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ABSTRACT Insights into disease susceptibility as well as the efficacy of vaccines

against typhoid and other enteric pathogens may be informed by better under-

standing the relationship between the effector immune response and the gut micro-

biota. In the present study, we characterized the composition (16S rRNA gene profil-

ing) and function (RNA sequencing [RNA-seq]) of the gut microbiota following

immunization and subsequent exposure to wild-type Salmonella enterica serovar Ty-

phi in a human challenge model to further investigate the central hypothesis that

clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis

of longitudinal stool samples collected from study subjects revealed two stable pat-

terns of gene expression for the human gut microbiota, dominated by transcripts

from either Methanobrevibacter or a diverse representation of genera in the Firmic-

utes phylum. Immunization with one of two live oral attenuated vaccines against

S. Typhi had minimal effects on the composition or function of the gut microbiota. It

was observed that subjects harboring the methanogen-dominated transcriptome

community at baseline displayed a lower risk of developing symptoms of typhoid

following challenge with wild-type S. Typhi. Furthermore, genes encoding antioxi-

dant proteins, metal homeostasis and transport proteins, and heat shock proteins

were expressed at a higher level at baseline or after challenge with S. Typhi in sub-

jects who did not develop symptoms of typhoid. These data suggest that functional

differences relating to redox potential and ion homeostasis in the gut microbiota

may impact clinical outcomes following exposure to wild-type S. Typhi.

IMPORTANCE S. Typhi is a significant cause of systemic febrile morbidity in settings

with poor sanitation and limited access to clean water. It has been demonstrated

that the human gut microbiota can influence mucosal immune responses, but there

is little information available on the impact of the human gut microbiota on clinical

outcomes following exposure to enteric pathogens. Here, we describe differences in

the composition and function of the gut microbiota in healthy adult volunteers en-

rolled in a typhoid vaccine trial and report that these differences are associated with

host susceptibility to or protection from typhoid after challenge with wild-type S.
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Typhi. Our observations have important implications in interpreting the efficacy of

oral attenuated vaccines against enteric pathogens in diverse populations.

KEYWORDS 16S rRNA gene profiling, Salmonella, immunization,

metatranscriptomics, methanogens, microbiome, typhoid disease

Salmonella enterica serovar Typhi (S. Typhi) is a human-restricted enteric pathogen

that causes typhoid fever affecting an estimated 11.9 to 26.9 million people

annually (1), principally those living in low-resource or conflict settings and travelers to

regions of endemicity. Ty21a, a live attenuated oral vaccine, is one of two widely

available vaccines for preventing typhoid (2). Immunization with Ty21a induces both

humoral immunity (mucosal and serum antibodies and B memory cells) and cell-

mediated immune (CMI) responses (3). Local and systemic antibodies to S. Typhi

antigens are thought to be active against typhoid bacilli when they are extracellular,

whereas the CMI response plays an important role in eliminating intracellular S. Typhi

(4). In a prior study, we investigated the relationship between the gut microbiota and

defined S. Typhi-specific immunological responses in volunteers receiving the Ty21a

vaccine. We observed a significant association between a multiphasic CMI response and

a more diverse gut microbiota—with more than 200 operational taxonomic units

(OTUs) differentiating multiphasic from late responders (5).

The development of a human challenge model provided us with a unique oppor-

tunity to characterize the composition and function of the gut microbiota following

immunization and subsequent exposure to S. Typhi and to further investigate the

central hypothesis that mucosal immune responses are linked to the gut microbiota.

Mounting evidence suggests that microbiota composition may be linked to immuno-

genicity and oral vaccine efficacy (6–9). For example, excessive bacterial growth in the

small intestine of children living in resource-limited settings might contribute to the

low antibody titers seen in response to an oral live attenuated Vibrio cholerae vaccine,

CVD 103-HgR (10). Moreover, reduced vaccine efficacy and immunogenicity in

resource-limited regions have also been reported with other vaccines, including rota-

virus and oral polio vaccines (8, 11, 12). Despite these limitations, live attenuated oral

vaccines continue to have great potential to reduce disease transmission and prevent

clinical infection around the world. Through studies such as those presented here, there

is the potential for new insights that may ultimately be leveraged to improve protective

efficacy of oral vaccines against typhoid and other enteric infections.

RESULTS

To investigate the efficacy of immunization with two live oral attenuated vaccines

against S. Typhi (3 doses of Ty21a vaccine or one dose of the candidate vaccine,

M01ZH09) and subsequent challenge with wild-type (wt) S. Typhi Quailes strain and the

effects on the composition and function of the gut microbiota, we carried out longi-

tudinal 16S rRNA gene and metatranscriptomic analyses of stool samples obtained

from 30 healthy adult trial subjects who were randomly assigned to one of the three

vaccine groups in a study performed in Oxford, United Kingdom (13). These volunteers

were healthy males or nonpregnant females, between 18 and 60 years of age and with

no history of typhoid vaccination or S. Typhi infection.

