dataset (Eq. 16). The resulting model (f5™(8, x;)) was used to simulate the n
seasons of the calibration dataset (baseline) and the 30 seasons of the testing dataset (i.e. 2050°s

anthesis dates under RCP8.5). The assessment of the performance of £S5 (9, x;) was based on

10
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its Mean Square Error (MSE) (Eq. 18) and the Mean Square Error of Prediction (MSEP) (Eq.
20).

We repeated the calibration-evaluation process multiple times (Fig. 2), changing the number
of measurements (1) and noise levels (¢2) in the training dataset. The number of measurements
ranged from 5 up to 30 seasons, in steps of 2. The lower limit in the number of seasons was set
just above the minimum number required to calibrate 3 parameters from a mathematical point
of view. We also increased the noise in training set from 0 to 0.25, 1, 2.25 and 4 days®. We
consider that the upper limit in the level of noise is a rare situation when observations are taken
by well-trained experimentalists. A 62 = 4 represents a 4.6% chance to have a measurement
error greater than 4 days. The result of the calibrations and evaluation may vary depending on
the seasons and errors sampled in every combination of n and 2. Hence, every situation was

repeated 60 times to ensure that the results are independent from the sampling.

We consider two model structures, so we had two different situations regarding the choice of
the true (f77€) and the simulation (f5“™) model. The aim was to explore how the structure
affected the learning curves. In the first situation (S1), we assume that the simulation model
represents perfectly the mechanisms of the true system (i.e., fS™ = fT7%¢ = C(). The second
situation (S2) assumes that the model is just an approximation (fS™ # fT74€ being f5i™m =

BS and fT€ = CC).

(Fig. 2)
2.4. Model performance, number of measurements, noise and data requirements

In statistics, it is known that the MSEP reacts to the size of the training dataset (n) following
Eq. 21 for linear regressions models (Wallach et al., 2013). The magnitude of MSEP depends
on model errors (62) and the number of parameters being calibrated (p). The theory is valid
when (1) the linear regressions represent suitably the system and (2) the training and testing

datasets belong to the same population.
— ~2(P
MSEP = o (; + 1) (Eq. 21)

Phenology models in climate impact assessments contradict both premises; (1) they are far
from linear and (2) the baseline (training datasets) and future climate flowering dates (testing
dataset) represent different populations. Instead of Eq. 21, the relationship will be expressed

according to the power law (Eq. 22). In Eq. 22, a and b represent the learning rate and learning
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limit, respectively. The learning rate (a) represent the portions of the MSEP that is reducible
with larger training datasets (n). Conversely, the learning limit (b) constitutes the unreducible
part of MSEP. Eq. 22 is a more general form of Eq. 21 since a and b can adopt the values a =

poZand b = o?.
fusep(n) = % +b (Eq. 22)

Based on Eq. 22, we explore the model data requirements by estimating the smallest calibration
dataset that does not trigger significant improvement in the prediction errors under future
climate, i.e. the lower value of n that makes AMSEP = fysgp(n) — fusgp(n + 1) crossing a
threshold. We will consider that AMSEP is trivial when the error is reduced less than 1 day in
one of the 30 seasons under climate change (+ = 12/30 =~ 0.03). The use of AMSEP to determine
the data requirements focuses on the role of the size of the dataset rather than any other factor

affecting the MSEP.
3. Results
3.1. “Perfect model” calibration, training and testing datasets

The calibration of the “perfect model” yielded good representation of the observed average
flowering date under baseline climate (Table 1 and Fig. 3). The 30-year means of the annual
flowering date simulated by the Continuous Curvilinear (CC) model were nearly equal the
actual averages (Table 1). The simulations carried out with the “perfect model” under climate
change conditions (Fig. 3) led to earlier flowering dates. Flowering dates with the CC model
occurred between 6-17 days earlier than in the baseline. Russia was the only location where

the model predicted a later flowering (3 days).

