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The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage
of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats
below 1.3. The potential importance of this instability to these astrophysical object has motivated a number
of laser-driven laboratory studies. However the Vishniac instability is essentially a dynamical instability that
should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In
this paper we examine the possibility that ionization and molecular dissociation processes can achieve this,
and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating
shock waves propagating into cold atomic and molecular gases.

I. INTRODUCTION

The stability of shock waves is a matter of fundamen-
tal importance in hydrodynamics and plasma physics1,
because of the wide-ranging consequences that it entails.
The stability of shock waves has implications for sub-
jects that range from the structure of supernova rem-
nants (SNRs) through to the prospects of inertial con-
finement fusion. There appears to be general agreement
that planar and divergent shock waves propagating in an
ideal gas are stable2, although convergent (imploding)
shocks are unstable3. Real fluids always deviate from
ideal fluids in certain areas of parameter space, or are
subject to more physical processes than are embodied by
the equations of Eulerian hydrodynamics. Fluids that
possess non-ideal equations of state can be susceptible to
the D’yakov-Kontorovich instability4,5, for example.

In the case of radiative blast waves6, the blast
wave front is theoretically susceptible to the Vishniac
instability7–9. The Vishniac instability has attracted con-
siderable attention because of its potential to explain
complex structures in SNRs10 and in other astrophysi-
cal phenomena11–13. It has been pointed out by certain
authors that the role of this instability in these astrophys-
ical objects is not a fully resolved matter10. Nonetheless
this interest has spurred a number of researchers to carry
out experiments using high-powered lasers to investigate
this instability14–19.

There are a number of questions about the interpre-
tation of laser-driven blast wave experiments aimed at
either studying the Vishniac instability or other exotic
hydrodynamic instabilities. The central theme of these
questions is whether the influence of other physical pro-
cesses can be sufficiently excluded as to ensure that only
the instability in question can be studied in isolation.
For example, it was noted by Symes17 that radiative blast
waves launched in high-Z gases (e.g. Xe) may not exhibit
sufficiently strong compression for the Vishniac instabil-
ity to occur, due to the complex structure of the shock

fronts in the radiative regime. In another case, Nilson20

argued that a shock front instability observed in a blast
wave launched in He was due to the D’yakov-Kontorovich
instability, and implicitly excluded the Vishniac instabil-
ity as the radiative losses would be negligible. However,
as Symes also noted, the Vishniac instability (and re-
lated instabilities) do not specifically depend on radia-
tive cooling, rather they depend on the fluid being more
compressible than an ideal gas. For the case of a fluid
with a polytropic equation of state this should occur for
γ <1.3 (where γ is the ratio of specific heat capacities).
In this paper we pick up on this aforementioned re-

mark by Symes, and we examine the potential for the
Vishniac instability (and related instabilities) to occur
when shocks propagate into cold gases. This builds on
the ionization mechanism for lowering γ that has been
noted in astrophysical studies21. We argue that this is
possible in the case where the shock is partially ionizing
or dissociating (in the case of propagation into molecular
gases), as in this case the ionization/dissocation processes
become a source of energy loss that can cause γ to fall
well below 5/3. We have structured the paper as follows:
In Section II we start by showing the occurrence of low
γ in the case of a ‘toy’ model in which the fluid consists
only of atomic hydrogen. In Sections III and IV we then
look at shock wave propagation in helium and diatomic
hydrogen gas and show that a post-shock γ below 1.3 can
be achieved in both cases. In Section V we present the
results of numerical simulations that show the develop-
ment of a Vishniac-like instability when we use the EOS
for molecular hydrogen. We then state our conclusions
in Section VI.

II. HYDROGEN IONIZATION

We start by looking at the simplest thermodynamic
model for an ionizing fluid : dilute atomic hydrogen. In
this model the formation of the H2 molecule is neglected,
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and the only species that are considered are H,H+ and
e−. For a given temperature and mass density, the den-
sities of these species can be determined from the Saha
equation:

nH+ne

nH
=

(

2πmekBT

h2

)3/2

e−ǫi/kBT . (1)

In Eq. 1, ǫi is the ionization energy, and all other symbols
have their usual meaning. Given that ne = nH+ , if we
introduce the ’total’ atomic density, n0 = ρ/mp = nH +
nH+ , and define the ionization fraction, f = nH+/n0,
then we can re-write this as,

f2

1− f
=

1

n0

(

2πmekBT

h2

)3/2

e−ǫi/kBT = K, (2)

which is a quadratic equation. The solution being,

f =
1

2

(

√

K2 + 4K −K
)

. (3)

