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Link of moments before and after transformations, with

an application to resampling from fat-tailed

distributions∗

Karim M. Abadir† Adriana Cornea-Madeira‡
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Abstract

Let x be a transformation of y, whose distribution is unknown. We derive an

expansion formulating the expectations of x in terms of the expectations of y. Apart

from the intrinsic interest in such a fundamental relation, our results can be applied

to calculating E(x) by the low-order moments of a transformation which can be cho-

sen to give a good approximation for E(x). To do so, we generalize the approach

of bounding the terms in expansions of characteristic functions, and use our result

to derive an explicit and accurate bound for the remainder when a finite number of

terms is taken. We illustrate one of the implications of our method by providing
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accurate naive bootstrap confidence intervals for the mean of any fat-tailed distribu-

tion with an infinite variance, in which case currently-available bootstrap methods

are asymptotically invalid or unreliable in finite samples.

Keywords: Expansion of functions; Remainder’s bound; Complex analysis Mo-

ments; Bootstrap confidence interval; Infinite variance; Stable laws.

1 Introduction

Let x ∈ X ⊆ R be a variate with unknown distribution, and suppose that we are interested

in one of its moments, say E(x). We provide a methodology to calculate E(x) in terms of the

moments of y ∈ Y ⊆ R, where x = g(y). This fundamental relation between the moments

of x and y has, surprisingly, not been derived before. Approximations to it have been used,

typically through the leading terms of a Taylor expansion and without assessing either the

goodness of such an expansion (as opposed to a more general one than Taylor’s) or the

precise evaluation of the remainder (as opposed to just stating its order of magnitude). In

this paper, we provide an exact formula for general expansions linking these moments, in

a more general context than Taylor expansions. In contrast to other types of expansions

already proposed in the literature, if a finite number of terms is taken, the remainder in

our expansions can be bounded explicitly and accurately, without resorting to orders of

magnitude that only indicate the rate of change of the remainder rather than its size. For

a striking illustration of the difference between bounds and orders, see Hallin and Seoh

(1996) where it is shown how the latter can be misleading: a term of small order can be

numerically huge, even in large samples. To be able to provide such accurate bounds, we

generalize the approach of expanding characteristic functions and bounding their terms.

It is of interest to investigate such a fundamental relation linking the moments of x and

y. But apart from the intrinsic interest in it, it can be used in practice to approximate

E(x) (or any other moment of x that exists) by the low-order moments of a transformation

that can be chosen to give a good approximation for E(x). Such results are useful, for
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example, in assessing the effect of applying transformations to data before ranking and

building models; see Delaigle and Hall (2012) for the case of fat-tailed genomic data and

Taylor (1986) whose result can be extended by our derivations. Another example is the

case of fat-tailed data where the naive bootstrap of Efron (1979) and the moving block

bootstrap of Künsch (1989) and Liu and Singh (1992) fail because of the nonexistence of

higher moments (see Athreya (1987), Knight (1989), Hall (1990), Lahiri (1995)), but we

can use our method to simply modify these resampling techniques to obtain valid bootstrap

confidence intervals (CIs). The potential for applications is not just in statistics and econo-

metrics, but also in economics and finance where there is interest inter alia in quantifying

the effect of nonlinear transformations on moment conditions (such as Euler equations aris-

ing from optimization) and on asset prices which are formulated as expectations; e.g. see

Yu, Yang, and Zhang (2006), Martin (2008), Backus, Chernov, and Martin (2011). The ef-

fect of higher-order terms is important and needs to be quantified, as increasingly frequent

market turbulence has emphasized. Other applications include risk management, where

portfolio losses (which are functions of risk factor changes) are approximated by first-order

Taylor expansions called delta approximation if only the first term in the expansion is

used, and delta-gamma approximation if the first two terms are used. The delta-gamma

approximation is preferred because it gives a better approximation of the loss, but alterna-

tive approximations using our method can be envisaged. It is important to have a reliable

approximation of the losses because it is used for backtesting, required in Basel solvency

assessment; see McNeil, Frey, and Embrechts (2015).

Applications like these are important and substantial, and in this paper we illustrate

how our approach can remedy the failure of the naive bootstrap for the mean of a fat-tailed

distribution with infinite second moment and possibly asymmetric tails. Athreya (1987)

has shown that, when the random variables are independent and identically distributed

(i.i.d.) and have infinite variance, the naive bootstrap of the mean is asymptotically in-

valid. Lahiri (1995) arrives at the same conclusion for the moving block bootstrap when

the random variables are dependent. Starting with the work of Athreya (1987), a number
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of important papers appeared on this topic in the last two decades; see Knight (1989),

Arcones and Giné (1989), Arcones and Giné (1991), Giné and Zinn (1989), Giné and Zinn

(1990), Hall (1990), Hall and LePage (1996), Athreya, Lahiri, and Wu (1998), Hall and Jing

(1998), Romano and Wolf (1999), Politis, Romano, and Wolf (1999), Cavaliere, Georgiev, and Taylor

(2013), Cornea-Madeira and Davidson (2015), Cavaliere, Georgiev, and Taylor (2016) and

the references therein. The solutions to the failure of the naive bootstrap proposed in

these papers are either based on a smaller resampling size (m out of n bootstrap and

subsampling) or on a bootstrap sample size equal to the original sample size (parametric

bootstrap, wild bootstrap, permutation bootstrap). But if the distribution of the data is

allowed to be fat-tailed asymmetric, some of these bootstraps are not applicable and some,

while asymptotically valid, do not perform well in finite samples as illustrated in Section 4

of this paper; see also Romano and Wolf (1999) and Cornea-Madeira and Davidson (2015)

or Hall and Yao (2003) for an example in a regression context.

This paper is organised as follows. In Section 2, we introduce the expansion and the

required results obtained by complex analysis. These are general results on the bounding of

some functions of complex variables, and we apply them to obtain an accurate evaluation of

the remainder when our expansion is truncated. In Section 3, we illustrate the expansion

and the accuracy of the remainder’s bound. In Section 4, we apply our expansion to

obtain asymptotically-valid naive bootstrap CIs for the mean of a distribution with infinite

variance. Section 5 concludes. The proofs are relegated to the Appendix and supplementary

material provides additional tables for the illustrations of Section 3.