(Fig. 3)

3.2. Size of the training dataset, measurement error and model performance — S1:

model structures are correct (fT74¢ = fSim)

Several calibrations and evaluations of the CC model were carried out following the algorithm
described above. The calibration dataset was changed with respect to the number of seasons
(n) and levels of noise (¢2) and the model performance was tested in terms of mean squared
errors (MSE and MSEP). The squared errors of the CC models can be seen in Figs. 4-5. In

general, Fig. 4 shows an increase of MSE and a decrease of MSEP with greater sizes of the
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calibration dataset (7). The MSE and MSEP tend to the variance of noise, i.e. 0.25, 1, 2.25, and
4 days?, without reaching it for the range of n explored. It should be noted that the graphs differ
in the range of squared errors displayed on the y-axis for visualization purposes. Results show
that prediction performance (MSEP) worsens proportionally with the level of measurement

error in both calibration and evaluation (R?>=0.99) (Fig. 5a).

We adjusted Eq. 22 by estimating the learning rate (@) and learning limit () that fitted best the
median MSEs and MSEPs among locations (solid lines in Fig. 4). The learning rate is negative
when the trajectory ascends (MSE) and positive otherwise (MSEP). The curves represented
well the increase of the MSE with the number of observations. The variability of the MSE
explained by the power law varied between 0.95 and 0.99 for the CC model (Fig. 4). Curves
represented slightly worse the results of the MSEPs: The coefficients of determination dropped
from 0.95-0.99 for the MSEs to 0.93-0.97 for the MSEPs of the CC model. Fig. 4 shows how
the MSEPs spread out compared to the MSEs, as the errors varied considerably between

locations.
(Fig. 4)
(Fig. 5)

We further explored the relationship between our results and theory (Eq. 21). Given the
proportionality between MSEPs and ¢ (Fig. 6a), we computed their ratio (MSEP/c? =
MSEP") to remove the differences among MSEPs caused by noise. According to theory,
MSEP' should follow p/n + 1. We adjusted Eq. 22 to represent the MSEP'. Based on Eq. 21,
a should be equal to p and b equal to 1 (in this case, a = 3 and b = 1). Our results approached
reasonably well to theory (Fig. 7a); the model was significant (p — value = 3.64 - 107°) and
represented well the variations of MSEP' (R? = 0.86). Additionally, the estimated model
coefficient remained close to the theoretical values with @ = 3.92(+0.46) and b =

1.46(£0.04).

(Fig. 6)

A larger n and higher 62 had positive and negative impacts, respectively, on the prediction
performance (Fig. 4-5a). To investigate the compensations between n and 62 we rearranged
Eq. 21-22 to calculate the n required to reach a specific MSEP (n = a/(MSEP/c?) — b).

Combined sequences of MSEP and 62 were fed into the equation to build the response surfaces
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seen in Fig. 7a. The graph shows the 1 (z-axis) depending on the MSEP (x-axis) and the o2 (y-
axis). The non-equidistant contour lines in Fig. 8a depict the non-linearities between MSEP
and n captured in Eq. 21 and 22. The straightness of the contour lines reflects the linear
relationship between MSEP and o2 represented in Eq. 21. We inspected whether larger but less
precise datasets could lead lower MSEPs than smaller but more precise datasets. The dashed
black line in Fig. 7a shows one case where the MSEP is reduced from 5 day? to 4 day? (in steps
of 0.25 day?) by using training datasets with size n equal to 4, 6, 9, 13 and 30 and noise levels
equal to 2.22,2.25,2.37,2.41 and 2.51 days?, respectively. Eqs. 22-23 and Fig. 7a confirm that
it is possible in theory to compensate the lack of precision in the measurements with more
seasons observed. However, the equations and the results in Fig. 7a highlight two major
limitations for this type of compensations; (1) the noise imposes a minimum limit of the MSEP

(lim MSEP = ¢?) and (2) n changes very quickly with MSEP and 62 (n = a/(MSEP — b)),

n—-0oo

becoming rapidly very large and practically unfeasible.