Compositional profiling of microbial communities using 16S rRNA gene se-

quencing. We generated 89 million high-quality sequence reads from bacterial 16S

rRNA gene V3-V4 amplicons, with a mean (�standard deviation [SD]) of 157,048

(�160,204) reads per stool sample. A k-means clustering pipeline grouped the 16S

rRNA gene data from all samples into three clusters characterized by (i) high relative

abundance of Faecalibacterium (Fig. 1A, green vertical bar), (ii) high relative abundance

of Faecalibacterium and Bacteroides (Fig. 1A, red vertical bar), or (iii) a high relative

abundance of reads from diverse Firmicutes (Fig. 1A, blue vertical bar). The community

that was dominated by reads from Faecalibacterium (green) displayed a significantly

lower taxonomic diversity than the other two communities (linear mixed-effects model,
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P value � 0.01) (Fig. 1B). No significant difference in taxonomic diversity as calculated

with the Shannon diversity index was observed between subjects who did (typhoid

diagnosis [TD]) or did not (no TD) develop typhoid (Fig. 1C). It was noted that the

distribution of samples within the 16S rRNA gene clusters was skewed with regard to

vaccine group, with the placebo recipients represented in the Faecalibacterium-

dominated or diverse Firmicutes community, the majority of Ty21a recipients repre-

sented in the Faecalibacterium and Bacteroides-dominated community, and the major-

ity of M01ZH09 recipients represented in the diverse Firmicutes community. These

differences, reflecting the random assignment of subjects to specific vaccine groups at

the time of recruitment, potentially make comparison of outcomes based on immuni-

zation challenging.

Spearman’s rank correlation was applied, using averaged genus abundances from

two baseline samples, to identify relationships between taxa (Fig. 1D). Within the

Bacteroidetes phylum, an inverse correlation between Bacteroides and Prevotella was

FIG 1 16S rRNA profiling of longitudinal samples. (A) Longitudinal 16S rRNA data were used as input for an in-house k-means clustering pipeline. Vertical side

bars (green, red, and blue) represent three clusters that were identified. These clusters are dominated by (i) Faecalibacterium, (ii) Faecalibacterium and

Bacteroides, and (iii) Firmicutes, respectively. Horizontal side bars are color coded as follows: blue, Firmicutes; red, Bacteroidetes; green, Actinobacteria; purple,

Proteobacteria; gray, Verrucomicrobia; brown, Euryarchaeota; orange, other. (B and C) Shannon diversity was calculated for each community (B) and clinical

outcome (no TD [NTD] or TD) (C). (D) Relationship between genera was assessed by Spearman’s rank correlation coefficient using average genus abundances

at baselines. The size and color of circles represent the correlation shown in the color bar. (E) Bray-Curtis dissimilarity values were calculated and compared

between different subjects at the same time point (i.e., interindividual) as well as within each individual among different time points (i.e., intraindividual).
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observed as previously reported (14).Methanobrevibacter was positively correlated with

Akkermansia, Parabacteroides, Ruminococcus, Coprococcus, and Oscillospira and in-

versely correlated with Faecalibacterium and Roseburia. Consistent with previous results

from our laboratory and others, we observed marked interindividual variability in the

composition of the microbiota, although longitudinal samples collected from the same

individual displayed higher similarity to each other than to those collected from

unrelated individuals (Fig. 1E).

Taxonomic profiling of microbial communities using metatranscriptomic anal-

ysis.mRNA was extracted from a subset of the same stool samples that were processed

for 16S rRNA gene profiling, including samples collected at two baselines, two vacci-

nation time points, prechallenge, and two postchallenge time points (day 1 and day 7

after challenge). Whole-community RNA sequencing (RNA-seq) was performed on the

Illumina HiSeq 2000 platform, generating an average of 71.6 � 26.2 million paired-end

reads per sample. After quality control (QC) and filtration of rRNA and human RNA

reads, 50.4 � 26.0 million reads per sample were used as input for transcriptomic

community profiling using unique clade-specific marker genes by MetaPhlAn v2.0 (15).

The k-means clustering pipeline was used to analyze the taxonomic composition of

the entire metatranscriptomic data set, and this analysis identified two clusters. These

were (i) a set of samples in which Methanobrevibacter transcripts were highly abundant

(59.0% � 23.4%) and (ii) another set of samples characterized by transcript abundance

from a large number of genera across multiple phyla (Fig. 2A), a finding similar to that

previously described by our laboratory (16). These findings were supported by

principal-component analysis (PCA), which confirmed two main clusters distinguished

by the abundance of Methanobrevibacter transcripts (Fig. 2E). Using a linear mixed-

effects model, the Shannon diversity of the methanogen dominated (1.45 � 0.60) and

the diverse Firmicutes (2.25 � 0.42) cluster was found to be significantly different

(P values � 0.01) (Fig. 2B). In contrast, the Shannon diversity values of the subjects who

did or did not develop typhoid were not significantly different (P value � 0.15) (Fig. 2C).