2 Expansion of E(x) in terms of the moments of y

Suppose for simplicity that we are interested in E(x) which is assumed to exist. We stress

that the same approach will apply to the expansion of any moment of x, not just E(x).

For example, for the expansion of E(x3), we can replace x by z := x3 and apply the same

method below to E(z). This is also true of other functions z of x, as we shall see later in
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this section.

The first subsection presents two expansions, raw and centered, for the case of g = exp.

It also provides two propositions, derived in total generality, leading to a theorem which

is then used in the second subsection for the case of general g. The third subsection

concerns the specification of a deterministic scaling parameter m in the expansion, and its

implications for the choice of g.

2.1 Expansions and corresponding bounds, applied to g = exp

We propose two types of expansions, raw or centered. We start by explaining the idea

behind the two expansions using a simple familiar setup: (a) without recourse to complex

variables; and (b) with the simple g = exp, giving x := exp(y) ∈ R+; see (1) and (2) below.

Then, these two simplifications will be relaxed, respectively, in (5) of this subsection then

in (14) of the next subsection.

The two types of well-known expansions are:

1. the raw (direct) expansion

x = ey =
k∑

j=0

yj

j!
+Rk, (1)

2. the centered expansion

x = eE yey−E y = eE y

k∑

j=0

(y − E y)j

j!
+Rc

k. (2)

Writing these expansions as x = z+R generically, the expectation of z always exists (since

y := log(x)) and so E(R) also exists (by the assumption that E(x) exists).

Before removing the first simplification used in the previous expansions (that of no

complex numbers), it is easiest to explain the intuition behind our approach with the

simple (1)–(2). To illustrate with the case of resampling from fat-tailed distributions, we
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will show in Section 4 that it is the higher-order terms that create problems:

x =

(

1 + y +
y2

2!
+ ∙ ∙ ∙ + yk

k!

)

︸ ︷︷ ︸

standard resampling applies

+Rk, (3)

with the difficulties arising from Rk (hence for x too). If, instead of using exactly Rk

(which inherits the problems of x), we are able to bound Rk and replace it by a low-order

term (such as a multiple of |y|k+1), then the problem is fixed.1 This is achievable by using

complex numbers, as in the theory of characteristic functions, but not in a conventional

way, as we now show.

Let −1 ≡ i2 and take some m ∈ N according to criteria that are application-specific

and to be discussed in Subsection 2.3 and subsequently. All we need to know at this stage

is that m is a deterministic natural number that we now use for rewriting the centered y

as
y − E y

m
≡ ζ + 2πiy, (4)

where the left-hand side is decomposed into a multiple of 2π measured by iy ∈ Z and a

leftover ζ ∈ (−π, π] to be converted into an angle in the complex space. Both iy and ζ are

random because y is. Then, focusing on this leftover ζ, write

x = eE ye2πmiy

(

exp

(
ζ

i

))im

≡ eE ye2πmiy
(
ξk + ̺x,k

)im
, (5)

where ξk :=
∑k

j=0 ζ
j/(ijj!). The standard bound

∣
∣̺x,k

∣
∣ ≡

∣
∣
∣
∣
∣
eζ/i −

k∑

j=0

(ζ/i)j

j!

∣
∣
∣
∣
∣
≤ |ζ|k+1

(k + 1)!
(6)

may now be used for any ζ ∈ R, which is what we were seeking to do in (3). This will be

helpful when we take expectations later in this section, as it controls the precision of the

1Of course, the bound would have to converge to Rk, as both bound and Rk shrink to zero when the
sample size expands. This will be made precise from Subsection 2.3 onwards.
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remainder and it has a well-behaved expectation (being the finite (k + 1)-th power of a

variate with exponentially-decaying tail). This (6) is specific to g = exp, unlike the general

propositions and theorem that we will now derive which are valid for any g. We will only

employ (6) after these general results.

Unlike in the standard theory of characteristic functions, the whole series expansion in

(5) is additionally raised to the imaginary power im, a complication that we now deal with.

A binomial expansion of (5) gives

x = eE ye2πmiy Re(ξim
k ) + Rc

x,k, (7)

where

∣
∣Rc

x,k

∣
∣ = eE ye2πmiy

∣
∣
∣Re

((
ξk + ̺x,k

)im − ξim
k

)∣
∣
∣ (8)

≤ eE ye2πmiy
∣
∣
∣

(
ξk + ̺x,k

)im − ξim
k

∣
∣
∣

= eE ye2πmiy
∣
∣ξim
k

∣
∣

∣
∣
∣

(
1 + ̺x,k/ξk

)im − 1
∣
∣
∣ .

This equation shows that, whatever goes into the expansion ξk and the remainder ̺x,k,

the expression |
(
1 + ̺x,k/ξk

)im − 1| is a generic form that arises from expanding any g of

x = g(y) into an expression raised to an imaginary power im. If we can bound this form

accurately, rather than just give its order of magnitude, then we can evaluate remainders

satisfactorily. We therefore present the following results.

Proposition 1 Define the real-valued function h of the complex ψ,

h(ψ) :=
∣
∣
∣(1 + ψ)im − 1

∣
∣
∣ , with arg (ψ) ∈ [−π, π).

Then, the global maximum of the function is attained at h(ψm) = 1 + emπ by ψm =

−1 − e(2j+1)π/m in the clockwise direction (arg (ψm) = −π) with j ∈ Z.
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Notice that the triangle inequality gives

∣
∣
∣(1 + ψ)im − 1

∣
∣
∣ ≤

∣
∣
∣(1 + ψ)im

∣
∣
∣+ 1 = exp (−mθ) + 1 ≤ 1 + exp (mπ) ,

where the equality follows from (20) in the Appendix and θ := arg(1 + ψ). The upper

bound of 1 + exp (mπ) is indeed achieved and the proposition tells us which values of ψ

achieve it.

By choosing a large negative j, the solution ψm = −1−exp ((2j + 1) π/m) can be made

sufficiently close to ψ = −1 for most practical purposes. But if the variables and expansions

are such that |ψ| ≤ 1, we need to derive another solution that takes this restriction on the

size of ψ into account, and we need a local bound for h(ψ) when |ψ| ≤ 1 if we want to have

a precise bound on remainders of expansions. Recalling the context of the expansions, our

proposition applies to ψ := ̺x,k/ξk and the remainder ̺x,k should be small relative to the

leading terms ξk, so small values of |ψ| are indeed relevant. The following |ψ|-pointwise

bound is obtained for |ψ| ≤ 1.

