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Effect of lubricant ageing on lubricant physical and chemical properties and 

tribological performance. Part I: effect of lubricant chemistry 
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1.� Introduction 

 

In the past decades, the ageing of the lubricants have been shown to significantly affect the 

performance of lubricants. Generally, this was found to be related to the ageing stability of 

the lubricant at different test conditions. The ageing stability of a lubricant is highly 

dependent on its chemical composition, the related additives and stabilizing agents [1]. The 

latest researches (e.g. De Feo et al.[2], Amat et al. [3]) in this area explored the ageing effect 

on lubricants through the surface analysis techniques to explain the tribochemistry involved 

within the tribological process. There is a wealth of literatures about the effect of ageing on 

the lubricants and the related tribological performance. In the late 1980s, Ofunne ��� ��� [4] 

showed that ageing of lubricants was affected by temperature, the rate of air circulation, 

metal and water content, the type of base oil as well as the additives.  

Kreuz ��� ��� [5] showed that the high engine temperature is the characteristic of tropical 

conditions significantly affected the ageing process of the lubricant. Zhang ������ [6] showed 

that the increase of temperature could accelerate the ageing of the tested oil which resulted in 

an increase of the formation of decomposition products. Qian ��� ��� [7] showed that the 

increase of temperature accelerated the bearing failure, which resulted from the thick layers 

formed on the running surface of the bearing’s cylindrical bore and these layers were 

believed to be related to the organic reaction products within the lubrication system.  

Ageing stability is always related to the oxidative stability of the lubricants. The majority of 

the modern hydrocarbon base fluids used in diesel and gasoline engines is prone to oxidative 

degradation [8:12].  

Wear metals could act as a catalyst in the oxidation process of the lubricants [10, 12, 13]. 

Perryman et al. [13] stated that the wear metal:catalyzed oxidation of the lubricants could be 

responsible for the formation of sludge deposits in the used oils during which metals act as 

radical scavengers at the initial stage of the reaction but would catalyze the oxidation for the 

rest of the ageing process. Bondi [14] pointed out that the mechanism of catalytic oxidation 

of mineral oils at high temperatures is based on peroxide formation which is catalysed by free 

radical chain reactions shown as: chain initiation (Eq. 1), chain propagation (Eq. 2) and chain 

termination (Eq. 3). 

      22
1 ���� 	

⋅⋅⋅⋅→+                   2 2* *� � 
� � 
 � �⋅⋅⋅ ⋅ + → + + −      Eq. 1 
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2 2* *
	


 � 
�+ →                            
3

2 2* * * *
	


� 
� 
� � 
+ → +    Eq. 2 

3

2 2* *
	


� � � 
�+ → ⋅⋅⋅⋅              2* * *
 
 
+ →      Eq. 3 

where M refers to metal catalyst and*R refers to free radical. 

Naga ������ [15] showed the effectiveness as oxidation catalysts of several metals in the order 

as Cu>Fe>Ni:Cr>Al and that the harmful effect of the single metals would be decreased with 

the presence of other types of metals simultaneously.  

Lu[16] indicated that the lubrication behaviour of steel bearings could be significantly 

improved by ageing the lubricant which contains Tricresyl Phosphate (TCP). However, the 

polarity of the base oil or contaminants within the oil could have a different effect on the 

formation of the reaction layer [17]. Several published works [18:22] have also studied the 

anti:wear performance of the degraded ZDDP. Willermet ��� ��� [23:25] found that the by:

products of degradation of ZDDP, especially the disulphide were less effective than ZDDP 

itself in anti:wear abilities. Zhang ��� ��� [26] found that the anti:wear ability of ZDDP is 

mainly coming from its degradation product from the hydrolytic decomposition of ZDDP 

which are alkyl sulphides and zinc polyphosphates. Uy ������ [27] showed in their results that 

lower wear was observed with aged oils compared to fresh oils in valve:train experiments and 

suggested that the film formed from aged oil would provide superior wear performance than 

the film formed from fresh oil. The reason for this is still unclear. 