Spearman’s rank correlation coefficient was applied to assess the pairwise relation-

ship between genera in the metatranscriptomic data set using averaged genus abun-

dances from two baseline samples (Fig. 2D). Methanobrevibacter showed a strong

negative correlation with several Firmicutes genera, including Eubacterium (� � �0.64,

P value � 0.01), Faecalibacterium (� � �0.54, P value � 0.01), Ruminococcus (� � �0.51,

P value � 0.01), Blautia (� � �0.55, P value � 0.01), and Roseburia (� � �0.49, P

value � 0.01), as well as Bacteroides (� � �0.61, P value � 0.01), whereas these genera

were positively correlated with each other. Bacteroides and Prevotella also displayed an

inverse correlation (� � �0.45, P value � 0.02), similar to what was observed in the 16S

rRNA gene data set. We assessed overall correlation between the 16S rRNA gene data

and the metatranscriptome data (see Fig. S1 in the supplemental material); however, no

significant relationship was observed, as previously described (16).

Pairwise comparison of samples within individuals using the Bray-Curtis (B-C) dis-

similarity index allowed for quantification of taxonomic changes in the metatranscrip-

tomic data set over time (17). Longitudinal analysis of the metatranscriptomic data

revealed that the taxonomic profiles were relatively stable within an individual, regard-

less of vaccine received or the outcome after challenge (Fig. 3A and B; Table S1). The

methanogen-dominated community (B-C dissimilarity � 0.30 � 0.20) appeared to be

more stable over time than the diverse Firmicutes community, although this was not

statistically significant (B-C dissimilarity � 0.38 � 0.15; P value � 0.096 using linear

mixed-effects model) (Fig. 3C).

Functional differences between transcriptome community types. Comparison of

the functional properties of the transcriptome communities as represented by Gene

Ontology (GO) terms revealed significant and consistent differences over time (Fig. 4).

A total of 2,877 KEGG orthologs (KOs) were identified in the metatranscriptomic data

set with 75.5% of these shared between the methanogen-dominated and diverse

communities. Each community type also contained a subset of unique KOs represent-
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ing 18.2% of the total in the methanogen-dominated community versus 6.3% in the

diverse Firmicutes community. As represented by GO terms, genes present only in the

methanogen-dominated community were involved in methanogenesis (GO:0015948),

cellular response to radiation (GO:0071478), divalent inorganic cation homeostasis

(GO:0072507), protoporphyrinogen IX biosynthesis (GO:0006782), one-carbon meta-

bolism (GO:0006730), and posttranslational protein modification (GO:0043687). In con-

trast, the diverse Firmicutes community was characterized by a significantly greater

abundance of genes involved in flagellum assembly (GO:0044780), flagellum-

dependent cell motility (GO:0071973), sporulation resulting in formation of a cellular

spore (GO:0030435), monosaccharide transport (GO:0015749), mannose metabolism

(GO:0006013), and cellulose catabolism (GO:0030245). We evaluated the quality of the

RNA-seq results by quantitative reverse transcriptase PCR (qRT-PCR), using a subset of

genes that were differentially expressed between the two transcriptome communities

(flagellar hook protein FlgE [KO02390], flagellin [KO02406], an uncharacterized protein

from Methanobrevibacter [KO06933], and methanol corrinoid protein [KO14081]) (Ta-

FIG 2 Metatranscriptome profiling of longitudinal samples. (A) Longitudinal metatranscriptome data were used as input for an in-house k-means clustering

pipeline. Vertical side bars (red and blue) represent two community types that were identified: methanogen-dominated and diverse Firmicutes, respectively.

Horizontal side bars are color coded as follows: blue, Firmicutes; red, Euryarchaeota; green, Bacteroidetes; purple, Actinobacteria; gray, Proteobacteria; brown,

Verrucomicrobia. (B) Shannon diversity values were calculated for the two communities and were significantly different (P values � 0.01). (C) Shannon diversity

values calculated between the two clinical outcomes (no TD [NTD] or TD) were not significantly different (P values � 0.15). (D) Relationship between genera

was assessed by Spearman’s rank correlation coefficient using average genus abundances at baselines. Size and color of circles represent the correlation shown

in the color bar. (E) Principal-component analysis was applied to visualize dissimilarities among samples.
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ble S2). We observed a high correlation of fold changes in these genes as measured by

both techniques (Fig. S1), lending additional support to the notion that these tran-

scriptome communities differ with regard to function.

Global differential gene expression associated with vaccination. There was no

change in the global gene expression profile of the gut microbiome (i.e., the sum of the

gene expression profile from all taxa), before and after placebo treatment, as expected.

Similarly, relatively few genes were differentially expressed before and after immuni-

zation in volunteers who received Ty21a (4 genes downregulated and 4 genes upregu-

lated following immunization). These findings are consistent with a previous report that

immunization with Ty21a has minimal effects on the gut microbiota (16). In contrast, 72

genes were differentially expressed globally in volunteers receiving the M01ZH09

vaccine. Twenty-nine methanogenesis-associated genes were upregulated in this treat-

ment group. While it is possible that this difference may be related to vaccination, it is

perhaps more likely that the differentially expressed (DE) genes reflect fluctuation in the

taxonomic composition in these samples over time.

Association between community type and clinical outcome. Of the 30 study

subjects included in this study, 13 individuals (43%) did not fulfill the definition for

typhoid diagnosis (TD) after challenge with wild-type S. Typhi, including 50% of the

placebo control group (13). The availability of longitudinal 16S rRNA gene and meta-

transcriptome data from study participants provided the opportunity to identify po-

tential differences in the composition and/or function of the gut microbiota that was

associated with clinical outcome.