Proposition 2 Define the real-valued function h of the complex ψ,

h(ψ) :=
∣
∣
∣(1 + ψ)im − 1

∣
∣
∣ , with arg (ψ) ∈ [−π, π) and |ψ| ≤ |ψ0| ∈ [0, 1].

Then, the maximum of the function is monotonic increasing in |ψ0| and so is the bound

h(ψ) ≤







h1(ψ0), |ψ0| ∈
[
0, 1 − e−π/m

)
,

1 + em sin−1|ψ0|, |ψ0| ∈
[
1 − e−π/m, 1

]
,

for any given |ψ0|, where

h1(ψ0) :=

√

1 − 2em sin−1|ψ0| cos (m log (1 − |ψ0|)) + e2m sin−1|ψ0|. (9)

As a result of this proposition and the first one, we have the following bound.
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Theorem 1 Define the real-valued function h of the complex ψ,

h(ψ) :=
∣
∣
∣(1 + ψ)im − 1

∣
∣
∣ , with arg (ψ) ∈ [−π, π).

Then,
∣
∣
∣(1 + ψ)im − 1

∣
∣
∣ ≤ H(|ψ|), where

H(|ψ|) :=







h1(ψ), |ψ| ∈
[
0, 1 − e−π/m

)
,

1 + em sin−1|ψ|, |ψ| ∈
[
1 − e−π/m, 1

]
,

1 + emπ, otherwise,

(10)

and h1 is defined in (9).

In the case of g = exp and (6), the monotonicity property in Proposition 2 and definition

(10) imply that we can work out the remainder’s bound in (8) as

∣
∣Rc

x,k

∣
∣ ≤ eE ye2πmiy

∣
∣ξim
k

∣
∣H

(

|ζ|k+1

(k + 1)! |ξk|

)

. (11)

For calculating expectations, the remainder from a centered expansion of μ := E(x) (as

opposed to expanding x) is denoted by Rc
µ,k and is bounded by

∣
∣Rc

µ,k

∣
∣ = eE y

∣
∣
∣E
[

e2πmiy Re
((
ξk + ̺x,k

)im − ξim
k

)]∣
∣
∣ (12)

≤ eE y E
∣
∣
∣e2πmiy Re

((
ξk + ̺x,k

)im − ξim
k

)∣
∣
∣

≤ eE y E

[

e2πmiy
∣
∣ξim
k

∣
∣H

(

|ζ|k+1

(k + 1)! |ξk|

)]

.

We have therefore established the following result.

Corollary 1 For g = exp, the k-term expansions

x = eE ye2πmiy Re(ξim
k ) + Rc

x,k and E(x) = eE y E
(
e2πmiy Re(ξim

k )
)

+Rc
µ,k
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have the bounds |Rc
x,k| ≤ Bc

x,k and |Rc
µ,k| ≤ E(Bc

x,k), with

Bc
x,k := eE ye2πmiy

∣
∣ξim
k

∣
∣H

(

|ζ|k+1

(k + 1)! |ξk|

)

.

The same results apply to the raw version of our expansions, but with E(y) replaced by

zero throughout. The alternative formulation

∣
∣ξim
k

∣
∣ =

∣
∣
∣|ξk|im

∣
∣
∣ e−m arg(ξk) =

∣
∣eim log|ξk|

∣
∣ e−m arg(ξk) = e−m arg(ξk) (13)

does not contain imaginary quantities.

2.2 Expansions and corresponding bounds, applied to general g

We started this section with two simplifications just before (1). Having then introduced

complex numbers into the expansions, hence removing the first simplification, we now relax

the second one of g = exp. The only point where we required g = exp and its remainder

(6) was in (11)–(12) after the propositions and the theorem.

The series obtained above are a special case of Teixeira’s expansion which expands a

function (g = exp previously) in terms of another (log(x) or log(x) − E log(x) previously);

e.g. see Whittaker and Watson (1997), pp.131–133 or Abadir and Talmain (1999) for an

application. See also p.181 of Koenker, Machado, Skeels, and Welsh (1994). From x = g(y)

and (4),

x ≡ g ((E y + 2πmiy) + ζm) . (14)

There are two ways to view the route we have taken earlier. First, it could be regarded as a

one-term Teixeira expansion of g in terms of the m-th power of ξi
k with ξk :=

∑k
j=0 ζ

j/(ijj!).

Since the nonrandom m is arbitrary in N, this one-term expansion will always exist for some

m ∈ N for any analytic function g; see Whittaker and Watson (1997), pp.131–133 for the

coefficient of the expansion. Second, we could regard our earlier setup as a k-term Teixeira
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expansion of x−i/m in terms of ζ/i as

x−i/m = g1 (E y + 2πmiy) ×
(
ξk + ̺x,k

)
,

where ξk includes the k terms in powers of ζ/i and the special case of g = exp gave

g1 (v) = (g (v))−i/m. For both approaches, the generalization of the exponential bound (6)

for the remainder ̺x,k can be obtained by recourse to the inequalities of special functions.

For the latter approach, we have additionally Bürmann’s integral representation of the

remainder of Teixeira’s expansion for analytic functions (Whittaker and Watson (1997),

pp.128–131) to bound ̺x,k. None of our propositions and the theorem (all of them listed

before (11)) are affected by this generalization.

The last paragraph also implies the following. The theorem is general and can be used

directly in the case of any x = g(y) that is not necessarily invertible, or in the case of a

composition of the type x = g2(g3(y)) where we would expand g2 only. If there is such

a need, the only required alteration would not be in our propositions or theorem, but in

the coefficients and definition of variates in the expansion preceding Proposition 1. As an

illustration of x = g2(g3(y)) with the Box-Cox transformation,

y :=
xp − 1

p
,

if we are interested in the expectation of the original variate x, omitting the centering and

scaling for ease of exposition gives

x = (1 + py)1/p =
(

e(ip)−1 log(1+py)
)i

=
(
ξk + ̺x,k

)i

with

ξk :=
k∑

j=0

(log (1 + py))j

(ip)j j!

and the same propositions and theorem apply as before. It is also possible to expand by

something other than an exponential function, as discussed in the previous paragraph.
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Finally, one should ensure that the expectation of the right-hand side of the expansion

of x exists, when specifying a function g or g2 to expand. Writing these expansions as

x = z +R generically, the choice of function should be such that E(z) exists.

