
This is a repository copy of Automated repair of internationalization presentation failures in
web pages using style similarity clustering and search-based techniques.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131041/

Version: Accepted Version

Proceedings Paper:
Mahajan, S., Alameer, A., McMinn, P.S. orcid.org/0000-0001-9137-7433 et al. (1 more
author) (2018) Automated repair of internationalization presentation failures in web pages
using style similarity clustering and search-based techniques. In: Proceedings of the
International Conference on Software Testing, Verification and Validation (ICST 2018).
International Conference on Software Testing, Verification and Validation (ICST 2018),
09-13 Apr 2018, Västerås, Sweden. IEEE , pp. 215-226. ISBN 978-1-5386-5012-7

https://doi.org/10.1109/ICST.2018.00030

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Automated Repair of Internationalization

Presentation Failures in Web Pages Using Style

Similarity Clustering and Search-Based Techniques

Sonal Mahajan∗§, Abdulmajeed Alameer∗§, Phil McMinn†, William G. J. Halfond∗

∗University of Southern California, USA {alameer, spmahaja, halfond}@usc.edu
†University of Sheffield, UK {p.mcminn}@sheffield.ac.uk

Abstract—Internationalization enables companies to reach a
global audience by adapting their websites to locale specific
language and content. However, such translations can often
introduce Internationalization Presentation Failures (IPFs) —
distortions in the intended appearance of a website. It is challeng-
ing for developers to design websites that can inherently adapt
to varying lengths of text from different languages. Debugging
and repairing IPFs is complicated by the large number of HTML
elements and CSS properties that define a web page’s appearance.
Tool support is also limited as existing techniques can only detect
IPFs, with the repair remaining a labor intensive manual task. To
address this problem, we propose a search-based technique for
automatically repairing IPFs in web applications. Our empirical
evaluation showed that our approach was able to successfully
resolve 98% of the reported IPFs for 23 real-world web pages.
In a user study, participants rated the visual quality of our fixes
significantly higher than the unfixed versions.

I. INTRODUCTION

Web applications enable companies to easily establish a

global presence. To more effectively communicate with this

global audience, companies often employ internationalization

(i18n) frameworks for their websites, which allow the websites

to provide translated text or localized media content. However,

because the length of translated text differs in size from text

written in the original language of the page, the page’s appear-

ance can become distorted. HTML elements that are fixed in

size may clip text or look too large, while those that are not

fixed can expand, contract, and move around the page in ways

that are inconsistent with the rest of the page’s layout. Such

distortions, called Internationalization Presentation Failures

(IPFs), reduce the aesthetics or usability of a website and

occur frequently — a recent study reports their occurrence

in over 75% of internationalized web pages [4]. Avoiding

presentation problems, such as these, is important. Studies

show that the design and visual attractiveness of a website

affects users’ impressions of its credibility and trustworthiness,

ultimately impacting their decision to spend money on the

products or services that it offers [11], [13], [14].

Repairing IPFs poses several challenges for web developers.

First, modern web pages may contain hundreds, if not thou-

sands, of HTML elements, each with several CSS properties

controlling their appearance. This makes it challenging for

§ Equal contribution by Sonal Mahajan and Abdulmajeed Alameer.

developers to accurately determine which elements and proper-

ties need to be adjusted in order to resolve an IPF. Assuming

that the relevant elements and properties can be identified,

the developers must still carefully construct the repair. Due

to complex and cascading interactions between styling rules,

a change in one part of a web page user interface (UI) can

easily introduce further issues in another part of the page.

This means that any potential repair must be evaluated in the

context of not only how well it resolves the targeted IPF, but

also its impact on the rest of the page’s layout as a whole.

This task is complicated because it is possible that more than

one element will have to be adjusted together to repair an IPF.

For example, if the faulty element is part of a series of menu

items, then all of the menu items may have to be adjusted to

ensure their new styling matches that of the repaired element.

Existing techniques targeting internationalization problems,

such as GWALI [5], are only able to detect IPFs, and cannot

generate repairs. Meanwhile other web page repair approaches

target fundamentally different UI problems and are not capable

of repairing IPFs. These include XFix [19], which repairs

cross-browser issues; and PhpRepair [36] and PhpSync [30],

which repair malformed HTML.

In this paper, we present an approach for automatically re-

pairing IPFs in web pages. Our approach is designed to handle

the practical and conceptual challenges particular to the IPF

domain: To identify elements whose styling must be adjusted

together, we designed a novel style-based clustering approach

that groups elements based on their visual appearance and

DOM characteristics. To find repairs, we designed a guided

search-based technique that efficiently explores the large solu-

tion space defined by the HTML elements and CSS properties.

This technique is capable of finding a repair solution that

best fixes an IPF while avoiding the introduction of new

layout problems. To guide the search, we designed a fitness

function that leverages existing IPF detection techniques and

UI change metrics. In an evaluation of the implementation

of our approach, we found that it was effective at repairing

IPFs, resolving over 98% of the detected IPFs; and also fast,

requiring about four minutes on average to generate the repair.

In a user study of the repaired web pages, we found that

the repairs met with high user approval — over 70% of user

responses rated the repaired pages as better than the faulty

versions. Overall, these results are positive and indicate that

our approach can help developers automatically resolve IPFs

in web pages.

The contributions of this paper are therefore as follows:

1) An approach for automatically repairing IPFs in web

pages that uses style similarity clustering and search-

based techniques.

2) An empirical study on a large set of real-world web

pages whose results show that our approach is effective

and fast in repairing IPFs,

3) A user study showing that the web pages repaired by

our approach were rated more highly than the unrepaired

versions.

The rest of the paper is organized as follows. In Section II

we present background information about internationalization

and IPFs. Then in Section III we describe the approach in

detail and its evaluation in Section IV. We discuss related

work in Section V and conclude in Section VI.

II. BACKGROUND

Developers internationalize web applications by isolating

language-specific content, such as text, icons, and media,

into resource files. Different sets of resource files can then

be utilized depending on the user’s language — a piece of

information supplied by their browser — and inserted into

placeholders in the requested page. This isolation of language-

specific content allows a developer to design a universal layout

for a web page, easing its management and maintenance, while

also modularizing language specific processing.

However, the internationalization of web pages can distort

their intended layout because the length of different text

segments in a page can vary depending on their language. An

increase in the length of a text segment can cause it to overflow

the HTML element in which it is contained, be clipped, or

spill over into surrounding areas of the page. Alternatively, the

containing element may expand to fit the text, which can, in

turn, cause a cascading effect that disrupts the layout of other

parts of the page. IPFs can affect both the usability and the

aesthetics of a web page. An example is shown in Figure 2b.

Here, the text of the page in Figure 2a has been translated, but

the increased number of characters required by the translated

text pushes the final link of the navigation bar under an icon,

making it difficult to read and click. Internationalization can

also cause non-layout failures in web pages, such as corrupted

text, inconsistent keyboard shortcuts, and incorrect/missing

translations. Our approach does not target these non-layout

related failures as we see the solutions as primarily requiring

developer intervention to provide correct translations.

The complete process of debugging an IPF requires devel-

opers to (1) detect when an IPF occur in a page, (2) localize

the faulty HTML elements that are causing the IPF to appear,

and (3) repair the web page by modifying CSS properties

of the faulty elements to ensure that the failure no longer

occurs. An existing technique, GWALI [5], has been shown to

be an accurate detection and localization technique for IPFs.