FIG 3 RNA-seq transcript dynamics and dissimilarity across subjects. (A) Relative genus abundance for each subject over time. D and M stand for diverse and

Methanobrevibacter-dominated community, respectively. (B) Bray-Curtis dissimilarity for each of the subjects in this study. Each box plot represents the

dissimilarity in the composition of the microbiota between all longitudinal samples collected from the same subject. Five statistical values are indicated on each

box plot, including minimum, first quartile, median, third quartile, and maximum. (C) Bray-Curtis dissimilarity values were calculated and compared among

different subjects at the same time point (i.e., interindividual) as well as within each individual among different time points (i.e., intraindividual).
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We observed a difference in clinical outcome (TD versus no TD) following challenge

with wild-type S. Typhi that was associated with transcriptome communities. Sixty

percent of the volunteers whose microbiome contained a high relative abundance of

Methanobrevibacter transcripts did not develop TD symptoms following challenge. In

contrast, 65% of the volunteers whose microbiome contained few, if any, Methanobre-

vibacter transcripts did exhibit clinical symptoms consistent with TD. To assess whether

clinical outcome was distributed uniformly across each gut transcriptome community

(methanogen-dominated or diverse Firmicutes), the chi-square test was applied (P value

of 0.096), and the results, albeit not statistically significant, suggested that a difference

between the gut communities was associated with a risk of TD.

A mixed-effects regression model was applied to the longitudinal data to estimate

the mean relative abundance of each taxon at different time points (baseline, postvac-

cine, and postchallenge) among those subjects who did or did not develop TD, and

P values were computed to compare the two groups at each time point (Table 1). This

analysis revealed a significant association between the high abundance of Methano-

brevibacter transcripts and lack of typhoid disease following challenge. In contrast,

Eubacterium transcripts were found at a significantly higher relative abundance in

subjects who developed TD at baseline, postvaccine, and postchallenge, suggesting a

relationship between Eubacterium and TD; Faecalibacterium, Bacteroides, Alistipes, and

Prevotella also showed significantly higher relative abundances in TD subjects during

one or two of these time periods.

Taxon-specific differential gene expression associated with clinical outcome.

Using KEGG orthologs (KOs), we evaluated differential expression between TD and

no-TD subjects in the two baseline samples and in samples collected 1 day (D1) or

FIG 4 Comparative analysis of RNA-seq data at baseline. (A) Shannon diversities of the two transcriptome communities were significantly different (P � 0.001).

(B) Relative abundances of genera in each transcriptome community. Genera with significantly different abundances between the two communities are denoted

with asterisks. (C) Number of unique and common KEGG orthologues detected in each transcriptome community. (D) Gene ontology groups that were

significantly different between the two transcriptome communities are shown (false discovery rate, �0.05).
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1 week (D7) after challenge with wild-type S. Typhi (Fig. 5). We observed that several

enzymes and proteins associated with oxidative stress were expressed at higher levels

in no-TD volunteers across all time points in this study. Genes encoding superoxide

dismutase (K04564) in Barnesiella and catalase (K03781) and Mn-containing catalase

(K07217) in Bacteroides were expressed at higher levels in no-TD volunteers at baseline.

The latter enzyme, together with glutathione peroxidase (K00432) of Bacteroides, was

also expressed at higher levels in no-TD volunteers 24 h postchallenge. Similarly,

Bifidobacterium peroxiredoxin Q/BCP (K03564) was more abundant in samples from

no-TD volunteers at baseline and 7 days postchallenge.

We also observed that genes encoding iron-sulfur binding enzymes (K00196 and

K14127) were globally expressed at higher levels in no-TD volunteers at 24 h postchal-

TABLE 1 Mean relative abundance of genera at different time pointsa

Genus

Baseline Postvaccine Postchallenge

No TD TD No TD TD No TD TD

Blautia 0.069 0.071 0.084 0.127 0.066 0.079

Ruminococcus 0.090 0.081 0.088 0.074 0.094 0.100

Faecalibacterium 0.048 0.082 0.048 0.077 0.0451 0.0871

Subdoligranulum 0.075 0.052 0.055 0.051 0.048 0.055

Eubacterium 0.0282 0.0692 0.0303 0.0613 0.0354 0.0734

Roseburia 0.014 0.015 0.040 0.018 0.015 0.026

Coprococcus 0.021 0.016 0.019 0.015 0.018 0.021

Dorea 0.009 0.011 0.007 0.012 0.010 0.015

Methanobrevibacter 0.315 0.180 0.346 0.170 0.3675 0.1425

Parabacteroides 0.071 0.114 0.065 0.075 0.050 0.080

Bacteroides 0.052 0056 0.0286 0.0636 0.034 0.059

Alistipes 0.025 0.029 0.018 0.025 0.0217 0.0387

Prevotella 0.010 0.037 0.0068 0.0408 0.019 0.030

Sutterellaceae, unknown genus 0.0209 0.0489 0.025 0.050 0.01610 0.03510

Bifidobacterium 0.017 0.029 0.012 0.028 0.043 0.050

Collinsella 0.011 0.017 0.013 0.016 0.020 0.018

Sutterella 0.006 0.011 0.007 0.013 0.006 0.014

Akkermansia 0.008 0.017 0.010 0.009 0.008 0.010

aPairs with a P value of �0.1 are denoted by superscript numbers, and the corresponding genera are

marked in bold. Superscript numbers correspond to P values as follows: 1, P � 0.075; 2, P � 0.033; 3, P �

0.097; 4, P � 0.057; 5, P � 0.058; 6, P � 0.061; 7, P � 0.021; 8, P � 0.078; 9, P � 0.071; 10, P � 0.091.