2.3 Choice of deterministic m and implications for g

Recall from (4) that (y − E y) /m ≡ ζ + 2πiy. This means that m acts like an artificial

scaling parameter for the variate y. Choosing a large m leads to the consistency-like

behaviour that is needed for the remainders to converge to zero, here in the sense that

the scale shrinks the variate around E(y) and fewer terms (smaller k) are needed for the

expansion to be accurate; see the following sections for illustrations. This also ensures that

the choice of g = exp (as opposed to some other function) is asymptotically inconsequential,

although in finite samples its terms converge to zero faster than in expansions like the

binomial or logarithmic that belong to the q+1Fq class of general hypergeometric pFq series;

see Abadir (1999) or Whittaker and Watson (1997). Other examples of pFq transformations

include hyperbolic functions (which are members of the 0F1 class that converges even

faster than the exponential which is a 0F0 function) such as sinh (y) for x ∈ R, cosh(y) for

x ∈ R+; inverse trigonometric functions tan−1, sin−1 (see Samworth (2005) for a resampling

application); and the popular Box-Cox transformation (see DiCiccio, Monti, and Young

(2006) for a resampling application).

In practical applications, such as the resampling example mentioned earlier, there will

be a tradeoff between reducing the magnitude of the remainder terms (requires larger m)

and the imprecision it introduces in the evaluation of the required moments empirically;

see Section 4. The optimal choice of m will be application-specific, as we shall illustrate in

Section 4.
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3 Illustration of the k-term expansion and bound’s

accuracy for E(x)

We illustrate the performance of the k-term expansion for E(x) and the corresponding

bound in Corollary 1 using two distributions: the normal y ∼ N(1, 1) and the gamma

y ∼ Gam(ν, λ). In the latter case, the density of the log-gamma random variable x := ey is

fx(u) =
λν (log u)ν−1

Γ(ν)uλ+1
(ν, λ > 0) , (15)

for x = u ∈ (1,∞). For λ < 2, the log-gamma distribution is in the domain of attraction

of the stable laws with infinite variance.

Tables 1–15 of the supplementary material display the k-term expectation, denoted Ek,

and the bound for the remainder using Monte Carlo methods with 105 drawings (and same

seed) from the above distributions. The precision of the k-term expansion is measured

by the ratio Ek /E∗(x), where E∗(x) is the Monte Carlo estimate of E(x).The k-term and

bound’s expectations can be calculated by Monte Carlo methods or numerical integration.

However, numerical integration is time consuming and can be less accurate as there are

many spikes in the expression of the k-term expansion and the remainder’s bound which

can be easily missed by the numerical algorithm.

Each table contains the results for the raw and the centered expansions for k = 2, 3, 4

and m = 1, 10, 50, 100, 500 and 1,000. The case of the well-behaved log-normal stands in

contrast to the case of the fat-tailed log-gamma whose variance does not exist. Nevertheless,

the tables show that even in the fattest-tailed case of small λ and large ν, the precision

of our formulae is very good. Even the 2-term expansion (k = 2) is accurate, especially

when we choose m not too small. All tables indicate that choosing a large m increases the

accuracy of both the expansion and bound. On the whole, centered expansions are more

accurate, but we need to take m > 1.

Unreported calculations show that the expansions we derive using complex numbers are
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vastly more accurate than the ones that do not use them, like the introductory (1)–(2).

To illustrate this point, take y = 10, then x := ey = 22, 026.4657. First, consider the

raw expansion (1) with no complex numbers or m involved. The 2-term expansion gives

only x ≈ 61 and we would need a 30-term expansion to obtain a good approximation of

x. Second, we consider the complex (7) for m = 1 and different values of k. The 2-term

expansion gives 9, 447.5 and the corresponding bound for the remainder is 83, 879, but here

we only need a 12-term expansion to obtain a good approximation of x with a bound of

24.83. Finally, we consider the same expansion as in (7) for fixed k = 2 and different values

of m. For m = 100, the expansion is 22, 396 and the bound is 532. Taking m = 10, 000, the

2-term expansion is extremely accurate and the bound for the remainder is very precise,

namely 0.0519.

4 The transformation-based naive bootstrap, as an

application of our method

The purpose of this section is to illustrate the usefulness of our expansion to solve the

problem of invalidity and bad performance of the naive bootstrap when the data are fat-

tailed. The traditional approach is not valid for x̄n if the distribution of the x’s is in the

domain of attraction of the stable laws and var(x) = ∞, as shown in Athreya (1987),

Knight (1989), and Hall (1990). The m out of n bootstrap is similar to the naive bootstrap

except that the bootstrap sample size m is smaller than n, with m satisfying the conditions

m/n → 0, m → ∞, n → ∞ which guarantee the asymptotic validity of this bootstrap.

Subsampling is similar to the m out of n bootstrap, except that the resamplings are without

replacement.
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4.1 Our modification of the naive bootstrap and proof of its va-

lidity

We propose a simple bootstrap CI for E(x) where x ∈ R+ and we assume that x has a

distribution in the domain of attraction of the stable laws and var(x) = ∞. The case of

x ∈ R can be similarly handled by considering the negative and positive parts separately

below, and the choice of E(x) instead of other moments is meant to keep complexity at a

minimum for our application. The fact that E(x) is finite guarantees that all the moments

of y := log(x) exist, and so do the expectations of the k-term sum and the remainder’s

bound.

Letting z := eE ye2πmiy Re(ξim
k ), we have x = z +Rc

x,k and the remainder has the bound

Bc
x,k given in Corollary 1. The same derivations will also apply to the uncentered expan-

sions. By applying the triangle inequality twice,

x ∈
[
|z| − Bc

x,k, |z| +Bc
x,k

]
(16)

whose endpoints can be resampled to build conservative CIs for E(x). To do this, consider

an i.i.d. sample x1, ∙ ∙ ∙ , xn with sample mean x̄n, and compute the following quantities

z̄+
n :=

1

n

n∑

j=1

|zj| , Bc
x̄,k :=

1

n

n∑

j=1

Bc
xj ,k

.