In part Ι of this research, the main objective is to evaluate the effect of lubricant ageing on the 

viscosity, TAN and FTIR spectra, which are commonly:used parameters for condition 

monitoring of lubricants in industrial applications. In this paper, the ageing effect is evaluated 

through 4 steps: firstly, several types of oil will be aged with a fresh roller in a temperature 

controlled oven; secondly, sample oils and rollers will be taken out to check the effect of 

ageing on viscosity, TAN and FTIR spectra as well as roller surface; thirdly, selected aged 

oils will be tested in a ball:on:disc rig to evaluate the effect of ageing on friction and wear 

performance; the last step is to apply XPS technique to evaluated the tribochemistry change 

caused by ageing. Also, the results will be discussed and compared with the previous research 

done by Cen ������ [28].   

2.� Experimental 

The ageing method applied in this paper was developed according to ASTM D943, ASTM 

D2893 and ASTM D7528:09 to assess different lubricating oils regarding their stability in 
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service together with rolling bearing steel in the 100Cr6 grade. This ageing method descibes 

how lubricating oils can be tested for stability, oxidation and etching (corrosive attack) when 

subjected to elevated temperatures. The ageing temperature and duration applied in this paper 

were set to 80°C and 2 months (about 1000hours), while ASTM D943 states the ageing 

temperature should be 95°C and ageing duration should be much longer than that applied in 

this study. The reasons of settings of  the ageing temperature and duration can be as follows: 

(1)� In part I of this study, only lubricant chemistry was concerned. But in part II of this study, 

water would be added into the oil to see the effect of water on the ageing of lubricants. If 

the temperature was set to 95 °C, the authors were worried that the water would be 

evaporated quickly and limit the effect of water on the ageing of lubricants. 

(2)� The ageing tests done in this paper were to address the impact of ageing on the lubricants 

used in motor bearings, while TOST (ASTM D943) is widely used in addressing the 

effect of ageing on turbine oils. The working temperature of motor bearing lubricants is 

much lower than that of turbine oils. The best working temperature of most common 

seen motor bearings (at which temperature the motor bearings can work stably) is 

between 20:80 °C. This is another reason of ageing temperature settled to 80 °C.  

(3)� About the duration of the ageing tests. TOST (ASTM D943) sets the ageing duration to 

about 10000 hours, which is ten times of the ageing duration applied in this paper. The 

ageing in this paper was applied in a heating cabinet, 1000 hours (2 months) was already 

a long duration for the cabinet to work stably. The cabinet cannot work stably for 10000 

hours(20 months). Most turbine aged oils were taken out from an engine worked after 20 

months. This is the limitation of the heating cabinet applied in this paper. Again, the aim 

of this paper is to address the effect of ageing on the motor bearing lubricants rather than 

the turbine oils.  

The materials applied in the ageing process are shown in Table 1.The ageing procedure and 

inspection process is explained in Figure 1. During every inspection, the surface 

photographed and a written comment is made, such as ‘Yes’ which means sludge was found 

and varnish like coatings were formed on the roller surface, and ‘No’ which means hardly 

any sludge was found nor was any deposit formed on the roller surface. After ageing, selected 

lubricants were tested in the ball:on:disc test apparatus to address the effect on their 

tribological performance. XPS analysis was followed to study the tribofilm formed on the 

wear scar of the tested discs. All the test rigs and test conditions were shown in a previous 

paper [28].  
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Table 1. Information of the materials applied in the ageing process 

Oil Container Steel 
Cleaning 

fluid 

Heating 

apparatus 

Tool for 

taking 

samples 

Surface 

examing 

technique 

PTFE bottles 

(1000ml 

volume) with 

screwcaps 

Spherical rollers 

from small 

SRB(Spherical 

Roller Bearing) 

Acetone 
Heating 

cabinets 
Tweezers 

Stereo 

microscope 

 

 

Figure 1. Lubricant ageing and inspection process 

The viscosity of the lubricant was measured at 100°C using a test kit applying ASTM D7042. 