FIG 5 Significant differences in the gene expression profiles between no-TD and TD subjects at baseline (BL), 1 day postchallenge (Post-chall 1D), or 7 days

postchallenge (Post-chall 7D).
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lenge (Fig. 5). NADH dehydrogenase, which carries crucial iron-sulfur center subunits for

electron transfer, was overexpressed in no-TD volunteers at baseline in the genera

Akkermansia (K00331), Blautia (K00335), and Bacteroides (K03885), as well as 24 h

postchallenge globally (K00332 and K03942). Other genes encoding iron-sulfur-

containing enzymes, including ferredoxin oxidoreductase using pyruvate (K00169 to

K00172) and 2-oxoglutarate (K00187 and K00189) as the substrate, were globally

overexpressed in no-TD volunteers at 24 h postchallenge.

Copper is another redox-active metal (18), and genes encoding copper homeostasis

proteins displayed a higher level of expression in no-TD volunteers at baseline in

Bacteroides (K06079) and Blautia (K06201), the iron/zinc/copper transport system ATD-

binding protein (K11706) of Streptococcus was expressed at higher levels in no-TD

volunteers at baseline, and the copper chaperone (K07213) was overexpressed globally

in no-TD volunteers 24 h postchallenge. The Gene Ontology term copper ion binding

(GO:0005507) also showed higher expression in no-TD volunteers at 24 h postchal-

lenge, consistent with the KEGG analysis results.

In addition to redox-active metals, we found that genes encoding nickel-related

proteins displayed a higher level of expression in no-TD volunteers at baseline and 24 h

postchallenge. These include cobalt/nickel transport system permease protein (K02007,

global), hydrogenase nickel incorporation protein (K04651, global), and CopG family

transcriptional regulator, nickel-responsive regulator (K07722, global and in Parabac-

teroides), which were expressed at higher levels in no-TD volunteers 24 h postchallenge,

as well as peptide/nickel transport system ATD-binding protein (K02031 in Eubacterium

and K02032 in Dorea), which was more abundant in no-TD volunteers at baseline. In

agreement with the above results, the GO terms nickel cation binding (GO:0016151)

and divalent inorganic cation homeostasis (GO:0072507) were observed to be overrep-

resented in no-TD volunteers at 24 h postchallenge.

A gene encoding the heat shock protein HspR, which belongs to MerR transcrip-

tional regulator (K13640), was expressed at higher levels in no-TD subjects at 24 h

postchallenge. MerR family proteins have been known to activate the expression of

genes required for metal efflux or detoxification, defense against oxidative stress, and

drug resistance (18).

Comparison of the metatranscriptomic data sets from no-TD versus TD volunteers

24 h postchallenge revealed a higher level of expression of several stress response

genes in no-TD volunteers, including the chaperonins GroEL (K04077) and GroES

(K04078) from multiple genera, including Blautia, Coprococcus, Bifidobacterium, Strep-

tococcus, Sutterella, Barnesiella, Bacteroides, and Alistipes. In addition, genes encoding

the multiple stress resistance protein BhsA (K12151) and heat shock proteins (K03283

and 13640) were expressed at a higher level in no-TD volunteers at 24 h postchallenge.

The GO terms chaperone binding (GO:0051087), unfolded protein binding (GO:

0051082), and heat shock protein binding (GO:0031072) exhibited similar expression

patterns as the KEGG profiles.

Flagellum-associated proteins from Eubacterium and Roseburia were overexpressed

in TD volunteers at multiple times before challenge with S. Typhi. GO terms bacterial-

type flagellum assembly (GO:0044780) and bacterial-type flagellum-dependent cell

motility (GO:0071973) also displayed higher levels of expression in TD volunteers at

baseline.

DISCUSSION

One of the most important roles of the gut microbiota in health is to inhibit

colonization and overgrowth of pathogenic species—a process called “colonization

resistance.” This process involves a complex set of interactions among the constituents

of the microbiota and between the microbiota and host (19, 20). Metatranscriptome

analysis revealed two patterns of gene expression in the gut microbiota of our vaccine

study participants that persisted from baseline through vaccination and challenge—the

first was characterized by a high relative abundance of transcripts from the methano-

gen Methanobrevibacter, and the second was characterized by a diverse set of tran-
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scripts from representatives of the Firmicutes phylum. These two transcriptome com-

munity types were associated with different clinical outcomes following challenge with

wild-type S. Typhi, i.e., the presence of Methanobrevibacter was associated with no TD,

whereas the Firmicutes were associated with TD. One question raised by these results

is whether, and how, the functional differences between the two transcriptome com-

munities contributed to the different clinical outcomes that were observed.