(I.e., it addresses the first and second part of the debugging

process described above.) The inputs to GWALI are a baseline

(untranslated) page, which represents a correct rendering of

the page, and a translated version (Page Under Test (PUT)),

which is analyzed for IPFs. To detect IPFs, GWALI builds

a model called a Layout Graph (LG), which captures the

position of each HTML element in a web page relative to

the other elements. Each node of the graph represents a

visible HTML element, while an edge between two nodes is

annotated with a type of visual layout relationship (e.g., “East

of”, “intersects”, “aligns with”, “contains” etc.) that exists

between the two elements. After building the LGs for the

two versions of a page, GWALI compares them and identifies

edges whose annotations are different in the PUT. A difference

in annotations indicates that the relative positions of the two

elements are different, signaling a potential IPF. If an IPF

is detected, GWALI outputs a list of HTML elements that

are most likely to have caused it. Our approach leverages the

output of GWALI to initialize the repair process.

Assuming that an IPF has been detected and localized, there

are several strategies developers can use to repair the faulty

HTML elements. One of these is to change the translation of

the original text, so that the length of the translated text closely

matches the original. However, this solution is not normally

applicable for two reasons. Firstly, the translation of the text

is not always under the control of developers, having typically

been outsourced to professional translators or to an automatic

translation service. Secondly, a translation that matches the

original text length may not be available. Therefore a more

typical repair strategy is to adapt the layout of the interna-

tionalized page to accommodate the translation. To do this,

developers need to identify the right sets of HTML elements

and CSS properties among the potentially faulty elements,

and then search for new, appropriate values for their CSS

properties. Together, these new values represent a language

specific CSS patch for the web page. To ensure that the patch

is employed at runtime, developers use the CSS :lang()

selector. This selector allows developers to specify alternative

values for CSS properties based on the language in which

the page is viewed. Although this repair strategy is relatively

straightforward to understand, complex interactions among

HTML elements, CSS properties, and styling rules make it

challenging to find a patch that resolves all IPFs without

introducing new layout problems or significantly distorting

the appearance of a web UI. This challenge motivates our

approach, which we present in the next section.

III. APPROACH

The goal of our approach is to automatically repair IPFs

that have been detected in a translated version of a web page.

As described in Section II, a translation can cause the text in a

web page to expand or contract, which leads to text overflow,

element movement, incorrect text wrapping, and misalignment.

The placement and the size of elements in a web page is

controlled by their CSS properties. Therefore, these failures

can be fixed by changing the value of the CSS properties of

elements in a page to allow them to accommodate the new

size of the text after translation.

Baseline	

Page	under	Test	

(PUT)	

Find	Page	

Clusters	

(§3.A)	

Identify	

Problematic	

Clusters	(§3.A)	

Initialize	 Fine	Tuning	
Y	

N	

Terminate	

Detect	IPFs	

(GWALI)	

Potentially	

Faulty	

Elements	

Mutation	

Fitness	Function	

(§3.C)	

Search	for	Optimal		

Repair	Solution	(§3.D)	

Repaired	

PUT	

Fig. 1: Overview of our approach

Finding these new values for the CSS properties is com-

plicated by several challenges. The first challenge is that any

kind of style change to one element must also be mirrored in

stylistically related elements. This is illustrated in Figure 2.

To correct the overlap shown in Figure 2b, the text size of the

word “Informacion” can be decreased, resulting in the layout

shown in Figure 2c. However, this change is unlikely to be

visually appealing to an end user since the consistency of

the header appearance has been changed. Ideally, we would

prefer the change in Figure 2d, which subtly decreases the font

size of all of the stylistically related elements in the header.

This challenge requires that our solution identify groupings

of elements that are stylistically similar and adjust them

together in order to maintain the aesthetics of a web page.

The second challenge is that a change for any particular IPF

may introduce new layout problems into other parts of the

page. This can happen when the elements surrounding the

area of the IPF move to accommodate the changed size of

the repaired element. This challenge is compounded when

there are multiple IPFs in a page or there are many elements

that must be adjusted together, since multiple changes to

the page increase the likelihood that the final layout will be

distorted. This challenge requires that our solution find new

values for the CSS properties that fix IPFs while avoiding the

introduction of new layout problems.

Two insights into these challenges guide the design of our

approach. The first insight is that it is possible to automat-

ically identify elements that are stylistically similar through

an approach that uses traditional density based clustering

techniques. We designed a clustering technique that is based

on a combination of visual aspects (e.g., elements’ alignment)

and DOM-based metrics (e.g., XPath similarity). This allows

our approach to accurately group stylistically similar elements

that need to be changed together to maintain the aesthetic

consistency of a web page’s style. The second insight is that

it is possible to quantify the amount of distortion introduced

into a page by IPFs and use this value as a fitness function to

guide a search for a set of new CSS values. We designed our

approach’s fitness function using existing detectors for IPFs

(i.e., GWALI [5]) and other metrics for measuring the amount

of difference between two UI layouts. Therefore, the goal of

our search-based approach is to find a solution (i.e., new CSS

values) that minimizes this fitness function.

Figure 1 shows an overview of our approach. The inputs

to the approach are: a version of the web page (baseline)

that shows its correct layout, a translated version (PUT) that

(a) Correct and untranslated web page

(b) Translated web page containing an IPF (last element overlaps
with the button)

(c) Inconsistent fix (faulty element has been shrunk by using a
significantly smaller font-size)

(d) Consistent fix (slight font-size reduction for all header elements)

Fig. 2: Example of an IPF on the DMV homepage

(https://www.dmv.ca.gov) when translated from English to

Spanish and different ways of fixing the IPF

exhibits IPFs, and a list of HTML elements of the PUT that

are likely to be faulty. The last input can be provided either

by a detection technique, such as GWALI, or manually by

developers. Developers could simply provide a conservative

list of possibly faulty HTML elements, but the use of an

automated detection technique allows the debugging process to

be fully automated. Our approach begins by analyzing the PUT

and identifying the stylistically similar clusters that include

the potentially faulty elements. Then, the approach performs

a guided search to find the best CSS values for each of the

identified clusters. When the search terminates, the best CSS

values obtained from all of the clusters are converted to a

web page CSS repair patch and provided as the output of the

approach. We now explain the parts of the approach in more

detail in the following subsections.

A. Identifying Stylistically Similar Clusters

The goal of this step is to group HTML elements in

the page that are visually similar into Sets of Stylistically

Similar Elements (SimSets). To group a page’s elements into

SimSets, our approach computes visual similarity and DOM

information similarity between each pair of elements in the

page. We designed a distance function that quantifies the

similarity between each pair of elements e1 and e2 in the page.

Then our approach uses a density-based clustering technique

to determine which elements are in the same SimSet. After

computing these SimSets, our approach identifies the SimSet

associated with each faulty element reported by GWALI. This

subset of the SimSets serves as an input to the search.