From the test result, the viscometer automatically calculates the kinematic viscosity and 

delivers measurement results which are equivalent to ISO 3104 or ASTM D445. It also has a 

high:precision thermostat with stability of 0.005 °C [28]. 

The total acid number (TAN) was tested using a test kit applying IP177/ASTM D664 which 

measures the change in electrical conductivity as the KOH is added. The accuracy for TAN 

test is ±0.2 [28].  

Fourier Transform InfraRed (FTIR) Spectroscopy was used to analyse the aged lubricants to 

obtain the chemical changes due to ageing process. The absorption wave:numbers of most 

common seen chemical bonds, such as :OH, C=O, N:H and CH:, are all laying within the 

range of 4000:1500 cm
:1

. The vibrational excitation is achieved by radiating the sample with 
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a broad:band source of light in the infrared region [28]. In this research, internal reflectance 

sampling technique was used in the FTIR tests and all the data were normalized to the 2900 

cm
:1

 band. 

A ball:on:disc test rig was used in this study, which provides a unidirectional sliding point 

loaded contact and was used to simulate boundary lubricated contacts, to evaluate the 

tribological performance of the aged lubricants. The schematic representation of the contact 

in the rig is shown in Figure 2. The ball, which was fixed, contacted with the rotating disc 

and the static load was such that the system was in the boundary lubrication regime [28]. 

 

Figure 2. Ball(on(disc test setup 

In the �������� phase, the impact of ageing on the chemical nature of tribofilms formed in 

tribological tests was addressed using X:ray Photoelectron Spectroscopy [28]. The X:ray 

photoelectron spectroscopy measurements were conducted in a PHI 5000 VersaProbe
TM

 X:

ray photoelectron spectrometer (Ulvac:PHI Inc, Chanhassen, MN, US) with a 

monochromatized Al Kα X:ray (1486.6eV) source. The emitted electrons are collected and 

retarded with an Omega lens system at an emission angle of 45°. After passing a spherical 

capacitor energy analyzer, the electrons are collected by a 16:channel detector. The system is 

equipped with a high performance floating:column ion gun and an electron neutralizer for 

charge compensation. The residual pressure was always below 1×10
:7

 Pa. Detailed 

information of the base oil/additives and the lubricating oils is shown in Table 2 and  

Table �. 

Table 2. Information of the base oils and additives 

Details Designation 

Synthetic Group IV PAO 

Synthetic Ester Ester 

Group II Mineral B MO 

Iso:C4:ZDDP ZDDP 

Phosphoric Acid Ester Neutralized With A High 

Molecular Weight Amine 
P 
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Patented Oil Based Corrosion Inhibitor CI 

 

Table 3. Information of the lubricating oils 

Details Designation 

PAO+(2wt%)ZDDP PAO+ZDDP 

PAO+(2wt%)P PAO+P 

ester+(2wt%)ZDDP ester+ZDDP 

ester+(2wt%)P ester+P 

MO+(2wt%)ZDDP MO+ZDDP 

MO+(2wt%)P MO+P 

MO+(2wt%)ZDDP+(1wt%)CI MO+ZDDP+CI 

 

3.� Effect of ageing on the bulk properties of lubricants 

3.1� Effect of ageing on the viscosity of lubricants 

Table 4 shows the viscosity values after each ageing period for all the tested lubricants. It is 

quite surprised to see that there is no significant change in the viscosity as a result of ageing 

in this study. The reason could be attributed to the ageing temperature applied in this study is 

80°C which might not be high enough to initiate the chemical reactions that would affect the 

viscosity of the lubricants. According to ASTM D7528:09 where the ageing tests of engine 

oils are carried out at 170°C, the oxidation of ZDDP will be activated when the temperature 

is higher than 110°C and viscosity will change a lot when temperature reaches 170°C. 