Macrophages and lymphocytes are prominent in gut infiltrates following exposure

to S. Typhi (21, 22), and macrophages are avid producers of reactive oxygen species

(ROS) that exert bactericidal effects (23). The Methanobrevibacter-dominated commu-

nity was associated with a lower risk of developing TD following challenge with

wild-type S. Typhi. It is known that H2-utilizing methanogenic archaea in the human gut

microbiota are extremely sensitive to free radicals, requiring a strongly reduced gut

environment (redox potential � �200 mV) to survive (24, 25). It is possible that the

highly reduced environment required for the survival of gut methanogens mitigates

the effect of ROS produced following Salmonella infection, thereby altering the envi-

ronmental signals that trigger a cascade of virulence factors necessary for host invasion

(26). This notion was also supported by the observation that genes encoding multiple

enzymatic antioxidants in several genera in the Methanobrevibacter-dominated com-

munity were highly expressed both at baseline and following challenge with wild-type

S. Typhi in no-TD subjects. Our data suggest that multiple mechanisms may be

employed to control the oxygen concentration in the Methanobrevibacter community

and are consistent with recent reports that methanogenic archaea can be grown in the

presence of oxygen when the culture medium is supplemented with the antioxidants

ascorbic acid, uric acid, and glutathione (27, 28).

Oxidative stress can also disturb the homeostasis of redox-active metals, including

iron, copper, cobalt, and nickel (18), which in turn can act as catalysts to further drive

the production of ROS and reactive nitrogen species (RNS) (29). To maintain an optimal

bioavailable concentration of a metal ion, cellular metabolism must be altered to

balance metal uptake and efflux/storage processes. Several other observations from

analysis of the metatranscriptome data suggest potential differences between the

transcriptome community responses to oxidative stress. Subjects who did not develop

typhoid also had a higher level of expression of genes encoding proteins containing

iron-sulfur binding subunits as well as GO terms associated with divalent inorganic

cation homeostasis and nickel/copper/molybdenum binding at baselines or postchal-

lenge. The high expression of genes involved in metal homeostasis might reflect a

response to the presumed oxidative stress induced by S. Typhi infection.

In order to invade, enteric pathogens must traverse both the inner and outer mucus

layer that separates the gut lumen from the underlying epithelium. The relative

abundance of Akkermansia spp., a clade of mucin-degrading bacteria, has been re-

ported to correlate with the thickness of the mucus layer (30). It was therefore of

interest to observe a positive correlation between Methanobrevibacter and Akkermansia

in both the 16S rRNA gene and metatranscriptomic data sets, suggesting that potential

differences in the mucus layer among subjects may also contribute to different clinical

outcomes following challenge with wild-type S. Typhi.

Finally, gut methanogens have been reported to play a role in activation of the

adaptive immune response by upregulating cell surface receptors CD86 and CD197 on

monocyte-derived dendritic cells (moDCs) and expression of human �-defensin in

moDCs exposed to Methanobrevibacter smithii in vitro (31). These findings suggest that

methanogenic archaea may possess important immunomodulatory functions that

could potentially impact outcomes following infection with enteric pathogens.

Analysis of the metatranscriptome data revealed that a suite of genes encoding

proteins involved in flagellar biosynthesis and chemotaxis in the motile bacteria

Eubacterium and Roseburia were consistently present at higher abundance in subjects

who developed clinical symptoms following challenge with S. Typhi. It is possible that

this observation reflects the fact that the diverse Firmicutes transcriptome community

type is correlated with TD. On the other hand, bacterial flagellins, the major structural
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protein of flagella, and another flagellar hook protein, FlgE, have been reported to play

an important role in mucosal immune activation of the Toll-like receptor 5 (TLR5)

pathway (32–34). Our data are of interest in light of the findings of Cullender et al., who

reported that antiflagellum antibodies immobilize commensal motile bacteria in vitro

and also function to induce downregulation of flagellin gene expression by an un-

known mechanism (35). The significantly greater abundance of flagellin genes in TD

subjects is consistent with the possibility of an overall lower level of antiflagellin

antibodies in the gut, suggesting possible differences in the innate immune response

among the subjects in this study. While it is not possible to further speculate on the

impact of differences in the overall level of commensal flagellin gene expression on

host immune status and clinical outcome following exposure to wild-type S. Typhi, this

relationship should be further examined in future studies.

To the best of our knowledge, this is the first demonstration that differences in the

composition and function of the human gut microbiome correlate with the develop-

ment of typhoid symptoms following exposure to wild-type S. Typhi. These observa-

tions have important implications in interpreting the efficacy of oral attenuated vac-

cines against enteric pathogens in diverse populations. The association between

Methanobrevibacter and lack of disease symptoms is of interest, especially given that

methanogens appear to represent a relatively minor fraction of the gut microbiota (36).

Few studies have examined the contribution of methanogens to gut microbiota

function. A previous study from our laboratory (16) examining the impact of a Lacto-

bacillus probiotic on the function of the gut microbiota also described a transcriptome

community dominated by Methanobrevibacter transcripts. Taken together, the data

from these two studies are consistent with the notion that methanogens may be

critically important to the overall function of the gut microbiota in a subset of

individuals.