(Fig. 7)

Data required to reach the threshold AMSEP < 0.03 was calculated using Eqs. 21-22. The
improvements in model performance were not significant when the size of training dataset
reached the number of observations appearing in Table 3 (column Situation S1). For instance,
models showed no meaningful improvement in prediction skills with training datasets larger
than 11(+1) measurements when noise was o2 = 1. The data required increased with growing

levels of noise.
(Table 3)

Every square dot in Fig. 4 represents the squared error (MSE/MSEP) of a particular location.
The dispersion of the MSEP values reveals that the variation between locations is large. To
explore the reasons behind these differences, Eq. 22 was adjusted independently for the results
of each location. We inspected whether the variance of the training population (flowering dates
1980-2010) might be behind the differences in the location-specific learning rates («) and limits
(b) of the MSEPs. Fig. 8 displays the a and b obtained from the MSEPs for each location and
noise level on the x-axis. On the y-axis, the graph shows the a’ and b’ obtained from a
regression based on noise (¢2) and the variance of the training dataset (2). We found that the
variance of the training dataset and the variance of noise in the measurements explained most

of the variability in the learning rates (Fig. 8a). The regression of @’ based on 62 and g2 shows
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a good fit between the actual and the estimated learning rates (R?=0.85). The variance of
training dataset and its product with the variance of noise (62-62) were highly significant (p <
0.01) to explain the variations in learning rates. The variability in b’ (Fig. 8b) was only

significantly explained (p < 0.01) by the noise (R*=0.98).

(Fig. 8)

3.3. Size of the training dataset, measurement error and model performance — S2:

model structures are approximations (f77%¢ = fSim)

The entire process was repeated, but this time the true model and the simulation model were
different. In Fig. 9, the CC model represents the true mechanism (f7"%¢ = CC), and the BS
model is used as an approximation (f 5™ = BS). Curves with the shape of Eq. 22 were adjusted
to the results of the MSE and MSEP (Fig. 9). MSEs and MSEPs evolved asymptotically with
the size of the training dataset as in S1. Eq. 22 represented well the variations of the MSEs
(grey dots in Fig. 9); R? ranged between 0.96 and 0.99 for the BS model simulations (black
lines in Fig. 9) and dropped to 54-90% for the MSEPs with the BS model (red lines in Fig. 9).
The results show that the prediction error increased linearly with the noise (R?=0.99) (Fig. 5b).
The values of MSEs and MSEPs were well represented by a linear regression with an intercept
(k) greater than zero. This intercept shows the average cost of an approximated model structure,
which was 1.10 and 3.68 days? for the MSE and MSEP, respectively. The influence of model
structure is also illustrated by a wider spread of MSEPs among locations in S2 than in S1 (red
dots in Fig. 9). Structural model errors worsened prediction performance to a greater or lesser
extent depending on the location. For instance, the MSEPs were high and roughly decreased
with the size of training dataset () when applying the BS model in Turkey (outliers in Fig. 9).

The flat evolution of the error represents the need of structural model improvements.

(Fig. 9)

The impact of structural error on MSEP was removed by subtracting the location-specific
minimum prediction error obtained with zero noise training datasets (k;,.). As in S1, the
differences among MSEPs caused by noise were eliminated by dividing MSEP by o2
(MSEP' = (MSEP — k;,.)/0?)). We adjusted Eq. 22 to MSEP’ by calibrating a and b (Fig.
6b). The model was significant (p — value = 7.54 - 107°) and explained a high portion of the
variability in MSEP' (R? = 0.84). The estimated values of the coefficients @ and b were

4.46(£0.56) and 1.25(+0.05), so a@ was slightly greater than the value in S1 and b was similar
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to S1 and its theoretical value. Therefore, the model structure hampered the parameter

estimation, since @ is the portion of MSEP attributed to parameter estimation error.