However, the ageing tests in this paper were taken out at 80°C which is much lower than the 

temperature mentioned in ASTM D7528:09 tests. Furthermore, the lubricants were kept still 

(no churning, stirring or pumping) during ageing tests rather than circulating in ASTM 

D7528:09 tests, which means less prone to be exposed to oxygen to be oxidized. Therefore, it 

is not surprising to see that the viscosity of the aged oils in this paper did not match the 

change stated in ASTM D7528:09 tests.   

Table 4. Viscosity change of lubricants with the increase of ageing time 

Oil type 
Viscosity at 100°C—(mPa·S) 

0week 2weeks 4weeks 6weeks 

ester+ZDDP 4.6 4.5 4.5 4.6 

ester+P 4.6 4.6 4.6 4.6 

PAO+ZDDP 4.0 4.0 4.0 4.0 

PAO +P 4.0 4.0 4.0 4.0 

MO+ZDDP 4.3 4.3 4.3 4.3 

MO+P 4.3 4.3 4.2 4.3 
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MO+ZDDP+CI 4.4 4.4 4.4 4.4 

 

3.2� Effect of ageing on the TAN of lubricants 

Figure 3 shows the TAN changes for the ZDDP:containing P:containing lubricants. It is clear 

that there are no significant changes in TAN values of ZDDP:containing lubricants after 

ageing, while TAN values increased with ageing time for the P:containing lubricants, among 

which TAN of Ester+P increased dramatically. This is because ester is proved in the literature 

to be easily degraded[29]. It is also noticed that the TAN values of Ester+P lubricants 

increased much faster after two weeks ageing. The faster increase of TAN could also be a 

result of reducing amount of test oil after every two weeks. Less amount of test oil, which 

means more oxygen sealed in the bottle, could result in faster ageing compared to the 1000 

mL of test oil during the first two weeks of ageing. 

� � � �

�

�

�

�

�
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Figure 3. Effect of ageing on TAN changes of lubricants 

The stable TAN values of ZDDP:containing oils after ageing indicate that the ZDDP protects 

base oil, especially ester from being degraded; ZDDP has been shown to be an effect anti:

oxidant in several previous studies [30:32]. In addition, ZDDP is proved to be a more 

effective anti:oxidation additive than the P additive based on the changes of TAN values of 

the tested lubricants, this is because the P additive used in this study is a phosphoric acid ester 

itself, which can be degraded during the ageing process.�

3.3� Effect of ageing on the roller surface 

One obvious effect of ageing on the roller surface would be shown as the formation of 

deposits and sludge on the surface. Each roller has been wiped with tissue after ageing to see 

if any sludge (removable with tissue wiping) and deposits (irremovable with tissue wiping) 
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forms on the roller surface. The sludge mainly comes from the by:products of the degradation 

(oxidation) process of the lubricants which can be accelerated by metal as shown by Hsu ������ 

[33]. The deposits formed varnish:like coatings�which could not be wiped off by a tissue and 

appeared to be a result of corrosion [34]. Due to the limited time in the roller checking 

process during the ageing interval, the sludge:like deposits were not chemically examined in 

this research but is highly recommended to be done in the future work. As the sludge and 

deposit formation processes are highly dependent on additives (because additives can affect 

the degradation of the lubricants significantly), all the aged lubricants have been separated 

into ZDDP: containing and P:containing ones. Table 5 and  

Table � show the images of the roller after wiping with tissue after ageing. The data under the 

lubricant name are the TAN values for fresh oil and the numbers under the images are the 

TAN values after each period of ageing. Description ‘Yes’ means sludge was found and 

varnish like coatings were formed on the roller surface. ‘No’ means hardly any sludge was 

found nor was any deposit formed on the roller surface. 