Different techniques can be used to group HTML elements

in a web page. A naive mechanism is to put elements having

the same style class attribute into the same SimSet. In practice

we found that the class attribute is not always used by devel-

opers to set the style of similar elements, or in some cases, it

is not matching for elements in the same SimSet. There are

several more sophisticated techniques that may be applied to

group related elements in a web page, such as Vision-based

Page Segmentation (VIPS) [8], Block-o-Matic [37], and R-

Trees [23]. These techniques rely on elements’ location in

the web page and use different metrics to divide the web

page into multiple segments. However, these techniques do

not produce sets of visually similar elements as needed by our

approach. Instead, they produce sets of web page segments

that group elements that are located closely to each other

and are not necessarily similar in appearance. The clustering

in our approach uses multiple visual aspects to group the

elements, while the aforementioned techniques rely solely on

the location the elements, which makes them unsuitable for

our approach.

To identify stylistically similar elements in the page, our

approach uses a density-based clustering technique, DB-

SCAN [12]. A density-based clustering technique finds sets of

elements that are close to each other, according to a predefined

distance function, and groups them into clusters. Density-

based clustering is well suited for our approach for several

reasons. First, the distance function can be customized for

the problem domain, which allows our approach to use style

metrics instead of location. Second, this type of clustering does

not require prior knowledge of the number of clusters, which

is ideal for our approach since each stylistically similar group

may have a different number of elements, making the total

number of clusters unknown beforehand. Third, the clustering

technique puts each element into only one cluster (i.e., hard

clustering). This is important because if an element is placed

into multiple SimSets, the search could define multiple change

values for it, which may prevent the search from converging

if the changes are conflicting.

Our approach’s distance function uses several metrics to

compute the similarity between pairs of elements in a page.

At a high-level, these metrics can be divided into two types

of similarity: (1) similarity in the visual appearance of the el-

ements, including width, height, alignment, and CSS property

values and (2) similarity in the DOM information, including

XPath, HTML class attribute, and HTML tag name. We

include DOM related metrics in the distance function because

only using visual similarity metrics may produce inaccurate

clusters in cases where the elements belonging to a cluster

are intentionally made to appear different. For example, to

highlight the link of the currently rendered page from a list of

navigational menu links. Since the different metrics have vastly

different value ranges, our approach normalizes the value of

each metric to a range [0,1], with zero representing a match for

the metric and 1 being the maximum difference. The overall

distance computed by the function is the weighted sum of

each of the normalized metric values. The metrics’ weights

were determined based on experimentation on a set of web

pages and are the same for all subjects. Next, we provide a

detailed description of each of the metrics our approach uses

in the distance function.

1) Visual Similarity Metrics: These metrics are based on

the similarity of the visual appearance of the elements. Our

approach uses three types of visual metrics to compute the

distance between two elements e1 and e2. These are:

Elements’ width and height match: Elements that are

stylistically similar are more likely to have matching width

and/or height. Our approach defines width and height matching

as a binary metric. If the widths of the two elements e1 and

e2 match, then the width metric value is set to 0, otherwise it

is set to 1. The height metric value is computed similarly.

Elements’ alignment match: Elements that are similar are

more likely to be aligned with each other. This is because

browsers render a web page using a grid layout, which aligns

elements belonging to the same group either horizontally or

vertically. Alignment includes left edge alignment, right edge

alignment, top edge alignment, and bottom edge alignment.

These four alignment metrics are binary metrics, so they are

computed in a way similar to the width and height metrics.

Elements’ CSS properties similarity: Aspects of the

appearance of the elements in a web page, such as their color,

font, and layout, are defined in the CSS properties of these

elements. For this reason, elements that are stylistically similar

typically have the same values for their CSS properties. Our

approach computes the similarity of the CSS properties as

the ratio of the matching CSS values over all CSS properties

defined for both elements. For this metric, our approach only

considers explicitly defined CSS properties, so it does not

take into account default CSS values and CSS values that

are inherited from the body element in the web page. These

values are matching for all elements and are not helpful in

distinguishing elements of different SimSets.

2) DOM Information Similarity Metrics: These metrics are

based on the similarity of features defined in the DOM of

the web page. Our approach uses three types of DOM related

metrics to compute the distance between two elements e1 and

e2. These are:

Elements’ tag name match: Elements in the same SimSet

have the same type, so the HTML tag names for them need

to match. HTML tag names are used as a binary metric, i.e.,

if e1 and e2 are the same tag name, then the metric value is

set to 0, otherwise it is set to 1.

Elements’ XPath similarity: Elements that are in the same

SimSet are more likely to have similar XPaths. The XPath

similarity between two elements quantifies the commonality in

the ancestry of the two elements. In HTML, elements in the

page inherit CSS properties from their parent elements and

pass them on to their children. More ancestors in common

between two elements means more inherited styling infor-

mation is shared between them. To compute XPath distance,

our approach uses the Levenshtein distance between elements’

XPath. More formally, XPath distance is the minimum number

of HTML tags edits (insertions, deletions or substitutions)

required to change one XPath into the other.

Elements’ class attribute similarity: As mentioned earlier,

an HTML element’s class attribute is often insufficient to

group similarly styled elements. Nonetheless, it can be a useful

signal; therefore we use class attribute similarity as one of

the our metrics for style similarity. An HTML element can

have multiple class names for the class attribute. Our approach

computes the similarity in class attribute as the ratio of class

names that are matching over all class names that are set.

B. Candidate Solution Representation

A repair for the PUT is represented as a collection of

changes for each of the SimSets identified by the clustering

technique. More formally, we define a potential repair as a

candidate solution, which is a set of change tuples. Each

change tuple is of the form 〈S, p,∆〉 where ∆ is the change

value that our approach applies to a specific CSS property p
for a particular SimSet S. The change value can be positive

or negative to represent an increase or decrease in the value

of p. Note that a candidate solution can have multiple change

tuples for the same SimSet as long as they target different CSS

properties.

An example candidate solution is (〈S1, font-size, −1〉, 〈S1,

width, 0〉, 〈S1, height, 0〉, 〈S2, font-size , −1〉, 〈S2, width, 10〉,
〈S2, height, 0〉). This candidate solution represents a repair to

the PUT that decreases the font-size of the elements in S1

by one pixel, decreases the font-size of the elements in S2 by

one pixel, and increases the width of the elements in S2 by ten

pixels. Note that the value “0” means that there is no change

to the elements in the SimSet for the specified property.

C. Fitness Function

To evaluate each candidate solution, our approach first

generates a PUT′ by adjusting the elements of the PUT based

on the values in the candidate solution. The approach then

calculates the fitness score of the PUT′ when it is rendered in

a browser. We now describe both these steps in detail.

1) Generating the PUT′: To generate the PUT′, our ap-

proach modifies the PUT according to the values in the

candidate solution that will subsequently be evaluated. The

approach also modifies the width and the height of any

ancestor element that has a fixed width or height that prevents

the children elements from expanding freely. An example of

such an ancestor element is shown in Figure 3. In the example,

increasing the width of the elements in SimSet S requires

modification to the fixed width value of the ancestor div
element in order to make space for the children elements’

expansion.