We estimated the 7 (contour lines in Fig. 7b) based on a given MSEPs and 62 . The specific
version of Eq. 21-22 to S2 was rearranged (n = a/((MSEP — ky,.)/02) — b). Compared to
S1, contour lines in S2 are offset to the lower right corner of the graph. This indicates that the
number of observations needed to reach a prediction performance in S2 is larger than in S1.
The contours lines are more horizontal than in S1, representing a lower response of # to the
noise in the training dataset. Results suggest (black dots in Fig. 7b) that the training datasets of
n equal to 5, 7, 12 and 32 can reduce the prediction error from 5 days? to 4.25 days? (in steps

of 0.25 day?) with increasing noises (1.06, 1.07, 1.09 and 1.10 days?).

Data requirements were estimated by finding the smallest #z that surpassed the threshold with
the learning rates and limits specific to each location. The models stopped significantly
improving model predictions at the n’s specified in Table 3 under the column for Situation S2.
There is an increase in data requirements when the model structure changed from perfect to

approximate (Table 3).

Asin S1, Eq. 22 was fitted independently to the results from each location, extracting the values
of a and b. To understand the differences between locations, we explored the relationship
between the learning rate and limits with the training population variance (o7) and level of
noise (¢2). Fig. 10 is similar to Fig. 8, but with the results from S2. The results showed a worse
approximation between actual and estimated learning rates (a vs. a’) (R*= 0.69) and learning
limits (b vs. b’) (R* = 0.60) than in S1 (Fig. 10). The terms g2 and (0%-02) were highly
significant (p < 0.01) for explaining the variations of the learning rates among locations. The
variation of the learning limit among locations was significantly explained by the terms 62 and
o2. Fig. 10b shows that 2 and & alone did not represent well the learning limits in locations
such as Turkey (green squares). The shift of the points towards the right while remaining
parallel to the 1:1 line indicates existence of an additional locations-specific constant term

explaining the learning limit.
(Fig. 10)

4. Discussion
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As in other disciplines (e.g., Figueroa et al., 2012), the learning curves have proved to be useful
for assessing crop phenology models in terms of elucidating the relationship between datasets
and prediction performance and defining the suitable size of the calibration datasets given a

prediction error target.

We explored the interaction between the number of measurements in the calibration dataset
and the prediction skills of two phenology models. The results show a nonlinear relationship
between prediction error and the size of the calibration dataset. The system developed by
Kersebaum et al. (2015) scores the quality of modelling datasets in a linear fashion with the
number of seasons observed. The existing statistical theory and our results suggest that a
nonlinear power-law scoring system would be more representative. According to the effect of
noise on model squared error, we observed that prediction performance improves
proportionally with reductions in measurement error. The relationships between size, noise of
datasets and model skills (Eq. 21-22) indicate that it could be possible to improve the
predictions skills using less precise but more abundant datasets (n = a/(MSEP/c?) — b)).
Therefore, satellite images, for instance, could help observing ground-based phenology
(Sakamoto et al., 2005) to improve climate change impact assessments. Their spatial and
temporal coverage (large n) may compensate the errors arising from calibration and
atmospheric disturbances (high ¢2) (Studer et al., 2007). However, compensations between
noise and size of datasets might be limited by the non-linear growth in size needed to
compensate for measurement error. Further assessments investigating these synergies are

needed.