Results in Table 5 and  

Table � indicate less oxidation of the lubricants (no or nearly no sludge formed) and 

corrosion (from the images of the roller surfaces) when aged with ZDDP:containing 

lubricants than P:containing lubricants. This indicates a mechanism of ageing which affects 

the surface comes from the interaction (eg. oxidation, corrosion) between lubricant chemistry 

and steel substrate. As Klaus ������ [34] showed that metal corrosion and sludge formation are 

interrelated and the process is highly dependent on the contact with air, lubricant and metal 

surface. They also stated that the sludge formation is related to the oxidation within the 

system which can be catalysed by metal. Kuerten ������ [29] showed that the oxidation by:

products interact with the iron surface which can catalyse the formation of a polymeric 

precursor of sludge and varnish, and the amount of corrosion product with iron is affected by 

the proximity of the primary oxidation reaction to the iron surface. Therefore, ZDDP is again 

proved to be a more effective anti:oxidation and anti:corrosion additive than the P additive 

applied in this study. 

3.4� FTIR investigation of the effect of ageing on lubricants 

Fourier Transform infrared spectroscopy (FTIR) is selected to investigate the changes in the 

chemical structure of lubricants after ageing. As the ZDDP:containing oils show no 
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significant change in TAN as well as on the roller surface, PAO+ZDDP was selected to 

investigate the effect of ZDDP on the degradation of lubricants. 

 

Table 5. Roller images for ZDDP containing lubricants after each period of ageing (numbers are the TAN 

of the related lubricant after ageing) 

Oil type After 2 weeks After 4 weeks After 6 weeks 

ester+ZDDP 

3.4 

     
(No) 3.8 

     
(No) 3.4 

     
(No) 3.7 

PAO+ZDDP 

2.9 

      
(No) 3.0 

     
(No) 2.7 

     
(No) 2.9 

MO + ZDDP 

3.1 

      
(No) 2.7 

     
(No) 3.0 

     
(No) 3.1 

MO+ZDDP+CI 

4.0 

  
(No) 3.4 

  
(No) 3.6 

  
(No) 3.7 

 

Table 6. Roller images for P containing lubricants after each period of ageing (numbers are the TAN of 

the related lubricant after ageing) 

Oil type After 2 weeks 

ageing 

After 4 weeks 

ageing 

After 6 weeks 

ageing 

ester+P 

4.8 

 
(Yes) 4.7 

 
(Yes) 6.4 

 
(Yes) 8.7 

PAO+P 

3.9 

 
(Yes) 3.5 

 
(Yes) 3.3 

 
(Yes) 2.8 
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Figure 4 shows the FTIR spectra of the PAO+ZDDP fresh and aged lubricants. The peaks 

have been normalized with C:H at 2950 cm
:1

.The P:O:C peak at a frequency of around 970 

cm
:1

 and P=S at around 690 cm
:1

 are believed to come from the ZDDP additive [35:37]; its 

structure is shown in Figure 5. The chemical structure of P additive used in this paper is 

shown in Figure 6. All other bonds such as C:H (2900:3000 cm
:1 

and 1400:1500 cm
:1

), S=O 

(around 1350 cm
:1

) and S:O (around 1000 cm
:1

) are identified through literature studying the 

FTIR spectra of different chemicals [38:39]. S=O and S:O can be from its by:product after 

oxidation or hydrolysis (shown in Cen ��� ��� [28]) within the ageing system. The changing 

intensities of S=O and S:O suggest that ZDDP additive must have experienced some extent 

of degradation or hydrolysis but the two main bonds (P:O:C and P=S) from ZDDP are still 

present after each period of ageing. This indicates that there is still some ZDDP remaining in 

the lubricants after the whole ageing process, which can be an important evidence that ZDDP 

is effective in anti:oxidation and anti:corrosion. Thus, it is then not surprise to see the little 

change in TAN values and roller surface of ZDDP:containing lubricants after ageing.  