To modify the elements that need to be changed in the

PUT, our approach uses the following algorithm. Our approach

Ancestor	<div>	element	with	fixed	width	

SimSet	S	elements		

Header1	 Header2	 Header3	 Header4	

change	value	̗	for	SimSet	S	

Change	value	̗	needs	to	be	applied	for	the	parent	with	fixed	width	

Fig. 3: Example of ancestor elements with fixed width that

need to be adjusted together with SimSet elements

iterates over each change tuple 〈S, p,∆〉 in the candidate so-

lution and modifies the elements e ∈ S by changing their CSS

property values: e.p = e.p+∆. Then our approach computes

the cumulative increase in width and height for all the elements

in S and determines the new coordinates 〈x1, y1〉,〈x2, y2〉 of

the Minimum Bounding Rectangles (MBRs) of each element

e. Then our approach finds the new position of the right edge

of the rightmost element max(ex2), and the new position

of the bottom edge of the bottommost element max(ey2).
After that, our approach iterates over all the ancestors of the

elements in S. For each ancestor a, if a has a fixed value

for the width CSS property and max(ex2) is larger than

ax2, then our approach increases the width of the ancestor

a.width = a.width + (max(ex2) − ax2). A similar increase

is applied to the height, if the ancestor has a fixed value for

the height CSS property and max(ey2) is larger than ay2.

2) Fitness Function Components: As mentioned earlier, a

challenge in fixing IPFs is that any change to fix a particular

IPF may introduce layout problems into other parts of the

page. In addition, larger changes that are applied to the page

make it more likely that the final layout will be distorted. This

motivates the goal of the fitness function, which is to minimize

the differences between the layout of the PUT and the layout

of the baseline while making minimal amount of changes to

the page.

To address this goal, our approach’s fitness function involves

two components. The first is the Amount of Layout Inconsis-

tency component. This component measures the impact of IPFs

by quantifying the dissimilarity between the PUT′ layout and

the baseline layout. The second part of the fitness function is

the Amount of Change component. This component quantifies

the amount of change the candidate solution applies to the

page in order to repair it. To combine the two components

of the fitness function, our approach uses a prioritized fitness

function model in which minimizing the amount of layout

inconsistency has a higher priority than minimizing the amount

of change. The amount of layout inconsistency is given

higher priority because it is strongly tied with resolving the

IPFs, which is the goal of our approach, while amount of

change component is used after resolving the IPFs to make

the changes as minimal as possible. The prioritization is

done by using a sigmoid function to scale the amount of

change to a fraction between 0 and 1 and adding it to the

amount of layout inconsistency value. Using this, the overall

fitness function is equal to amount of layout inconsistency +
sigmoid(amount of change). We now describe the compo-

nents of the fitness function in more detail.

Amount of Layout Inconsistency: This component repre-

sents a quantification of the dissimilarity between the baseline

and the PUT′ Layout Graphs (LGs). To compute the value

for this component, our approach computes the coordinates

of the MBRs of each element and the inconsistencies in the

PUT as reported by GWALI. Then our approach computes the

distance (in pixels) required to make the relationships in the

two LGs match. The number of pixels is computed for every

inconsistent relationship reported by GWALI. For alignment

inconsistencies, if two elements e1 and e2 are top-aligned in

the baseline and not top-aligned in the PUT′, our approach

computes the difference in the vertical position of the top

side of the two elements |e1y1−e2y1|. A similar computation

is performed for bottom-alignment, right-alignment, and left-

alignment. For direction inconsistencies, if e1 is situated to the

“West” of e2 in the baseline, and is no longer “West” in the

PUT′, our approach computes the number of pixels by which

e2 needs to move to be to the West of e1, which is e1x2−e2x1.

A similar computation is performed for East, North, and

South relationships. For containment inconsistencies, if e1
bounds (i.e., contains) e2 in the baseline, and no longer

bounds it in the PUT′, our approach computes the vertical

and horizontal expansion needed for each side of e1’s MBR

to make it bound e2. The number of pixels computed for

each of these inconsistent relationships (alignment, directional,

and bounding) is added to get the total amount of layout

inconsistency.

Amount of Change: This component represents the amount

of change a candidate solution causes to the page. To compute

this amount, our approach calculates the percentage of change

that is applied to each CSS property for every modified ele-

ment in the page. The total amount of change is the summation

of the squared percentages of changes. The intuition behind

squaring the percentages of change is to penalize solutions

more heavily if they represent a large change.

D. Search

The goal of the search is to find values for the CSS

properties of each SimSet that make the baseline page and

the PUT have LGs that are matching with minimal changes to

the page. Our approach generates candidate solutions using the

search operations we define in this section. Then our approach

evaluates each candidate solution it generates using the fitness

function to determine if the candidate solution produces a

better version of the PUT.

The approach operates by going through multiple iterations

of the search. In each iteration, the approach generates a

population of candidate solutions. Then, the approach refines

the population by keeping only the best candidate solutions

and performing the search operations on them for another

iteration. The search terminates when a termination condition

is satisfied. After the search terminates, the approach returns

Analyze Text

Expansion

Generate Candidate
Solutions Based on

Expansion

Candidate solution with
increasedwidth

Candidate solution with
increasedheight

Candidate solution with
decreased font

Initial population

Candidate solution with
random mutated values…

Mutation

Baseline

PUT

Fig. 4: Initializing the population

the best candidate solution in the population. More formally,

the iteration includes five main steps (1) initializing the popu-

lation, (2) fine-tuning the best solution using local search, (3)

performing mutation, (4) selecting the best set of candidate

solutions, (5) and terminating the search if a termination

condition is satisfied. The following is a description of each

step in more detail:

Initializing the population: This step creates an initial

population of candidate solutions that our approach performs

the search on. The goal of this step is to create a diverse initial

population that allows the search to explore different areas of

the solution space. Figure 4 shows an overview of the process

of initializing the population. In the figure, the first set of

candidate solutions represents modifications to the elements

that are computed based on text expansion that occurred to the

PUT. To generate this set of candidate solutions, our approach

computes the average percentage of text expansion in the

elements of each SimSet that includes a faulty element. Then

our approach generates three candidate solutions based on the

expansion percentage. The first candidate solution increases

the width of the elements in the SimSets by a percentage

equal to the percentage of the text expansion. The second

candidate solution increases the height by the same percentage.

The third candidate solution decreases the font-size of the

elements in the SimSets by the same percentage. The rest of

the candidate solutions in the initial population (i.e., fourth

candidate solution in the figure) are generated by creating

copies of the current candidate solutions and mutating the

copies using the mutation operation described in the mutation

step below.

Fine tuning using local search: This step works by

selecting the best candidate solution in the population and

fine tuning the change values ∆ in it in order to get the best

possible fix. To do this, our approach uses the Alternating

Variable Method (AVM) local search algorithm [15], [16]. Our

approach performs local search by iterating over all the change

tuples in the candidate solution and for each change tuple it

tries a new value in a specific direction (i.e., it either increases

or decreases the change value ∆ for the CSS property), then

evaluates the fitness of the new candidate solution to determine

if it is an improvement. If there is an improvement, the search

keeps trying larger values in the same direction. Otherwise,

it tries the other direction. This process is repeated until the

search finds the best possible change values ∆ based on the

fitness function. The newly generated candidate solution is

added to the population.

Mutation: The goal of the mutation step is to diversify the

population and explore change values that may not be reached

during the AVM search. Our approach performs standard

Gaussian mutation operations to the change values in the

candidate solutions. It iterates over all the candidate solutions

in the population and generates a new mutant for each one. Our

approach creates a mutant by iterating over each tuple in the

candidate solution and changing its value with a probability

of 1 / (number of change tuples). The new change value is

picked randomly from a Gaussian distribution around the old

value. The newly generated candidate solutions are added to

the population to be evaluated in the selection step.

Selection: Our approach evaluates all of the candidate solu-

tions in the current population and selects the best n candidate

solutions, where n is the predefined size of the population.