The equation of state for this model can then be specified
by,

P = n0kBT (1 + f), (4)

and

U =
3

2
n0kBT (1 + f) + ǫin0f (5)

We can now calculate γ using these relations (see Ap-
pendix). In fig.1 we plot γ against temperature for this
model for the case of n0 =2.5×1024m−3. At low and high
temperatures we see that γ ≈ 5/3, which is expected as
this model corresponds to an ideal gas in both the fully
neutral and fully ionized limits. However there is a tem-
perature range (1-2 eV at this density) over which the
fluid is a partially ionized plasma, and here the ratio of
specific heats falls substantially below 5/3. Fig. 1 clearly
shows that the ratio of specific heats falls below 1.3. This
shows that, in principle, ionization processes can produce
a partially ionized plasma with a ratio of specific heats
below 1.3.
It is also important, at this point, to note that ne-

glecting the molecular state of hydrogen is not the only
simplification that this model makes. This model also
neglects the excited states of neutral hydrogen, for ex-
ample. Although this suggests that ionizing shock wave
propagation into cold gases can be subject to the Vish-
niac instability, we need to show that: (a) this occurs
for more realistic equations of state, and (b) that there
exist post-shock states with γ <1.3. Here we demon-
strated that there exist some thermodynamic states for
which γ <1.3, but these are not necessarily post-shock
states. We will now proceed to demonstrate that post-
shock states satisfy this in the following sections.
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FIG. 1. Plot of the ratio of specific heats,γ versus temperature
(in eV) for the atomic hydrogen model at n0 =2.5×1024m−3.

III. SHOCK PROPAGATION IN HELIUM

In the preceding section we considered the equation of
state for purely atomic hydrogen, which is not an espe-
cially realistic equation of state given that it neglects the
molecular form of hydrogen. The equation of state for
helium can be obtained in a similar fashion. As helium
does not have a molecular form, this equation of state
therefore doesn’t make a similarly unrealistic assump-
tion. This equation of state is obtained by determining
the ionization fractions via two Saha equations. If nn

denotes the density of neutral helium, n1 the density of
He+, and n2 the density of He2+ then we have,

n1ne

nn
= 4

(

2πmekBT

h2

)3/2

e−ǫ1/kBT = K1, (6)

and,

n2ne

n1

=

(

2πmekBT

h2

)3/2

e−ǫ2/kBT = K2, (7)

where ǫ1 and ǫ2 are the first and second ionization en-
ergies respectively (24.6 and 54.4 eV). Introducing n0 =
ρ/(4mp), and the ionization fractions f1 = n1/n0 and
f2 = n2/n0 we can cast this as two coupled equations,

f2
1 + 2f1f2 − (1− f1 − f2)J1 = 0, (8)

and,

2f2
2 + f1f2 − J2f1 = 0. (9)

In the preceding two equations, J1 = K1/n0 and J2 =
K2/n0. The equation of state is then defined by,

P = n0kBT (1 + f1 + 2f2), (10)
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FIG. 2. Plot of Hugoniot curve calculated using the helium
EOS model for ρ0 =0.00668 kgm−3 and T0 =0.1 eV.

and,

U =
3

2
n0kBT (1 + f1 + 2f2) + ǫ1n0f1 + ǫ2n0f2. (11)

Since Eq.s 8 and 9 can be solved numerically by appli-
cation of the bivariate Newton-Raphson method, we can
always obtain this equation of state numerically. The ra-
tio of specific heats can likewise be computed as part of
this procedure. It is also possible to use this equation
of state to compute the Hugoniot curve for dilute He by
numerically solving,

e1 − e0 +
1

2

(

1

ρ1
−

1

ρ0

)

(P1 + P0) = 0, (12)

for ρ1 given T1 and the pre-shock condition (T0, U0, ρ0,
and P0). Note that e denotes the specific internal energy,
i.e. e = U/ρ. In fig.2 we plot the Hugoniot curve for di-
lute helium for the pre-shock conditions for ρ0 =0.00668
kgm−3 and T0 =0.1 eV.
Fig. 2 shows that there are a set of post-shock states

with a pressure ratio of only several hundred where
a compression ratio in excess of 10 is achieved. For
states of higher pressure ratio the compression ratio de-
creases, tending towards four as expected. For a poly-
tropic equation of state the maximum compression ratio
is µmax = 1+2/(γ−1), so fig. 2 suggests that there are a
set of post-shock states where γ <1.3. This is confirmed
when we compute the ratio of specific heats, which are
plotted in fig. 3, where we find that there is a significant
region where the ratio of specific heats is less than 1.3.
We can therefore conclude that it is possible to drive a

shock through dilute He gas which will result in a post-
shock state where the ratio of specific heats is less than
1.3. In which case we can further conclude that this
means that it is possible that a blast wave can be driven
in dilute He gas which is subject to the Vishniac insta-
bility.
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FIG. 3. Plot of ratio of specific heats for each of the post-shock
states on the Hugoniot curve calculated using the helium EOS
model for ρ0 =0.00668 kgm−3 and T0 =0.1 eV.