We estimated that 5-7 observations of flowering dates were enough to conduct impact
assessments under 2050’s climate change conditions. These results correspond to 0.25 day?
measurement error and perfect model structures. However, model structures are known to be
imperfect representations of the agricultural systems (Rétter et al., 2011). Therefore, S2 is more
realistic representation of the situation in crop modelling. In our experiment, structural
approximations (S2) translated into an increase of prediction error. The error increase was
specific to each model and location. Structural errors also interfered with parameter estimation,
increasing the data requirements. Therefore, moving from S1 to S2 caused an increase of data
requirements to 7-9 with 0.25 day? of measurement error. The number of field measurements
(years) usually available to compare observations and simulation ranges from 5 to 10 before
the cultivar becomes obsolete. This number of measurements is around the recommended

minimum number estimated in our analysis. However, noise in field observations is likely
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larger than 0.25 days®. To get more measurements in the same time period, multi-
environmental trials or experiments with multiple sowing dates have to be conducted, which
goes in line with recommendations by He et al. (2017). Strictly, neither structures can be
considered correct, nor are parameter values true. For these reasons, the results obtained with
this kind of assessment are merely theoretical and advisory. These recommendations can vary
among locations: the data required depends on the learning rate and results show that it varies
with the inter-annual flowering variability of the training population (Fig. 8 and 10). Therefore,
the suitable size of the dataset could be larger in places where there is greater variability among

s€asons.

The estimates of data requirements made in this assessment concern phenology models used
on their own for climate change impact assessments for 2050’s under the RCP8.5 scenario.
Results cannot be extended to phenology models embedded in crop models, even when
phenology parameters are independently calibrated as the initial process of model calibration
(e.g., Angulo et al., 2013). Generally, the number of parameters being calibrated is greater than
3 (p in Eq. 21) since more than one phase of the development is involved (e.g. flowering and
maturity). A greater number of parameters may raise the learning rate (a in Eq. 22), therefore
increasing the n (number of observations) needed to surpass the threshold. Additionally, the
information available to calibrate the models involves observations of multiple phases,
meaning more information to calibrate the model. These aspects may change the shape of the
learning curves and the suitable number of measurements required for calibration. Another
factor influencing the learning rate is the inter-annual variability of the flowering time at the
time being projected (o). This variability of the flowering time may change over time in some
locations, for instance due to more variable temperatures in the future (Craufurd and Wheeler,
2009). Therefore, data requirements would vary depending on the time horizon being projected.
Future work needs to include more phases and locations and time horizons in the learning curve

approach and the upscaling of the learning curves to whole crop models.
5. Conclusions

To our knowledge, there is no study to date giving statistical evidence about the effects of the
size and measurement error of the datasets on crop modelling for climate impact assessment.
Here we applied the learning curve approach to crop modelling, using phenology models

varying the dataset features in a progressive manner. Learning curves might be promising tools
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to explore the balance between the size of the dataset, measurement error and model

performance to provide practical guidance.

Prediction skill reacted non-linearly to the size of the training dataset according to power-law.
Approximate phenology models required at least 7-9 observations to reach negligible
improvements with larger datasets to predict the flowering time for the 2050’s under the
RCP8.5 scenario. The analysis based on learning curves also suggested that improvements in
predictions can be achieved with less precise but more abundant datasets. Based on the theory,
these compensations follow n = a/((MSEP/c?) —b). Therefore, new satellite-based
monitoring techniques could potentially improve simulations despite their errors. The extent of
improvement will depend on the noise and number of seasons used as a training set and more

studies are needed.

The estimates made in this study concern the phenology models used independently for impact
studies of flowering in 2050’s under RCP8.5. We encourage further efforts to adapt the learning
curve approach to complete crop models and explore the requirements for projecting different

time horizons.
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Fig. 1: Normalized responses of crop development to vernalization (A), photoperiod (B)

and temperatures (C) simulated by the Broken-Sticks Model (solid line) and the

Continuous Curvilinear Model (dashed line)
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Steps to obtain the learning curves:

a. Sample n measurement errors &; from N (0, c2)
b. Select n measurements randomly from 1980-2010
c. Build the calibration dataset

calibration dataset = {yMetsure yMeasurey —

_ True True —
- ‘b’l—train + €15 Yn—train + gn} -

= {fTrue (QTrue) xl—tra ) + 81) e 'fTrue (HTrue) xn—train) + STL}
d. Calibrate the model by OLS using calibration dataset
~ , , 2
8 € argmin {TiL, [yl1eesire — F5™(0, Xizeram)] )
e. Compute MSE of the model for those obs
1 im (A 2
MSE = - ?:1 (ylMeasure _ fSlm(Q,xi))