The best candidate solutions are identified based on the fitness

function described in Section III-C2. The selected candidate

solutions are used as the population for the next iteration of

the search.

Termination: The algorithm terminates when either of

two conditions are satisfied. The first condition is when a

predefined maximum number of iterations is reached. This

condition is used to bound the execution time of the search and

prevents it from running for a long time without converging to

a solution. The second condition is when the search reaches

a saturation point (i.e., no improvement in the candidate

solutions for multiple consecutive iterations). In this cases, the

search most likely converged to the best candidate solution

it could find, and further iterations will not introduce more

improvement.

Our approach could fail to find an acceptable fix under

two scenarios. The first scenario is when GWALI does not

include the actual faulty HTML element in its reported list.

Our approach assumes that the initial set of elements provided

as the input contains the faulty elements. If this assumption is

violated, our approach will not be able to find a repair. The

second scenario is when the search does not converge to an

acceptable fix. This could occur due to the non-determinism

of the search.

IV. EVALUATION

To assess the effectiveness and performance of our ap-

proach, we conducted an empirical evaluation on 23 real-world

subject web pages and answered three research questions:

RQ1: How effective is our approach in reducing IPFs?

RQ2: How long does it take for our approach to generate

repairs?

RQ3: What is the quality of the fixes generated by our

approach?

A. Implementation

We implemented our approach in Java as a prototype tool

named IFIX [2]. We used the Apache Commons Math3

library implementation of the DBSCAN algorithm to group

similarly styled HTML elements. We used Javascript and

Selenium WebDriver for dynamically applying candidate fix

values to the pages and for extracting the rendered Document

Object Model (DOM) information, such as element MBRs

and XPath. We used the jStyleParser library for extracting

explicitly defined CSS properties for HTML elements in a

page. For obtaining the set of IPFs, we used the latest version

of GWALI [5], which we obtained from its authors. For

the search technique described in Section III, we used the

following parameter values: population size = 100, mutation

rate = 1.0, max number of iterations = 20, and saturation

point = 2. For the Gaussian distribution, used by the mutation

operator, we used a 50% decrease and increase as the min

and max values, and σ = (max −min)/8.0 as the standard

deviation. For clustering, we used the following weights for

the different metrics: 0.1 for width/height and alignment, 0.3

for CSS properties similarity, 0.4 for tag name, 0.3 for XPath

similarity, and 0.2 for class attribute similarity.

B. Subjects

For the evaluation we used 23 real-world subject web

pages as shown in Table I. The column “#HTML” shows

the total number of HTML elements in the subject page,

giving a rough estimate of its size and complexity. The column

“Baseline” shows the language of the subject used in the

baseline version that shows the correct appearance of the page,

and “Translated” shows the language that exhibits IPFs in the

subject with respect to the baseline. We gathered these subjects

from the web pages used in the evaluation of GWALI [5]. The

main criteria behind selecting this source was the presence of

known IPFs in the study of GWALI and the diversity in size,

layouts, and translation languages that the GWALI subjects

offered. Out of the total 54 subject pages used in the evaluation

of GWALI, we filtered and selected only those web pages for

which at least one IPF was reported.

C. Experiment One

To answer RQ1 and RQ2, we ran IFIX on each subject and

recorded the set of IPFs before and after each run, as reported

by GWALI, and measured the total time taken. To minimize

the variance in the results that can be introduced from the

non-deterministic aspects of the search, we ran IFIX on each

subject 30 times and used the mean values across the runs in

the results. To further assess and understand the effectiveness

of the two main features of our work, guided search and style

similarity clustering, we conducted more experiment runs with

three variations to IFIX. The first variation replaced the guided

search in the approach with a random search to evaluate the

benefit of guided search with a fitness function. For every

subject, we time bounded the random search by terminating

it once the average time required by IFIX for that subject

had been utilized. The second variation removed the clustering

component from IFIX to evaluate the benefit of clustering

stylistically similar elements in a page. The third variation

combined the first and second variation. Similar to IFIX,

we ran the three variations 30 times on each subject. All of

the experiments were run on a 64-bit Ubuntu 14.04 machine

TABLE I: SUBJECT DETAILS AND RESULTS FOR EFFECTIVENESS IN REDUCING IPFS

ID Name URL #HTML Baseline Translated #Before #After (Average Reduction in %)

IFIX Rand NoClust Rand-NoClust

(Variation 1) (Variation 2) (Variation 3)

1 akamai https://www.akamai.com 304 English Spanish 6 0 (100) 2 (74) 0 (100) 0.20 (97)

2 caLottery http://www.calottery.com 777 English Spanish 4 0 (100) 0 (100) 1 (70) 0.73 (81)

3 designSponge http://www.designsponge.com 1,184 English Spanish 9 0.07 (99) 3 (63) 0.07 (99) 3 (71)

4 dmv https://www.dmv.ca.gov 638 English Spanish 18 0 (100) 4 (78) 2 (85) 9 (41)

5 doctor https://sfplasticsurgeon.com 689 English Spanish 21 0 (100) 0 (100) 6 (72) 21 (0)

6 els https://www.els.edu 483 English Portuguese 6 0 (100) 0 (100) 0 (100) 0 (100)

7 facebookLogin https://www.facebook.com 478 English Bulgarian 16 0 (100) 6 (65) 12 (25) 16 (0)

8 flynas http://www.flynas.com 1,069 English Turkish 9 0 (100) 0.07 (99) 0 (100) 0 (100)

9 googleEarth https://www.google.com/earth 323 Italian Russian 15 0 (100) 0 (100) 4 (72) 7 (55)

10 googleLogin https://accounts.google.com 175 English Greek 6 0 (100) 0 (100) 0 (100) 0 (100)

11 hightail https://tinyurl.com/y9tpmro7 1,135 English German 2 0 (100) 0 (100) 0 (100) 0 (100)

12 hotwire https://www.hotwire.com 583 English Spanish 30 0 (100) 0.47 (98) 4 (87) 4 (87)

13 ixigo https://www.ixigo.com/flights 1,384 English Italian 38 12 (68) 12 (68) 0 (100) 12 (68)

14 linkedin https://www.linkedin.com 586 English Spanish 22 0 (100) 0 (100) 12 (46) 19 (13)

15 mplay http://www.myplay.com 3,223 English Spanish 76 0.40 (99) 3 (96) 3 (95) 51 (33)

16 museum https://www.amnh.org 585 English French 32 0.40 (99) 0 (100) 12 (63) 19 (40)

17 qualitrol http://www.qualitrolcorp.com 401 English Russian 19 0 (100) 0 (100) 21 (-9) 22 (-16)

18 rentalCars http://www.rentalcars.com 1,011 English German 6 0 (100) 2 (74) 0 (100) 1 (99)

19 skype https://tinyurl.com/ycuxxhso 495 English French 3 0 (100) 0 (100) 0 (100) 0 (100)

20 skyScanner https://www.skyscanner.com 388 French Malay 4 0 (100) 0 (100) 0 (100) 0 (100)

21 twitterHelp https://support.twitter.com 327 English French 5 0 (100) 0 (100) 0 (100) 0.17 (97)

22 westin https://tinyurl.com/ycq4o8ar 815 English Spanish 11 1 (91) 1 (91) 1 (91) 1 (91)

23 worldsBest http://www.theworlds50best.com 581 English German 24 0 (100) 7 (69) 0 (100) 17 (29)

Average 16 0.6 (98) 2 (90) 3 (82) 8 (65)

with 32GB memory, Intel Core i7-4790 processor, and screen

resolution of 1920 × 1080. For rendering the subject web

pages, we used Mozilla Firefox v46.0.01 with the browser

window maximized to the screen size.