IV. SHOCK PROPAGATION IN MOLECULAR

HYDROGEN

Having shown the possibility of the Vishniac instability
occurring in dilute He, we will now attempt the same for
dilute diatomic hydrogen. For this a more complex model
is required. Although the basis of this model should also
be two coupled Saha equations (one for molecular dis-
socation and one for the ionization of hydrogen atoms),
there is the particular issue of correctly evaluating the
molecular partition function. In light of this we have
opted to use the model developed by Quartapelle and
Muzzio22. This includes a carefully evaluated treatment
of the molecular partition function and also includes the
excited states of neutral hydrogen. The full technical de-
tails of the model are reasonably complex, and we there-
fore direct the reader to the original description for these.

Using Quartapelle and Muzzio’s model we have calcu-
lated the Hugoniot curve for H2 with an initial density
of ρ =0.0334 kgm−3 and an initial temperature of T0 =
500K. The Hugoniot curve that we obtained is plotted
in fig. 4. The ratio of specific heats for these post-shock
states is shown in fig. 5, and in terms of the shock wave
Mach number in fig. 6.

In fig. 5 it can be seen that there is a significant region
where γ < 1.3, which is expected given that a number of
high compression ratio post-shock states can be seen in
fig. 4. At low pressure ratios the ratio of specific heats
is close to 1.4, which is expected for a diatomic gas with
five degrees of freedom. At high pressure ratios it can be
seen that the ratio of specific heats tends towards 5/3, as
expected once dissociation and ionization are complete.
In terms of the shock wave’s Mach number, fig. 6 shows
that this occurs in the range 5≤ Ms ≤ 10.

We therefore conclude that it is also the case that it
is possible to drive a shock wave through dilute H2 gas
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FIG. 4. Plot of Hugoniot curve calculated using Quartapelle
and Muzzio’s EOS model for H2 with ρ0 =0.0334 kgm−3 and
T0 = 500K.
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FIG. 5. Plot of ratio of specific heats for each of the post-shock
states on the Hugoniot curve calculated using Quartapelle and
Muzzio’s EOS model for H2 with ρ0 =0.0334 kgm−3 and T0 =
500K.

which results in a post-shock state where γ <1.3, and
thus we can also conclude that a blast wave propagating
in dilute H2 gas can be subject to the Vishniac instability.

V. SIMULATIONS

A. Set-Up

We carried out numerical simulations using the arc-

turus hydrodynamics simulation code. This code uses
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FIG. 6. Plot of ratio of specific heats for each of the post-shock
states on the Hugoniot curve calculated using Quartapelle and
Muzzio’s EOS model for H2 with ρ0 =0.0334 kgm−3 and T0 =
500K, in terms of the shock wave Mach number.

the method of Ziegler23 to solve the equations of Eule-
rian hydrodynamics. There is no radiative cooling in this
model. The version of the code employed in this study
can also use tabulated equations of state. The simula-
tions were initialized with the domain mainly consisting
of an ambient medium at a density of ρ = 0.0334 kgm−3

and an internal energy density of U =6 × 105Jm−3. A
region centred around the mid-point in y and running
along the entire length of the x-axis consisted of hot,
dense fluid. The boundary of this region was defined by,

| y − ym |< a (1 + δ cos (kx)) , (13)

where ym is the mid-point in y, a =50 µm, δ =0.05,
and k =47124 m−1. The density of this region was set
to ρh =0.3 kgm−3, and the internal energy density was
set to Uh =3.9×108 Jm−3. The standard run used a
tabulated EOS that was calculated using the model of
Quartapelle and Muzzio22 for H2.
Simulations were carried out using a 3200 × 3200 grid,

with cell sizes of ∆x = ∆y =0.125µm. Simulations were
run up to 5 ns.

B. Results

In the standard run we observe that the layer of
shocked material between the shock front and the contact
discontinuity develops a regular growing perturbation. In
fig.7 we show a plot of the mass density in one quadrant
of the simulation. The shocked material is present in
fig.7 as a thin layer in the range 50 ≤ y ≤ 65 µm where
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FIG. 7. Plot of mass density (kgm−3) in one quadrant of the
grid in the standard hydrodynamic simulation at 3.75 ns.
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FIG. 8. Plot of f against time in the standard hydrodynamic
simulation (see text).