By the triangle inequality,

κ1,n ≤ x̄n ≤ κ2,n, with κ1,n := z̄+
n −Bc

x̄,k and κ2,n := z̄+
n +Bc

x̄,k. (17)

As seen from (16), if Bc
x,k is too large then the resulting CI will be too conservative. While,

if k = ∞ or m = ∞ for any given n, then Bc
x,k vanishes and z coincides with x and we are

back to the original invalid naive bootstrap. Thus k,m have to be finite for any finite n,

and their value chosen depending on the thickness of the tail of x, as we will see how this
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tail affects finite-sample performance in the next subsection. As n → ∞, we will allow m

to increase too to achieve an existence condition for the moments of Bc
x,k, and we turn to

this now.

In Proposition 3 below, we prove that the naive bootstrap of κ1,n and κ2,n based on

resampling with replacement from the empirical distribution function (EDF) of the y’s (or

equivalently from the joint EDF of iy and ζ) is asymptotically valid. More specifically, we

show that the naive bootstrap is valid for |z| and Bc
x,k (both are in terms of powers of the

well-behaved y), thus for their linear combination as in (17). Note that the naive bootstrap

is not valid for Rc
x,k, which is just identical to x− z and thus inherits the fat tail of x.

Proposition 3 Let k be finite. There exists an arbitrarily-large m for which

Pr

(

sup
v∈R

∣
∣Pr
(
n1/2

(
κ

b
i,n − κi,n

)
≤ v | y

)
− Pr

(
n1/2 (κi,n − E(κi,n)) ≤ v

)∣
∣ > ǫ

)

→ 0, (18)

for i = 1, 2 and all 0 < ǫ < 1 as n → ∞, where κb
i,n is the naive bootstrap version of κi,n

and y := (y1, ∙ ∙ ∙ , yn)′.

It follows from (17) and Proposition 3 that the upper limit of the CI based on (16) for

E(x) is at most equal to the upper limit of the CI for E |z|+ E(Bc
x,k) since q̂x̄,α/2 ≤ q̂b

κ2,α/2
,

where q̂x̄,α/2 and q̂b
κ2,α/2

are the estimates of the α/2 quantiles of the distribution of n1/2x̄n

and n1/2
κ

b
2,n, respectively. Also the lower limit of the CI for E |z| − E(Bc

x,k) is at most

equal to the lower limit of the CI for E(x) since q̂b
κ1,1−α/2

≤ q̂x̄,1−α/2, where q̂b
κ1,1−α/2

is the

estimate of the 1 − α/2 quantile of the distribution of n1/2
κ

b
1,n. This gives the following

result.

Theorem 2 Let k be finite. There exists an arbitrarily-large m for which the basic bootstrap

confidence intervals

[
κ1,n −

(
q̂b
κ1,1−α/2

− κ1,n

)
, κ2,n −

(
q̂b
κ2,α/2

− κ2,n

)]

provide a conservative 1−α two-sided CI for E(x) in finite samples, and have asymptotically
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the correct coverage.

The problem with the naive bootstrap of x̄n (based on resampling from the EDF of the

x’s) is that it fails to model accurately the relation among the extreme values in the sample

(the higher-order terms in the expansion of x̄n). The probability that the largest extremes

in a bootstrap sample are equal does not converge to zero, as is the case with the extremes

in the original sample; see Hall and Yao (2003). In the case of our naive bootstrap for κi,n

with m finite, this probability can be made arbitrarily close to zero in Bc
x̄,k: this bound is a

function of the (k + 1)-th term in the expansion, the higher-order terms being collectively

bounded by a finite power of a well-behaved variate.

4.2 Simulation results

To complement the asymptotics of Theorem 2, we now propose a method to choose our

m in finite samples. The method is based on a response surface as a function of the

sample size n, the tail exponent λ, the nominal level α, and the number of terms k in

the expansion. Response surfaces have been used in various statistical and econometric

applications; e.g. Mittnik, Rachev, and Kim (1998) in the context of fat tails. Response

surfaces are regressions which are determined from simulated draws, here implying an

optimal choice of the parameter of interest m. The simulated draws are from a standard

Pareto Par(λ) density

fx(u) = λu−λ−1

for x = u ∈ (1,∞) and where λ is the tail index (exponent) with 1 < λ < 2 for E(x)

to exist but E(x2) infinite. This choice is motivated by the fact that distributions in the

domain of attraction of the stable laws with infinite variance have Pareto-like tails; see

Feller (1971), p.576. At the end of this section, we verify the accuracy of the performance

of this response surface in selecting m when distributions other than the Pareto hold, even

though the surface has been optimized for Pareto data, thus confirming our large-sample

invariance argument.
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To obtain our response surface, we express log(m) as a transcendental function in α−1,

k−1, λ−1, λ−2, log(n), which is estimated by nonlinear least squares using draws from

a Pareto distribution with λ = 1.1, 1.2, ∙ ∙ ∙ , 2. For each n = 100, 200, ∙ ∙ ∙ , 1000, α =

0.01, 0.05, 0.10 and k = 1, 2 we have selected the value of m that guarantees a conservative

CI for E(x) that is closest to the nominal coverage. We have not considered larger values

for k, as m can play a similar role as k gets large; see Section 3. We take nb = 399

bootstrap replications to guarantee that
(
nb + 1

)
(1 − α/2) and

(
nb + 1

)
α/2 are integers;

see Davison and Hinkley (2009), p.18.

After eliminating the statistically insignificant terms, we have arrived at the following

response surface

m ≈ c1 + exp

(

c2 +
c3
k

+
c4
k

log n+
c5
kλ

+
c6 + c7α

−1

kλ2

)

. (19)

The estimates of the parameters of (19) and their t-statistics (based on White’s heteroskedasticity-

consistent variance matrix estimator) are given in Table 1. The adjusted-R2 of the regres-

sion is 97%. The predicted m is given by the integer part of the function (19) for specific

values of α, k, λ, and n. Note that it implies m ≈ O(nc4/k), which leads to plim iy = 0 as

required for the existence condition (21).