There is one important caveat to our study. The small intestine is the site of invasion

for S. Typhi, from which it can disseminate to other tissues, including the liver, spleen,

and gallbladder (37). Fecal samples are most representative of the ecosystem present

in the colon; however, it is not practical to sample the microbiome of the small intestine

in longitudinal human studies. Our data indicate that further exploration of the

mechanisms by which differences in the gut microbiome can impact susceptibility to

enteric pathogens in both humans and animal models may provide important new

insights into the interplay between host, pathogen, and the microbiome.

MATERIALS AND METHODS

Subject recruitment and sample collection. Longitudinal fecal samples were collected from

healthy adults recruited in Oxford, United Kingdom (13). Volunteers received 3 doses of oral Ty21a (a

licensed live attenuated typhoid vaccine, strain Ty21a), a single dose of M01ZH09 (an attenuated live

typhoid vaccine candidate strain), or placebo, followed 28 days later by challenge with 104 CFU of

wild-type (wt) S. Typhi (Quailes strain), monitoring of clinical symptoms and hematological and bio-

chemical responses, and daily microbiological sampling. Stool samples were collected at the screening

interview (baseline 1), prior to the first vaccination visit (baseline 2), two time points during vaccination

(days �28 and �26) for placebo and M01ZH09 groups but four time points during vaccination (days

�32, �30, �28, and �26) for the Ty21a group, prior to challenge with S. Typhi (day 0), and five time

points after challenge at day 0: 12 h, day 1, day 3, day 7, and day 10. Written informed consent was

obtained, and all procedures were approved by National Research Ethics Service South Central—Oxford

A (11/SC/0302). The clinical trial was sponsored and monitored by the Oxford University Clinical Trials

and Research Governance Department. After collection, stool was mixed with RNAlater, homogenized,

aliquoted into cryovials, and stored at �80°C until further processing.

DNA extraction and 16S rRNA gene sequencing. DNA was extracted from each of 283 stool

specimens. For processing, samples were thawed at 4°C and, in aliquots of 0.15 g per tube, resuspended

in 1 ml of 1� phosphate-buffered saline. Cell lysis was initiated with two enzymatic incubations, first,

using 5 �l of lysozyme (10 mg ml�1; Amresco, Solon, OH), 13 �l of mutanolysin (11.7 U �l�1;

Sigma-Aldrich), and 3 �l of lysostaphin (4.5 U �l�1; Sigma-Aldrich) for an incubation of 30 min at 37°C

and, second, using 10 �l proteinase K (20 mg ml�1; Research Products International, Mt. Prospect, IL),

50 �l 10% SDS, and 2 �l RNase (10 mg ml�1) for an incubation of 45 min at 56°C. After the enzyme

treatments, cells were disrupted by bead beating in tubes with lysing matrix B (0.1-mm silica spheres; MP

Biomedicals, Solon, OH), at 6 m s�1 for 40 s at room temperature in a FastPrep-24 (MP Biomedicals). The

resulting crude lysate was processed using the ZR fecal DNA miniprep kit (Zymo, Irvine, CA) according

to the manufacturer’s recommendations. The samples were eluted with 100 �l of ultrapure water into
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separate tubes. DNA concentrations in the samples were measured using the Quant-iT PicoGreen

double-stranded DNA (dsDNA) assay kit (Molecular Probes, Invitrogen, Carlsbad, CA).

16S rRNA gene sequence analysis. Hypervariable regions V3 and V4 of the bacterial 16S rRNA gene

were amplified with primers 319F and 806R as described previously (38). The libraries were sequenced

on 250PE MiSeq runs. Quality trimming of these sequences was carried out using the procedures

described previously (38) for 250-bp reads according to the following criteria: (i) reads were truncated

upstream of �2 consecutive low-quality bases, (ii) no reads with ambiguous base calls were used, and

(iii) reads with �150 bp after trimming were discarded. Demultiplexing was performed with QIIME

(version 1.8.0) (39). UCHIME v5.1 was conducted for de novo chimera detection and removal. Sequences

were clustered as operational taxonomic units (OTUs) based on a 97% cutoff with USEARCH. Taxonomic

ranks were assigned to each sequence with the Ribosomal Database Project (RDP) Naive Bayesian

Classifier v.2.2, using the Greengenes database of 16S rRNA gene sequences (August 2013) and a

confidence value cutoff of 0.97.

RNA extraction and sequencing. Total RNA was extracted using a protocol described by Eloe-

Fadrosh et al. (16). Briefly, cells from 250 �l homogenized stool were lysed using acid phenol, SDS, and

aggressive bead beating using lysing matrix tubes (Qbiogene) and a FastPrep FP120 instrument

(Qbiogene). Total RNA was extracted by three rounds of phenol-chloroform-isoamyl alcohol (IAA)

extraction, ethanol precipitation, and DNase treatment using the Ambion Turbo DNA-free kit (Invitrogen

catalog no. AM1907) followed by purification using a Qiagen RNeasy kit (catalog no. 74104) and quality

control using an Agilent 2100 Expert Bioanalyzer. Contamination of genomic DNA was evaluated by 16S

rRNA gene PCR. Subsequently, rRNA was depleted using a combined Gram-positive and Gram-negative