 

Figure 4. FTIR spectrum comparison of PAO+ZDDP fresh and aged oils 

 

Figure 5. Molecular structure of ZDDP 
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Figure 6. Molecular structure of P additive 

�

4.� Effect of ageing on the tribological performance of lubricants 

As ZDDP has been confirmed to be very effective in anti:oxidation and anti:corrosion from 

tests on bulk properties of lubricants and roller surface investigations, its anti:wear ability is 

then addressed by applying ZDDP:containing lubricants as well as the base stocks in the 

tribological tests on a ball on disc test rig in this study. Figure 7 shows the friction and wear 

results from tribological tests using ester/PAO+ZDDP to study the effect of ageing on the 

tribological performance of lubricants. Pure ester/PAO oils were tested as well to evaluate the 

effect of the ZDDP additive. The wear coefficient shown in this paper represents the wear on 

the ball after tribological tests. The calculation process of wear coefficient has been shown in 

a previous paper [28]. 

� � � �
����

����

���	

����

�$��$( �

����� �$( �

�$�!"##$

����� !"##$)
 �
*
��
+
�
�*

+
�
,,
�*

��
�
�

������������������
�

(a) 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

O
L

E
D

O
 L

IB
R

A
R

IE
S 

A
t 1

8:
53

 0
9 

Fe
br

ua
ry

 2
01

8 
(P

T
)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/ILT-03-2017-0059&iName=master.img-057.jpg&w=117&h=65


13 

�

� � � �
�

���

���

���

���

���

���

���

	��

�$��$( �

����� �$( �

�$�!"##$

����� !"##$

-
�
.
 �
*
+
�
,,
�*

��
�
��
��

�
/�



�

�
��

�
�

������������������
�

(b) 

Figure 7. Tribological performance of fresh and aged pure and ZDDP(containing lubricants; (a) friction, 

(b) wear (on the ball after tribological tests) 

It is obvious that friction did not change much after two weeks ageing for all the tested oils. 

The wear performance of the fresh and aged lubricants indicates that ZDDP is an effective 

anti:wear additive. However, it is more effective in reducing wear in ester:based oils than 

PAO:based oils. This is probably as a result of the polarity of base oils as Suarez ������ [40] 

found that the polar base oil (ester) can attach to the surface to form a tribofilm which is more 

effective in reducing wear than no polar base oil (PAO). With the combination effect of 

ZDDP and polar base oil(ester), the wear reducing property would be more obvious. 

The tribological results for the ester and PAO based series of lubricants (Figure 7) all show 

that ageing reduces the wear. However, there has been a lot of debate on the effect of ageing 

on the tribological performance of ZDDP:containing lubricants. Barnes and his colleagues 

[41] summarized that the degradation of ZDDP could either increase or decrease the wear 

based on different mechanisms.  

The ZDDP in the lubricants in the ageing system within the oven is believed to experience 

only thermal degradation as there is no sliding during the ageing process.  Fuller and his co:

workers [17] showed in their work that the preheated ZDDP (at 150°C up to 24 hours) 

containing lubricants resulted in higher wear than the fresh ZDDP:containing ones. This is in 

contrast to our results from the aged lubricants. However, this might be resulting from the 

different ageing temperature and time. The ageing temperature in this study (80°C) is much 

lower which can result in different degradation levels of ZDDP. Coy and Jones [42] 

presented some results comparing the wear performance of fresh and aged oils containing 

ZDDP. Barber and Yamaguchi discussed the FTIR and four ball tester results done by Coy 
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�

and Jones (see discussion in [42]) and conclude that: ZDDP decomposition products, which 

are by:products from thermal decomposition of ZDDP that are highly dependent upon 

temperature, provide superior anti:wear performance to that of the fresh oils.  

Moreover, if the TAN values are considered together with the tribological performance, it is 

easy to conclude that lubricants with higher TAN values (comparing the aged ester oil series 

with the fresh ones) not always show higher wear, although those with higher TAN values are 

thought to be more corrosive to the surface. This indicates that the change in physical 

properties of the lubricants is not enough to explain the tribological performance of the 

system, thus tribochemistry within the system needs to be studied. 