We illustrate the behavior of our naive bootstrap from Theorem 2 and the performance

of our response surface (19) in a simulation study. We consider Par(λ), Fréchet distribution

with c.d.f. Fx(u) = exp(−u−λ), Burr distribution with c.d.f. Fx(u) = 1−(1+uβ)−λ/β where

β > 0, and the log-gamma distribution (15) with ν = 1. The distributions are in the domain

of attraction of the stable laws.

Table 2 gives the coverage probabilities for E(x) based on the naive bootstrap of κi,n

when the data are drawn from the Pareto, using the raw version of the expansion. We see

that a low λ (fat tail) is more challenging than a high λ. But as n → ∞, all our CIs have

the required conservative coverage as Theorem 2 implies. We can also see that there are

choices of m and k to fine-tune or reduce the degree of conservatism of the CIs in finite

samples, which we summarize as follows:
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1. For extreme quantiles, such that 99%, choose k = 1. For α = 0.01 and k = 1, the

optimal m predicted by our response surface corresponds to the shaded boxes in the

top panel of Table 2. As can be seen from the table, these choices of m give very

satisfactory CIs for E(x). For the case λ = 1.1 and n = 100, 300 and for the case

λ = 1.3 and n = 100, the predicted m is zero or −1 but we take m = 1 because m ≥ 1

by assumption. These cases are very hard to handle by any method (in particular for

small n), as they are very close to the non-existence of even the first moment of the

distribution.

2. Considering progressively smaller quantiles, 95% and 90%, we move into the body

of the distribution and choose k = 2. For α = 0.05, 0.10 and k = 2, the optimal m

predicted by our response surface corresponds to the shaded boxes in the middle panel

of Table 2 which shows an excellent performance again, except for only the single case

of α = 0.05, λ = 1.1 (very fat tail), n = 100 (small sample); a performance which

improves quickly when either λ or n increase.

In the bottom panel of Table 2, we report the coverage probabilities for E(x) based on

the m out of n bootstrap and subsampling with the choice of the bootstrap sample size

given by the method of Bickel and Sakov (2008), p.971 where their q is 0.75.2 As can be

seen from the table, these coverage probabilities are in sharp contrast to the ones of the

simple naive bootstrap from Theorem 2 which performs much better. The CIs of the two

bootstrap competitors are somewhat improved when λ = 1.5 (and even conservative), but

sensitive to the choice of the tuning parameters used in the method of Bickel and Sakov

(2008).

Using data from the Burr, Fréchet, and log-gamma distributions, respectively, Tables 3–

5 repeat the exercise of Table 2 with the unchanged response surface (19) optimized under

Pareto data (justified by the asymptotic invariance argument). As can be concluded from

these tables, our approach using the naive bootstrap gives excellent results. Furthermore,

2We considered j = 0, 1, ∙ ∙ ∙ , 9 for n = 100, j = 0, 1, ∙ ∙ ∙ , 16 for n = 300, and j = 0, 1, ∙ ∙ ∙ , 17 for
n = 900.
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them out of n bootstrap and subsampling give coverage probabilities well below the nominal

ones, except for λ = 1.5 and large n. But, as mentioned above, these bootstraps are

very sensitive to the choice of the bootstrap sample size. Similar conclusions about the

behaviour of the m out of n bootstrap and subsampling can be drawn from Hall and Jing

(1998), Romano and Wolf (1999), the supplementary material in Ibragimov and Muller

(2010), Cornea-Madeira and Davidson (2015).

5 Concluding comments

By extending the approach of bounding terms in expansions of characteristic functions,

we have provided expansions and bounds for expectations of a variate x in terms of the

expectations of a related variate y. We have then illustrated the accuracy of the expansions

and bounds by simulating distributions, including ones whose higher order moments do not

exist. Finally, we have shown how to apply our formulae to fix the problem of bootstrapping

the mean of (asymmetric) variates that have infinite variance. Even though we have used

only the naive bootstrap along with our expansions, our results are very good compared to

the performance of various other bootstrap modifications that have tried to fix the problem.

It shows the potential of our expansions for the bootstrap and the other applications cited

in the introduction.

Appendix: Proofs

Proof of Proposition 1. For any complex ψ := a+ib, with a, b real and θ := arg (1 + ψ) ∈
[−π, π), we have

(1 + ψ)im = |1 + ψ|im exp (−mθ) , (20)
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where |1 + ψ|im = eim log|1+ψ| has modulus 1. Hence,

h(ψ) =
∣
∣
∣(1 + a+ bi)im − 1

∣
∣
∣ =

∣
∣
∣
∣
exp

(

im log

√

(1 + a)2 + b2 −mθ

)

− 1

∣
∣
∣
∣

= |exp (im log |(1 + a) sec θ| −mθ) − 1|

by b = (1 + a) tan θ, and

h(ψ)2 =
∣
∣e−mθ cos (m log |(1 + a) sec θ|) + ie−mθ sin (m log |(1 + a) sec θ|) − 1

∣
∣
2

=
(
e−mθ cos (m log |(1 + a) sec θ|) − 1

)2

+ e−2mθ sin2 (m log |(1 + a) sec θ|)

= 1 − 2e−mθ cos (m log |(1 + a) sec θ|) + e−2mθ.

Optimizing h(ψ)2 with respect to a gives the first-order condition

sin

(

m log

∣
∣
∣
∣

1 + a

cos θ

∣
∣
∣
∣

)

= 0

yielding the concentrated

h(ψ)2 = 1 ∓ 2e−mθ + e−2mθ

which is maximized by the corner solution θ = −π and by

cos

(

m log

∣
∣
∣
∣

1 + a

cos θ

∣
∣
∣
∣

)

= −1.