Ribo-Zero rRNA removal kit (Epicentre Technologies) followed by a purification step using a Zymo RNA

Clean and Concentrator kit (catalog no. R1015) and quality control using an Agilent RNA 6000 Nano kit

(catalog no. 5067-1511). This protocol generally yields 150 to 300 ng from an initial input of 5 �g total

RNA. Following a variation of the manufacturer’s protocol, the TruSeq RNA sample preparation kit

(Illumina) was used to prepare RNA-seq libraries containing 6-bp indexes. Using AMPure XT beads

(Beckman Coulter Genomics), cDNA was purified and library size selection was performed. Sequencing

was performed using the Illumina HiSeq2000 platform with three samples multiplexed per lane. RNA

extracted from the same samples as for RNA-seq was used to perform qRT-PCR (see Text S1 and

Table S2 in the supplemental material).

RNA-seq taxonomic identification and differential expression analysis. Raw sequence data were

processed with adaptive quality trimming and adapter removal using in-house quality control (QC)

pipelines. rRNA was filtered out by aligning reads using Bowtie 2 (40) to rRNA reference sequence

database SILVA Parc (41). The rRNA-filtered reads were analyzed with BMTagger (42) to identify putative

human sequences that were then removed. The remaining reads were first used for taxonomical profiling

by MetaPhlAn (15) followed by transcriptome profiling by HUMAnN2 (the HMP Unified Metabolic

Analysis Network), in which nucleotide-level searches were conducted via Bowtie 2 against a functionally

annotated pangenome database, ChocoPhlAn, and unmapped reads were searched on a translational

level via Diamond (43). The resulting UniRef50 gene families were mapped to KEGG Orthogroups (KOs)

and Gene Ontology (GO). Differential gene expression analysis was conducted with edgeR to study both

global and genus-level gene expression patterns (44). The trimmed mean of M values (TMM) was utilized

to estimate appropriate scaling factors for normalization among samples with the inherent assumption

that the majority of counts are not differentially expressed (45).

Clustering of taxonomic composition. We removed any genus estimates less than 1% and 0.3% of

sample sequences obtained from 16S rRNA gene sequencing and RNA sequencing, respectively, and

then renormalized the remaining genus-level abundance estimates to sum to 1.0 for each sample. We

next computed the mean and standard deviation (SD) of observed estimates for each predicted genus

across all samples. Using these data, we mapped all remaining abundance estimates for each genus into

a [0,1] range representing relative deviation from the genus’s mean abundance estimate in SD units. Our

method involves Euclidean-space clustering, where the relevance of absolute values would, without this

final normalization, force our method to focus only on the most-abundant genera when identifying

similarity between samples. The clustering tool that we used as a core subroutine was cluster 3.0

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm). This tool performs k-means Euclidean-

space clustering on a given set of vectors for a given value of k. We avoided the issue entirely by varying

k between 3 and 20 inclusive and then ran cluster 1,000 times for each k.

qRT-PCR. The expression level of a subset of transcripts present in baseline samples was determined

using qRT-PCR. DNA and RNA were copurified from the same stool samples used for RNA-seq using the

MagAttract PowerMicrobiome DNA/RNA kit (Qiagen) using an automated liquid handling system. Total

RNA was prepared from DNA/RNA through two rounds of DNase treatment using Turbo DNAfree enzyme

(Ambion) according to the rigorous DNase treatment protocol. Complete digestion of DNA was con-

firmed by performing a 35-cycle endpoint PCR for the 16S rRNA gene, targeting the V3-V4 (nucleotide

[nt ]318 to 806) amplicon region. Total RNA was converted to cDNA using SuperScript III reverse

transcriptase according to the manufacturer’s protocol (Invitrogen) and with the use of random hexamer

primers. The cDNA was diluted 1:20 into nuclease-free water (Ambion) before analysis using reverse

transcription-quantitative PCR (qPCR). The qPCR was performed using SYBR green master mix (Life

Technologies) with 10-�l reaction mixtures comprised of the following: 5 �l of 2� SYBR master mix, 1 �l

of each of the 1 �M forward and reverse primers (Table S1), 1 �l of nuclease-free water (Ambion), and

2 �l of cDNA. Triplicate reactions were performed for each cDNA template and primer combination using

a CFX 384 qPCR instrument (Bio-Rad). The qPCR conditions were as follows: 40 cycles of 95°C for 15 s and

60°C for 1 min, followed by a dissociation stage. The cycle threshold (CT) values were calculated using the
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Bio-Rad software. The CT values of the biological replicates were averaged, and the standard deviation

was calculated. The CT values of target genes of each sample were normalized by subtracting from them

the CT value of the constitutively expressed RNA polymerase beta subunit, rpoB, resulting in the ΔCT value

of a particular gene for each sample.

Accession number(s). All subject data have been deposited in NCBI’s database of Genotypes and

Phenotypes (dbGaP) under study accession no. phs001521.v1.p1 and are accessible to authorized users

according to the NIH dbGAP system policies and procedures. Sequence reads from the 16S rRNA gene

profiling and metatranscriptomic experiments are available at SRA under accession number

PRJNA407499.
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