For RQ1, we used GWALI to determine the initial number

of IPFs in a subject and the number of IPFs remaining after

each of the 30 runs. We calculated the reduction in IPFs as a

percentage of the before and after values for each subject.

For RQ2, we computed the average total running time of

IFIX and variation 2 across 30 runs for each subject. We

did not compare the performance of IFIX with its first and

third variations since we time bounded their random searches,

as described above. We also measured the time required for

the two main stages in our approach; clustering stylistically

similar elements (Section III-A) and searching for a repair

patch (Section III-D).

Presentation of Results: Table I shows the results for RQ1.

The initial number of IPFs are shown under the column

“#Before”. The columns headed “#After” show the average

number of IPFs remaining after each of the 30 runs of IFIX for

its three variations: “Rand”, “NoClust”, and “Rand-NoClust”.

(Since it is an average, the results under “#After” columns

may show decimal values.) The average percentage reduction

is shown in parenthesis.

Discussion of Results: The results show that IFIX was the

most effective in reducing the number of IPFs, with an average

98% reduction, compared to its variations. This shows the

effectiveness of our approach in resolving IPFs.

The results also strongly validate our two key insights of

using guided search and clustering in the approach. The first

key insight was validated as IFIX was able to outperform a

random search that had been given the same amount of time.

Our approach was substantially more successful in primarily

two scenarios. First, pages (e.g., dmv and facebookLogin)

containing multiple IPFs concentrated in the same area that

require a careful resolution of the IPFs by balancing the layout

constraints without introducing new IPFs. Second, pages (e.g.,

akamai) that have strict layout constraints, permitting only a

very small range of CSS values to resolve the IPFs. We also

found that, overall, the repairs generated by random search

were not visually pleasing as they often involved a substantial

reduction in the font-size of text, indicating that guidance was

helpful for our approach. This observation was also reflected

in the total amount of change made to a page, captured by the

fitness function, which reported that random search introduced

28% more changes, on average, compared to IFIX. The second

key insight of using a style-based clustering technique was

validated as IFIX not only rendered the pages more visually

consistent compared to its non-clustered variations, but also

increased the effectiveness by resolving a relatively higher

number of IPFs.

Out of the 23 subjects, IFIX was able to completely resolve

all of the reported IPFs in 18 subjects in each of the 30

runs and in 21 subjects in more than 90% of the runs. We

investigated the two subjects, ixigo and westin, where IFIX

was not able to completely resolve all of the reported IPFs. We

found that the dominant reason for the ixigo subject was false

positive IPFs that were reported by GWALI. This occurred

because the footer area of the page had significant differences

in terms of layout and structure between the baseline and

translated page. Therefore CSS changes made by IFIX were

not sufficient to resolve the IPFs in the footer area. For

the westin subject, elements surrounding the unrepaired IPF

were required to be modified in order to completely resolve

it. However, these elements were not reported by GWALI,

thereby precluding IFIX from finding a suitable fix.

The total running time of IFIX ranged from 73 seconds

to 17 minutes, with an average of just over 4 minutes and

a median of 2 minutes. IFIX was also three times faster,

on average, than its second variation (no clustering). This

Fig. 5: UI snippets in the same equivalence class (Hotwire)

was primarily because clustering enabled a narrowing of

the search space by grouping together potentially faulty ele-

ments reported by GWALI that were also stylistically similar.

Thereby a single change to the cluster was capable of resolving

multiple IPFs. Moreover, the clustering overhead in IFIX was

negligible, requiring less than a second, on average. Due to

space limitations, the detailed timing results are omitted from

the paper, but can be found at the project website [2].

D. Experiment Two

For addressing RQ3, we conducted a user study to un-

derstand the visual quality of IFIX’s suggested fixes from a

human perspective. The general format of our survey was to

present, in random order, an IPF containing a UI snippet from

a subject web page before and after repair. The participants

were then asked to compare the two UI snippets on a 5-

point Likert scale with respect to their appearance similarity

to the corresponding UI snippet from the baseline version.

Each UI snippet showing an IPF was captured in context of its

surrounding region to allow participants to view the IPF from

a broader perspective. Examples of UI snippets are shown in

Figure 2b and Figure 5. To select the “after” version of a

subject, we used the run with the best fitness score across the

30 runs of IFIX in Experiment One.

To figure out the number of IPFs to be shown for each sub-

ject, we manually analyzed the IPFs reported by GWALI and

identified groups of IPFs that shared a common visual pattern.

We called these groups “equivalence classes”. Figure 5 shows

an example of an equivalence class from the Hotwire subject,

where the two IPFs caused by the price text overflowing the

container are highly similar. One IPF from each equivalence

class was presented in the survey.

To make the survey length manageable for the participants,

we divided the 23 subjects over five different surveys, with

each containing four or five subjects. The participants of

our user study were 37 undergraduate level students. Each

participant was assigned to one of the five surveys. The

participants were instructed to use a desktop or laptop for

answering the survey to be able to view the IPF UI snippets

in full resolution.

Presentation of Results: The results for the appearance

similarity ratings given by the participants for each of the IPFs

in the 23 subjects are shown in Figure 6. On the x-axis, the ID

and number of IPFs for a subject are shown. For example, 4a,

4b, and 4c represent the dmv subject with three IPFs. The blue

colored bars above the x-axis indicate the number of ratings

in favor of the after (repaired) version. The dark blue color

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

1
a

2
a

3
a

3
b

4
a

4
b

4
c

5
a

6
a

7
a

7
b

8
a

8
b

9
a

1
0

a

1
1
a

1
2

a

1
2

b

1
2

c

1
2

d

1
3

a

1
3

b

1
4

a

1
5

a

1
5

b

1
6

a

1
6

b

1
6

c

1
6

d

1
7

a

1
8

a

1
9

a

2
0

a

2
1

a

2
2

a

2
2

b

2
3

a

2
3

b

N
u

m
b

e
r

o
f

p
a

rt
ic

p
a

n
t

re
p

o
n

s
e

s

IPFs from all subjects

before somewhat better before much better same

after somewhat better after much better

Fig. 6: Similarity ratings given by user study participants

13%

12%

5%

29%

41%

same

before

somewhat

better

before

much

better

after

somewhat

better

after

much

better

Fig. 7: Weighted distribution of the ratings

shows participants’ response for the after version being much

better than the before version, while the light blue color shows

the response for the after version being somewhat better than

the before version. Similarly, the red bars below the X-axis

indicate the number of ratings in favor of the before repair

version, with dark and light red showing the response for the

before version being much and somewhat better than the after

version, respectively. The gray bars show the number of ratings

where the participants responded that the before and after

versions had the same appearance similarity to the baseline.

For example, IPF 23a had a total of 11 responses, six for the

after version being much better, three for the after version

being somewhat better, one reporting both the versions as the

same, and one reporting the before version as being somewhat

better. As can be seen from Figure 6, 64% of the participant

responses favored the after repair versions, 21% favored the

before repair versions, and 15% reported both versions as the

same.