Hence, with j ∈ Z, the solution for a can be written as

log

∣
∣
∣
∣

1 + a

cos (−π)

∣
∣
∣
∣
= (2j + 1) π/m

or |1 + a| = exp ((2j + 1) π/m). Since θ = arg (1 + a+ bi) = −π, we have that 1 + a < 0

hence

a = −1 − exp ((2j + 1) π/m)
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ψ = a+ib 1 + ψ = 1 + a+ib

1 + a

Im

Re
0

θ ∈ [−π
2
, 0]

Figure 1: Illustration of the optimal solution in Proposition 2.

and the result follows. �

Proof of Proposition 2. We maximize h(ψ)2 as in Proposition 1, but this time subject

to the additional condition that |ψ| ≤ |ψ0|. However, now 1 + a ≥ 0 since |a| ≤ |ψ0| ≤ 1,

and the optimal solution will satisfy θ ∈ [−π/2, 0] and a ≤ 0. Visualize the solution as the

intersection point (in the lower half plane) of a ray of angle θ from the origin with a circle

of radius |ψ0| centered around 1; see Figure 1. This optimization is easiest to do in terms

of |ψ| and θ. To this end, using the definitions |ψ|2 = a2 + b2 and b2 = (1 + a)2 tan2 θ gives

a quadratic equation for a whose solutions are

a = − sin2 θ ±
√

|ψ|2 cos2 θ − sin2 θ cos2 θ.

For a ≤ 0, the top solution (+
√

) requires |ψ|2 ∈ [sin2 θ, tan2 θ] and the bottom (−√
) just

|ψ|2 ≥ sin2 θ. For a ∈ [− |ψ| , 0], we need further that

±
√

|ψ|2 cos2 θ − sin2 θ cos2 θ ≥ sin2 θ − |ψ| .
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Now sin2 θ ≤ |ψ|2 ≤ |ψ| since |ψ| ≤ 1, so the RHS is nonpositive: the top restriction always

holds and the bottom one requires − sin2 θ (|ψ| − 1)2 ≤ 0 which always holds. As a result,

a ∈ [− |ψ| , 0] imposes no further restrictions. In either case, the objective function is

h(ψ)2 = 1 − 2e−mθ cos (m log |(1 + a) sec θ|) + e−2mθ

= 1 − 2e−mθ cos

(

m log

(

cos θ ±
√

|ψ|2 − sin2 θ

))

+ e−2mθ

since 1+a ≥ 0 and cos θ ≥ 0. This is a function of ϕ := |ψ|2 and θ, which is to be optimized

subject to ϕ ≤ |ψ0|2. The augmented function is

1 − 2e−mθ cos

(

m log

(

cos θ ±
√

ϕ− sin2 θ

))

+ e−2mθ − l
(
|ψ0|2 − ϕ

)
,

leading to the Kuhn-Tucker conditions

l = −e−mθ
m sin

(

m log
(

cos θ ±
√

ϕ− sin2 θ
))

±
√

ϕ− sin2 θ
(

cos θ ±
√

ϕ− sin2 θ
) ≤ 0, l

(
|ψ0|2 − ϕ

)
= 0,

and

cos

(

m log

(

cos θ ±
√

ϕ− sin2 θ

))

∓
sin θ sin

(

m log
(

cos θ ±
√

ϕ− sin2 θ
))

√

ϕ− sin2 θ

= e−mθ.

If l = 0, the last equation becomes 1 = e−mθ, hence θ = 0 which does not lead to a

maximum when substituted into h. Hence, l 6= 0 and the constraint |ψ| = |ψ0| is binding,

which implies the monotonicity of h in |ψ0|.
Since l 6= 0 for the optimum, sin (m log) 6= 0 implying that cos (m log) 6= 1 unlike

in Proposition 1. The objective function cannot be simplified like before, and the first-
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order condition on θ seems intractable. We resort instead to bounding the components

of h. The exponentials’ argument is bounded by |ψ0|2 ≥ sin2 θ, hence −θ ≤ sin−1 |ψ0|
(since θ ∈ [−π/2, 0]). As for the remaining component of h, consider the transformation

s = ±
√

ϕ− sin2 θ hence

θ = − sin−1
√

ϕ− s2 = − cos−1
√

1 − ϕ+ s2

and

h(ψ)2 = 1 − 2em sin−1

√
ϕ−s2 cos

(

m log
(

cos sin−1
√

ϕ− s2 + s
))

+ e2m sin−1

√
ϕ−s2

= 1 − 2em cos−1

√
1−ϕ+s2 cos

(

m log
(√

1 − ϕ+ s2 + s
))

+ e2m cos−1

√
1−ϕ+s2 ,

where the sign of s affects only the logarithmic component. Maximizing − cos(m log(
√

1 − ϕ+ s2+

s)) subject to s ∈ [−√
ϕ,

√
ϕ] gives an interior solution of +1 when

ϕ ∈
[(

e(2j+1)π/m − 1
)2
,
(
e(2j+1)π/m + 1

)2
]

,

where the upper bound is always bigger than 1 but the lower bound is minimized (for the

interval to cover all interior solutions) by choosing j = −1 for any given m, and this latter

bound is

ϕ =
(
e−π/m − 1

)2

or |ψ0| = 1 − e−π/m, giving the solution

s =
−1 + ϕ+ e−2π/m

2e−π/m
=
ϕ

2
eπ/m + sinh(−π/m)
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and − cos(log(
√

1 − ϕ+ s2 + s)) = +1, hence the monotonic bound

h(ψ)2 ≤ 1 + 2em sin−1|ψ0| + e2m sin−1|ψ0| =
(

1 + em sin−1|ψ0|
)2

.

Otherwise, with − cos (m log ∙) < 1, the largest corner solution is obtained when s =

−√
ϕ < 0 (the bottom solution for a) and

− cos
(

m log
(√

1 − ϕ+ s2 + s
))

= − cos (m log (1 −√
ϕ)) ,

hence

h(ψ)2 ≤ 1 − 2em sin−1|ψ0| cos (m log (1 − |ψ0|)) + e2m sin−1|ψ0|

and the two bounds on h coincide at the switching point |ψ0| = 1− e−π/m. The monotonic-

ity of this bound follows by differentiating then solving for the zeros, which shows that

there are none in (0, 1 − e−π/m). �

Proof of Proposition 3. Since Proposition 1 bounds H globally by 1+emπ, establish-

ing the existence of the moments of z and Bc
x,k boils down to showing that the non-negative

e2πmiy
∣
∣ξim
k

∣
∣ has finite p-th order moments (p ∈ N and finite) by appropriate choice of m.

To achieve this, a sufficient condition (by the Cauchy-Schwarz inequality) is that

E
(
e2πpmiy

)
<∞. (21)

Recall that (y − E y) /m ≡ 2πiy+ζ where ζ ∈ (−π, π] and iy is a discrete variate. Choosing

an arbitrarily large m such that plim iy = 0 as n → ∞ ensures E(e2πpmiy) tends to 1 since

y is tight (it has an exponentially-decaying distribution independent of n). Note that the

idea used here is to shift the randomness of y to ζ (with probability 1) because it does not

figure in the required existence condition (21) as a result of it entering Bc
x,k only through

the bounded H function.