/. Build the testing dataset

Measure Measure True True

= {fT (0™, Xy _test) + €1, .o, (BT, X30_tes ) + €30}
g. Estimate the MSEP of the model under climate change
A 2
MSEP = %21321 (ylMeasure _ fSlm(e’ xi))
h. Repeat b-g 60 times

1. Repeat b-g increasing n from 5 to 30 in steps of 2

j.  Repeat a-b increasing o, from 0 to 2 in steps of 2.

663

testing = {Y1—tes y oy Y30-test § = {Y1—test + €1, -, Yn—test

(Eq.16)

(Eq. 17)

(Eq.18)

+En}=

(Eq.19)

(Eq.20)

664  Fig. 2: Outline of the process to obtain the learning curves.
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Fig. 3: Actual (y*®%) and simulated flowering dates by the “perfect model” (yI"%¢ ..
and yTT¥ ). The green dots represent the actual average flowering dates in 1980-2010 for
winter wheat. Black crosses show the annual flowering time simulated by the Continuous
Curvilinear (CC) models during baseline (1980-2010). Red circles show the annual flowering

Julian days for 30 years in the decade 2050 under RCP8.5 and GCM GDFL-CM3.
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Fig. 4: Learning curves of the Continuous Curvilinear model at different levels of
measurement error (o) and locations in Situation 1. The CC model is an accurate
representation of the real system (fTRVE = fSim = (). Figures from the top-left to the
bottom-right show the results for increasing levels of measurement error. Mean Square Errors
for each location at calibration are represented by the empty grey-squared dots (MSE). Mean
Square Errors for each location at 2050°s RCP8.5 climate change Predictions are represented
by the empty red-squared dots (MSEP). Filled dots show the median among locations. Lines
summarize the behaviour for all locations according to the power-law (Eq. 22). The coefficients

of determination of these lines are shown in black and red for the MSE and MSEP, respectively.
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682

683  Fig. 5: Squared error of simulation (MSE/MSEP) depending on measurement error (¢2).
684  The boxes show the range of MSEs (grey scale) and MSEPs (red scale) obtained with different
685  sizes of datasets (n). The solid black and red lines represent the linear response of MSE and
686  MSEP, respectively, to measurement error. Graph A and B show the results for the Situation

687 Sl (fTRVE = £Sim = () and Situation S2 (CC = fTRUE = £Sim = BS) respectively.
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Fig. 6: Transformed squared error of simulation (MSEP’) depending on the size of the
training dataset (n). The boxes show the range of MSEPs obtained in both situations. The
solid red line is the power-law curve representing the response of MSEP to n. Graph A and B
show the results for the Situation S1 (fTRVE = £Sim = () and Situation S2 (CC = fTRVE %

fSim = BS), respectively.
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Fig. 7: Response surface of the number of observations required (n) to reach a specific
Mean Square Error of Prediction (MSEP, x-axis) with noise (a2, y-axis) in S1(A) and S2
(B). Contour lines show changes in n for every 5 observations, from n = 5 to n = 30. The red
thick line is the minimum limit of MSEP that can be achieved with a specific noise level
(min(MSEP) = ¢2). The black dots represent the paths to improve the prediction skills of the
models (decreasing MSEP) by using less precise (i.e., higher ¢2) but larger datasets (i.e.,

greater n).
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Fig. 8: Exploring the location-specific learning curves and their dependence on the
variance of the target population in Situation S1. The graph on the left (A) and the right (B)
show the learning rates (a) and the learning limits (b) for all location and noise levels. The x-
axis represents the actual values derived from fitting Eq. 22 to the results in Fig. 4 for each
location. The y-axis shows the estimated coefficients from the equations; a’ = 0.0302 +
0.110% + 0.1(c? - 0#) and b’ = 1.1602 + 0.00352 + 0.001(c2 - 6#). Locations are represented by