Discussion of Results: The results of our user study show

that the participants largely rated the after (repaired) pages

as better than the before (faulty) versions. This indicates

that our approach generates repairs that are high in visual

quality. The IPFs presented in the user study, however, do

not comprehensively represent all of the IPFs reported for

the subjects as the surveys only contained one representative

from each equivalence class. Therefore we weighted the survey

responses by multiplying each response from an equivalence

class with the size of the class. The results are shown in

Figure 7. With the weighting, 70% responses show support

for the after version. Also, interestingly, the results show the

strength of support for the after version — 41% of responses

rate the after version as much better, while only 5% responses

rate the before version as much better.

Two of the IPFs, 3b and 23b, had no participant responses

in favor of the after version. We inspected these subjects in

more detail and found that the primary reason for this was

that IFIX substantially reduced the font-size (e.g., from 13px

to 5px for 3b) to resolve the IPFs. Although these changes

were visually unappealing, we were able to confirm that these

extreme changes were the only way to resolve the IPFs. We

also found that IPFs, 7a, 19a, and 22b, had a majority of

the participant responses reporting both versions as the same.

IFIX was unable to resolve 22b, implying that the before and

after versions were practically the same. The issue with 7a and

19a was slightly different. Both IPFs were caused by guidance

text in an input box being clipped because the translated text

exceeded the size of the input box. Unless the survey takers

could understand the target language translation, there was no

way to know that the guidance text was missing words.

E. Threats to Validity

The first potential threat is the use of only GWALI for

detecting IPFs. However, there exist no other available auto-

mated tools that can detect IPFs and report potentially faulty

HTML elements. Another potential threat is that we manually

categorized IPFs into equivalence classes for the user study.

However, this categorization was fairly straightforward, and

in practice there was no ambiguity regarding membership in

an equivalence class, for example, as shown in Figure 5. To

further support this, we have made the surveys and subject

pages publicly available [2] for verification. A potential threat

to construct validity is that we presented UI snippets of

the subject pages to the participants, rather than full-page

screenshots, which might have an impact on their appearance

similarity ratings. We opted for this mechanism as the full

page screenshots of the subjects were large in size, making it

difficult to view all three screenshots, baseline, before (faulty),

and after (repaired), in one frame for comparison. The benefit

of this mechanism was that it allowed the participants to focus

only on the areas of the pages that contained IPFs and were

thus modified by IFIX.

V. RELATED WORK

Different techniques exist that target detection of interna-

tionalization failures in web applications. GWALI [5] and i18n

checker [3] are automated techniques, while Apple’s pseudo-

localization [1] requires manual checking to identify IPFs.

There are also techniques [7], [6], [34] that perform automated

checks for identifying internationalization problems, such as

corrupted text, inconsistent keyboard shortcuts, and incorrec-

t/missing translations. Other techniques, such as X-PERT [10],

[9], [35], REDECHECK [40], [39], WebSee [23], [24], [22],

[26], [25], [21], and Fighting Layout Bugs [38], detect certain

types of presentation failures in web pages. However, none of

them are designed to repair IPFs.

Another technique related to internationalization in web

pages is TranStrL [41]. It assists developers by identifying

strings in a web application that need to be translated during

the process of its internationalization, and as such is not

designed for repairing IPFs.

A group of approaches from the research community fo-

cus on repairing different types of UI problems in web

applications, but none of them can repair IPFs. XFix [19],

[20] and MFix [18] use search-based techniques to repair

Cross-Browser Issues (XBIs) and mobile friendly problems

in web pages, respectively. However, the correctness criteria

of these UI problems is different from the domain of IPFs,

making XFix and MFix not applicable for the repair of IPFs.

PhpRepair [36] and PhpSync [30] focus on repairing problems

arising from malformed HTML. IPFs are, however, not caused

by malformed HTML, meaning these techniques would not

resolve IPFs. Another technique assumes that an HTML/CSS

fix has been found and focuses on propagating it to the server-

side using hybrid analysis [42]. Cassius [33] is a framework

for repairing faulty CSS in web pages by using the CSS

information extracted from the given page layout examples

as the oracle. In the IPF domain, however, the pages before

and after translation share the same CSS files. Therefore this

technique cannot be used for repairing IPFs.

There has been extensive work on the automated repair of

software programs [17], [43], [31], [45], [32]. However, these

techniques are not capable of repairing presentation failures

(e.g., IPFs) in web pages because they are structured to work

for general-purpose programming languages (e.g., Java and C).

Lastly, there are several techniques in the field of GUI

testing by Memon et. al. [27], [44], [28], [29] that are

focused on testing the functionality of the software systems

by triggering test sequences from the systems’ Graphical User

Interface (GUI). Although they could be helpful for aiding in

the detection of IPFs they are not able to repair GUI problems.

VI. CONCLUSION

Internationalization Presentation Failures (IPFs) are distor-

tions in the intended appearance of a web page that are caused

by the relative expansion or contraction of translated text. In

this paper, we introduce an automated approach for repairing

IPFs in web pages. Our approach first uses clustering to group

stylistically similar elements in a page. It then performs a

guided search to find suitable CSS fixes for the identified

clusters. In the evaluation, our approach was able to resolve

98% of the reported IPFs. In the user study, 70% of the

participant responses rated the fixed versions as better than

the unfixed versions. Overall, these are positive results and

signify that our approach is helpful in automatically repairing

IPFs in web pages.

ACKNOWLEDGMENT

This work was supported by National Science Foundation

grant CCF-1528163.

REFERENCES

[1] Apple Internationalization and Localization Guide. https:
//developer.apple.com/library/content/documentation/MacOSX/
Conceptual/BPInternational/TestingYourInternationalApp/
TestingYourInternationalApp.html.

[2] IFix Evaluation Data. https://github.com/USC-SQL/ifix.
[3] W3C Internationalization Checker. https://validator.w3.org/

i18n-checker/.
[4] A. Alameer and W. G. Halfond. An empirical study of internationaliza-

tion failures in the web. In Proceedings of the International Conference

on Software Maintenance and Evolution (ICSME), October 2016.
[5] A. Alameer, S. Mahajan, and W. G. Halfond. Detecting and localizing

internationalization presentation failures in web applications. In Pro-

ceedings of the 9th IEEE International Conference on Software Testing,

Verification, and Validation (ICST), April 2016.
[6] J. Archana, S. R. Chermapandan, and S. Palanivel. Automation

framework for localizability testing of internationalized software. In
International Conference on Human Computer Interactions (ICHCI),
Aug 2013.

[7] A. M. A. Awwad and W. Slany. Automated Bidirectional Languages Lo-
calization Testing for Android Apps with Rich GUI. Mobile Information

Systems, 2016.
[8] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. VIPS: a Vision-based Page

Segmentation Algorithm. Technical report, November 2003.
[9] S. R. Choudhary, M. R. Prasad, and A. Orso. CrossCheck: Combining

Crawling and Differencing to Better Detect Cross-browser Incompat-
ibilities in Web Applications. In Proceedings of the 2012 IEEE

Fifth International Conference on Software Testing, Verification and

Validation, ICST, 2012.
[10] S. R. Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate Identi-

fication of Cross-Browser Issues in Web Applications. In Proceedings of

the 35th IEEE and ACM SIGSOFT International Conference on Software

Engineering (ICSE), May 2013.
[11] F. N. Egger. “Trust Me, I’m an Online Vendor”: Towards a Model of

Trust for e-Commerce System Design. In CHI Extended Abstracts on

Human Factors in Computing Systems. ACM, 2000.
[12] M. Ester, H. peter Kriegel, J. S, and X. Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge

Discovery and Data Mining, KDD, 1996.
[13] A. Everard and D. F. Galletta. How Presentation Flaws Affect Perceived

Site Quality, Trust, and Intention to Purchase from an Online Store.
Journal of Management Information Systems, 22:56–95, Jan. 2006.