5.� XPS analysis on the post test discs using the aged oils 

X:ray Photoelectron Spectroscopy (XPS) was used to address the tribochemistry affected by 

ageing of lubricants. Table 7 shows the summary of the binding energies of S and P species 

obtained from the XPS analysis of the disc’s wear scar for both fresh and aged PAO+ZDDP 

as well as ester+ZDDP series of lubricants. There is no obvious trend in the binding energy 

changes from fresh oils to aged ones (considering the accuracy of binding energy is ±0.1 eV). 

Table 7. Differences of S 2p3/2 and P 2p3/2 binding energies for disc samples of both fresh and aged 

lubricants 

Lubricants 

Position of �   products 

(eV) Position of �   

2p3/2 (eV) 
Sulphide Sulphate 

PAO+ZDDP Fresh 162.6 Yes 133.6 

6 weeks aged 162.8 Yes 133.6 

ester+ZDDP Fresh 162.2 Yes 133.6 

6 weeks aged 162.3 Yes 133.5 

However, there is an obvious decrease from fresh to aged lubricants in the concentration of 

oxygen (oxide) among all elements detected after ageing, as shown in Error! Not a valid 

bookmark self(reference.. Moreover, the binding energy of this oxygen as oxide is always 

located around 530.0 ±0.5 eV. Within this region, the oxide is found to be iron oxide from 

previously published works [30:32]. Fuller and his co:workers [17] proposed in their work 

that ZDDP needs to be chemically adsorbed onto the substrate first and then be decomposed 

to yield anti:wear products. As the aged lubricants containing decomposed ZDDP products 

need much less running:in time than ZDDP in fresh oils to perform the anti:wear 

performance because of the omission of chemical adsorption of ZDDP, which then save the 

contacting time of oxygen and the substrate, the rate of oxidation is then reduced and less 

oxide exists on the disc wear scar. Combine this finding with the lower wear on the ball when 
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�

tested with aged oils, it can be concluded that more iron oxide on the disc wear scar can 

increase the wear of ball. This might be a result that the iron oxide increased the hardness of 

the disc surface which results in more asperity contacts.  �

Table 8. Summary of oxygen element scan information on the disc wear scar 

Element concentration 
BO(Bridging 

Oxygen)(eV)  

NBO(Non(

Bridging 

Oxygen) (eV) 

O (Oxide) (eV)  

PAO+ ZDDP 

Series 

Fresh 533.0 (8.2%) 530.0 (17.9%) 531.6   (19.4%) 

6 weeks aged 533.4 (12.5%) 530.0 (9.6%) 531.6 (13.2%) 

ester+ ZDDP 

Series 

Fresh 533.1 (7.2%) 530.0 (17.9%) 531.5 (16.9%) 

6 weeks aged 533.7 (8.2%) 529.8 (11.4%) 531.7 (6.4%) 

 

6.� Conclusions  

The main findings of this research can be summarized as: 

1)� No significant change in viscosity was observed for all the lubricants aged in the 

conditions performed in this study. As the ageing tests done in this paper is a steady 

process without any churning, stirring or pumping of the oil during the ageing process 

and not the same ways that true application oils experience. 

2)� ester+P lubricants experienced a huge change in TAN which can be a result of poor 

thermal stability of ester as well as P additive. Also, the huge increase of TAN after two 

weeks of ageing can be a result of the reduction of test oil after each two weeks of ageing 

time.  

3)� ZDDP was found to be a good anti:oxidation and anti:corrosion additive from the ageing 

and tribological test results. This is because the main chemical chain survives from the 

ageing process which is proved in the FTIR results.. 

4)� Ageing of the ZDDP:containing lubricants helps to reduce wear in this paper. This is true 

after the steady ageing process of the tested oil but contradictory results might occur 

when the ageing process and tribological test conditions are changed. 

��� Oxygen concentration as oxide in the XPS detected tribofilm on the disc wear scar when 

using aged lubricants is lower than that when using fresh ones. ��
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