different colours.
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Fig. 9: Learning curves of the Broken-Stick model at different levels of measurement
error (02) and locations in Situation S2. The model BS is an approximate representation
of the real system (fT"*¢ = CC; f5'™ = BS). Figures from the top-left to the bottom-right
show the results for increasing levels of measurement error. Mean Square Errors for each
location at calibration are represented by the empty grey-squared dots (MSE). Mean Square
Errors for each location at 2050’s RCP8.5 climate change predictions are represented by the
empty red-squared dots (MSEP). Filled squares show the median among locations. Lines
summarize the behaviour for all locations according to the power-law (Eq. 22). The coefficients

of determination of these lines are shown in black and red for the MSE and MSEP, respectively.
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Fig. 10: Exploring the location-specific learning curves and their dependence on the
variance of the target population in Situation S2. The graph on the left (A) and right (B)
show the learning rates (a) and the learning limits (b) for all location and noise levels. The x-
axis represents the actual values derived from fitting Eq. 22 to the results in Fig. 9 for each
location. The y-axis show the estimated coefficients from the equations:a’ = —0.5302 +
0.180% — 0.13(c? - 6#) and b’ = 2.456% + 0.125% — 0.03(c? - 0#). Locations are represented by

different colours.
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Tables

Table 1: Details of the locations used in the analysis. Dates of sowing and anthesis are

shown as Julian Days (JD).

Sactual
YBs/cc

and o; represent the average anthesis dates between

1980 and 2100 and their standard deviations simulated by the BS and CC perfect models.

AT is the projected increase in local temperature from baseline (1980-2010) to projected

climate change (2050’s).

Location

Country

()

(JD)

Latitude Sowing Anthesis

(JD)

Sactual
BS

(JD)

Oy

Sactual
cc

(JD)

Oy

Wageningen Netherlands 51.97 309 176 176 4.25 176 6.09 2.83
Balcarce Argentina  -37.75 217 329 328 2.21 329 3.17 1.66
Manbhattan USA 43.03 274 135 136 5.1 135 6.38 4.58
Nanjing China (A)  32.03 278 125 125 3.76 125 4.70 3.24
Luancheng  China (B)  37.53 278 125 126 3.91 125 4.47 3.46
Krasnodar Russia 45.02 258 140 140 2.36 140 2.80 -0.76
Izmir Turkey 38.60 319 121 122 4.49 121 6.06 2.82
Lethbridge Canada 49.70 253 161 161 6.33 161 8.15 4.44
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735  Table 2: List of all the datasets generated with the perfect model. The level of noise or
736  measurement error is represented by ¢2. The maximum number of observations in the dataset

737  is represented by 1.

Purpose Period Perfect model Noise - o2 Nnax
Training 1980-2010 CC 0.00 30
Training 1980-2010 CcC 0.25 30
Training 1980-2010 CC 1.00 30
Training 1980-2010 CcC 2.25 30
Training 1980-2010 CC 4.00 30
Testing  2050's - RCP8.5 cC 0.00 30
Testing  2050's - RCP8.5 CcC 0.25 30
Testing  2050's - RCP8.5 cC 1.00 30
Testing  2050's - RCP8.5 CcC 2.25 30
Testing  2050's - RCP8.5 CcC 4.00 30

738
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739  Table 3: Data required (n) for both the CC and the BS model under situations S1 and S2
740  to reach the point where additional data did not imply relevant improvements of the

741  prediction skills

Level of noise (62)  Situation 1 Situation 2

0.25 6(1) 8(<1)
1.00 11(£1) 16(+2)
225 17(+2) 23(+4)
4.00 23(+3) 31(&5)
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