[14] B. J. Fogg, J. Marshall, O. Laraki, A. Osipovich, C. Varma, N. Fang,
J. Paul, A. Rangnekar, J. Shon, P. Swani, and M. Treinen. What Makes
Web Sites Credible?: A Report on a Large Quantitative Study. In
Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI, 2001.
[15] J. Kempka, P. McMinn, and D. Sudholt. Design and Analysis of Dif-

ferent Alternating Variable Searches for Search-Based Software Testing.
In Theoretical Computer Science, volume 605, pages 1–20, 2015.

[16] B. Korel. Automated Software Test Data Generation. In IEEE Trans-

actions on Software Engineering, volume 16, pages 870–879, 1990.
[17] F. Long and M. Rinard. Staged program repair with condition synthesis.

In Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE, 2015.
[18] S. Mahajan, N. Abolhassani, P. McMinn, and W. G. J. Halfond.

Automated Repair of Mobile Friendly Problems in Web Pages. In Pro-

ceedings of the 40th International Conference on Software Engineering

(ICSE), May 2018. (To appear).
[19] S. Mahajan, A. Alameer, P. McMinn, and W. G. Halfond. Automated

Repair of Layout Cross Browser Issues using Search-Based Techniques.
In Proceedings of the 26th International Symposium on Software Testing

and Analysis (ISSTA), July 2017.
[20] S. Mahajan, A. Alameer, P. McMinn, and W. G. Halfond. XFix:

Automated Tool for Repair of Layout Cross Browser Issues. In
Proceedings of the 26th International Symposium on Software Testing

and Analysis (ISSTA) – Tool Track, July 2017.
[21] S. Mahajan, K. B. Gadde, A. Pasala, and W. G. J. Halfond. Detecting and

Localizing Visual Inconsistencies in Web Applications. In Proceedings

of the 23rd Asia-Pacific Software Engineering Conference (APSEC) –

Short paper, December 2016.

[22] S. Mahajan and W. G. J. Halfond. Finding HTML Presentation
Failures Using Image Comparison Techniques. In Proceedings of

the 29th IEEE/ACM International Conference on Automated Software

Engineering (ASE) – New Ideas track, September 2014.
[23] S. Mahajan and W. G. J. Halfond. Detection and Localization of

HTML Presentation Failures Using Computer Vision-Based Techniques.
In Proceedings of the 8th IEEE International Conference on Software

Testing, Verification and Validation (ICST), April 2015.
[24] S. Mahajan and W. G. J. Halfond. WebSee: A Tool for Debugging

HTML Presentation Failures. In Proceedings of the 8th IEEE Inter-

national Conference on Software Testing, Verification and Validation

(ICST) – Tool track, April 2015.
[25] S. Mahajan, B. Li, P. Behnamghader, and W. G. J. Halfond. Using Visual

Symptoms for Debugging Presentation Failures in Web Applications.
In Proceedings of the 9th IEEE International Conference on Software

Testing, Verification and Validation (ICST), April 2016.
[26] S. Mahajan, B. Li, and W. G. J. Halfond. Root Cause Analysis for

HTML Presentation Failures Using Search-based Techniques. In Pro-

ceedings of the 7th International Workshop on Search-Based Software

Testing (SBST), June 2014.
[27] A. M. Memon, I. Banerjee, and A. Nagarajan. What Test Oracle Should

I Use for Effective GUI Testing? In ASE, 2003.
[28] R. M. L. M. Moreira, A. C. R. Paiva, and A. Memon. A Pattern-

Based Approach for GUI Modeling and Testing. In Proceedings of the

International Symposium on Software Reliability Engineering, ISSRE,
2013.

[29] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon. Guitar: An
innovative tool for automated testing of gui-driven software. Automated

Software Engineering, 21(1):65–105, Mar. 2014.
[30] H. V. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen.

Auto-locating and Fix-propagating for HTML Validation Errors to
PHP Server-side Code. In Proceedings of the 2011 26th IEEE/ACM

International Conference on Automated Software Engineering, ASE,
2011.

[31] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen. Recurring Bug Fixes in Object-oriented Programs. In Pro-

ceedings of the 32Nd ACM/IEEE International Conference on Software

Engineering - Volume 1, ICSE, 2010.
[32] R. Nokhbeh Zaeem and S. Khurshid. Contract-based data structure

repair using alloy. In T. D’Hondt, editor, ECOOP – Object-Oriented

Programming, 2010.
[33] P. Panchekha and E. Torlak. Automated Reasoning for Web Page Layout.

In Proceedings of the ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA, 2016.

[34] R. Ramler and R. Hoschek. How to test in sixteen languages? automation
support for localization testing. In IEEE International Conference on

Software Testing, Verification and Validation (ICST), March 2017.
[35] S. Roy Choudhary, H. Versee, and A. Orso. WEBDIFF: Automated iden-

tification of cross-browser issues in web applications. In Proceedings

of the 2010 IEEE International Conference on Software Maintenance,
ICSM ’10, 2010.

[36] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip, and L. Hendren.
Automated repair of HTML generation errors in PHP applications using
string constraint solving. In Proceedings of the International Conference

on Software Engineering, ICSE, 2012.
[37] A. Sanoja and S. Ganarski. Block-o-Matic: A web page segmentation

framework. In Proceedings of the International Conference on Multi-

media Computing and Systems, ICMCS, 2014.
[38] M. Tamm. Fighting Layout Bugs. https://code.google.com/p/

fighting-layout-bugs/.
[39] T. Walsh, G. Kapfhammer, and P. McMinn. Automated Layout Failure

Detection for Responsive Web Pages without an Explicit Oracle. In
Proceedings of the 26th International Symposium on Software Testing

and Analysis (ISSTA), July 2017.
[40] T. A. Walsh, P. McMinn, and G. M. Kapfhammer. Automatic Detection

of Potential Layout Faults Following Changes to Responsive Web Pages.
In International Conference on Automated Software Engineering (ASE),
2015.

[41] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun. Locating Need-to-
Translate Constant Strings in Web Applications. In Proceedings of the

Eighteenth ACM SIGSOFT International Symposium on Foundations of

Software Engineering, FSE, 2010.

[42] X. Wang, L. Zhang, T. Xie, Y. Xiong, and H. Mei. Automating
presentation changes in dynamic web applications via collaborative
hybrid analysis. In Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, FSE, 2012.
[43] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically

finding patches using genetic programming. In Proceedings of the 31st

International Conference on Software Engineering, ICSE, 2009.

[44] Q. Xie and A. M. Memon. Studying the Characteristics of a ”Good”
GUI Test Suite. In Proceedings of the 17th International Symposium

on Software Reliability Engineering, ISSRE, 2006.
[45] S. Zhang, H. Lü, and M. D. Ernst. Automatically Repairing Broken

Workflows for Evolving GUI Applications. In Proceedings of the

International Symposium on Software Testing and Analysis, ISSTA,
2013.