ρ >0.3 kgm−3. The perturbation running along the x-
axis can also be seen, and it has a wavelength around
130µm which is close to the wavelength of the initial per-
turbation on the boundary of the hot region. Note that
the compression ratio is in the range 9–10.

To quantify the development of this perturbation we
determined the mid-point of the shocked layer at each
time and then examined the line-outs of the mass den-
sity (along this mid-point in the x direction). We then
calculated f = (ρhi − ρlo)/ρlo (where ρhi and ρlo are the
crest and trough densities respectively). In fig. 8 we plot
the results of this analysis.

This analysis is only possible after 3 ns as before this
time the shocked layer is both too thin and too strongly
corrugated for this analysis. When the standard run is
repeated but with an ideal EOS instead of the H2 (tab-
ulated) EOS, then we find that there is no growing per-

turbation. We can therefore say that we have performed
hydrodynamic simulations which show that a growing
Vishniac-like instability appears. This occurs when we
use an EOS that we have previously determined to be sus-
ceptible to the Vishniac instability, and when we choose
initial conditions that create post-shock states that sat-
isfy γ <1.3. Since the compression ratio is in the range
9–10, we know from fig. 5 that this is satisfied.

VI. CONCLUSIONS

The Vishniac instability is normally associated with
strongly radiative blast waves, particularly SNRs in the
later phases of their evolution. However, it has been
noted that the Vishniac instability depends on the ra-
tio of specific heats being sufficiently low, and does not
rely on how this is achieved. This could be because the
fluid has enough internal degrees of freedom, or it could
be because there are routes through which energy can be
lost. Ionization or dissociation processes can provide a
route for energy loss. Here we have shown that γ < 1.3
can be achieved in three different models. These included
both dilute He gas and dilute H2 gas, where we further
showed that γ < 1.3 occurs for certain post-shock states.
This leads us to conclude that blast waves launched in
these gases (and other types of shock waves) can be sus-
ceptible to the Vishniac instability. Furthermore we have
presented the results of numerical simulations that sup-
port this conclusion.
We note that the threshold for the onset of the Vish-

niac instability (in terms of the ratio of specific heats)
has been revised to γ ¡ 1.2 in other papers8. This ap-
plies to the case where the equation of state is poly-
tropic, whereas the equations of state that we are inter-
ested in this paper are very different from any polytropic
EOS. Given the inapplicability of previous theory, we
have therefore employed numerical simulations to show
the growth of a Vishniac-like mode. This paper there-
fore also raises the possibility that the true implications
of the Vishniac instability may only be found by em-
ploying fully physical equations of state, and/or a fully
physical treatment of radiative cooling — after all the
low-γ polytropic EOS was only pursued as an model to
facilitate study of the Vishniac instability.
There are two consequences of the conclusion we have

reached. The first is that this should lead to a reconsid-
eration of the interpretation of previous experiements,
and a recognition that this complicates the interpreta-
tion of new experiments. A number of experiments have
interpreted a rippling of the shock front, or other phe-
nomena, as a manifestation of the D’yakov-Kontorovich
instability, e.g. the corrugation seen at late times in the
experiment reported by Nilson20, however re-analysing
these experiments in light of our results may lead to a
different conclusion. The second consequence is that this
opens up an unexplored route to studying the Vishniac
instability (and related instabilities) in the laboratory.
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The advantage of this approach is that it may avoid cer-
tain problems that have been encountered in the radia-
tive flux regime, where it has been thought that radiation
transport has reduced the compresssion ratio. The po-
tential disadvantage is that γ < 1.3 is only achieved over
a certain range of the shock wave’s Mach number. This
implies that when the shock wave speed is non-constant,
that the shock front may only be susceptible to the Vish-
niac instability for a limited period.
Finally we note that, although the primary focus in

this paper has been on the Vishniac instability, there are
a number of other instabilities reported in the literature
which depend on the post-shock fluid achieving γ close
to 1. In particular there are the bow-shock instabilites
described by Dgani et al.11 and Ohnishi et al.24, which,
in light of the results reported in this paper, might be
achieved due to ionization or dissociation.

Appendix A: Calculation of Ratio of Specific Heats

The expressions for internal energy and pressure can
be converted into relations involving fluid volume, V , and
total particle number, N . In this form one can use the
familiar expressions for the heat capacity at constant vol-
ume,

Cv =

(

∂U

∂T

)

V

, (A1)

and heat capacity at constant pressure,

Cp = Cv + T

(

∂P

∂T

)

V,N

(

∂V

∂T

)

P,N

. (A2)

Provided that we have expressions for U and P we can
therefore evaluate γ analytically or numerically using
these relations.
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