Under no further assumptions, using the Cramér-Wold device we can then show that
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both κ1,n and κ2,n are asymptotically normal. Since these statistics are essentially usual

sample means with continuous asymptotic distributions, (18) follows from Theorem 2.1 of

Bickel and Freedman (1981). �
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Table 1: Parameter estimates of fitted response surface.

c1 c2 c3 c4 c5 c6 c7

Estimate -1.59 0.98 -4.14 0.72 7.04 -6.26 -0.02
t-statistic -3.70 7.88 -9.69 20.76 5.65 -6.66 -9.76
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Table 2: Coverage probabilities for E(x), x ∼ Par(λ).

Transformation-based naive bootstrap, k = 1

n = 100 n = 300 n = 900

λ m 0.90 0.95 0.99 m 0.90 0.95 0.99 m 0.90 0.95 0.99

1.1 1 0.98 0.98 0.99 1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.58 0.58 0.60 2 0.91 0.91 0.91 2 1.00 1.00 1.00
3 0.48 0.49 0.54 3 0.53 0.56 0.61 3 0.67 0.69 0.73
4 0.51 0.53 0.57 4 0.60 0.63 0.67 4 0.70 0.73 0.78

1.3 1 0.99 0.99 0.99 1 1.00 1.00 1.00 8 0.98 0.99 1.00
2 0.88 0.90 0.93 2 0.96 0.97 0.98 10 0.97 0.98 0.99
3 0.88 0.90 0.93 3 0.97 0.97 0.99 12 0.96 0.97 0.98
4 0.87 0.89 0.92 4 0.96 0.97 0.98 16 0.93 0.95 0.97

1.5 1 0.99 0.99 0.99 4 0.99 0.99 1.00 14 0.98 0.99 0.99
2 0.96 0.97 0.98 5 0.99 0.99 1.00 18 0.97 0.98 0.99
3 0.93 0.95 0.97 6 0.98 0.99 0.99 19 0.96 0.97 0.99
4 0.86 0.88 0.91 7 0.97 0.98 0.99 25 0.94 0.96 0.98

Transformation-based naive bootstrap, k = 2

n = 100 n = 300 n = 900

λ m 0.90 0.95 0.99 m 0.90 0.95 0.99 m 0.90 0.95 0.99

1.1 1 0.90 0.90 0.92 1 0.97 0.98 0.99 3 0.99 0.99 1.00
2 0.82 0.84 0.86 2 0.95 0.96 0.97 4 0.97 0.98 0.98
3 0.77 0.79 0.81 3 0.92 0.93 0.94 5 0.93 0.94 0.95
4 0.66 0.67 0.69 4 0.85 0.87 0.88 6 0.85 0.86 0.88

1.3 1 0.98 0.99 0.99 1 1.00 1.00 1.00 4 1.00 1.00 1.00
2 0.96 0.97 0.98 2 1.00 1.00 1.00 5 0.98 0.99 0.99
3 0.90 0.91 0.93 3 0.99 0.99 0.99 6 0.95 0.96 0.97
4 0.82 0.83 0.86 4 0.95 0.96 0.97 7 0.91 0.93 0.95

1.5 1 0.99 0.99 0.99 2 1.00 1.00 1.00 5 0.99 0.99 0.99
2 0.97 0.98 0.99 3 0.99 0.99 0.99 6 0.97 0.97 0.98
3 0.92 0.93 0.95 4 0.96 0.97 0.98 7 0.93 0.95 0.97
4 0.86 0.88 0.91 5 0.91 0.93 0.95 8 0.90 0.92 0.95

m out of n bootstrap

n = 100 n = 300 n = 900

λ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1.1 0.24 0.25 0.26 0.25 0.26 0.28 0.27 0.29 0.30
1.3 0.69 0.73 0.78 0.76 0.80 0.86 0.82 0.86 0.92
1.5 0.88 0.90 0.94 0.94 0.96 0.98 0.97 0.99 1.00

Subsampling

n = 100 n = 300 n = 900

λ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1.1 0.26 0.27 0.28 0.27 0.28 0.30 0.28 0.30 0.32
1.3 0.71 0.74 0.78 0.78 0.81 0.87 0.84 0.88 0.93
1.5 0.87 0.90 0.93 0.94 0.96 0.98 0.97 0.99 1.00
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Table 3: Coverage probabilities for E(x), x ∼ Burr(λ, β), with β = 2.

Transformation-based naive bootstrap, k = 1

n = 100 n = 300 n = 900

λ m 0.90 0.95 0.99 m 0.90 0.95 0.99 m 0.90 0.95 0.99

1.1 1 0.98 0.98 0.98 1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.57 0.58 0.59 2 0.91 0.91 0.91 2 1.00 1.00 1.00
3 0.47 0.49 0.53 3 0.54 0.57 0.62 3 0.68 0.70 0.74
4 0.50 0.53 0.57 4 0.60 0.63 0.67 4 0.70 0.73 0.78

1.3 1 1.00 1.00 1.00 1 1.00 1.00 1.00 8 0.99 0.99 1.00
2 0.87 0.89 0.92 2 0.96 0.97 0.98 12 0.96 0.97 0.98
3 0.87 0.89 0.92 3 0.96 0.97 0.98 16 0.93 0.94 0.97
4 0.87 0.89 0.91 4 0.96 0.97 0.98 20 0.90 0.92 0.95

1.5 1 0.99 0.99 1.00 3 0.99 1.00 1.00 14 0.98 0.99 0.99
2 0.96 0.97 0.98 4 0.99 0.99 1.00 20 0.96 0.97 0.99
3 0.95 0.96 0.97 5 0.99 0.99 1.00 25 0.94 0.95 0.97
4 0.93 0.95 0.97 6 0.98 0.98 0.99 30 0.92 0.94 0.96

Transformation-based naive bootstrap, k = 2

n = 100 n = 300 n = 900

λ m 0.90 0.95 0.99 m 0.90 0.95 0.99 m 0.90 0.95 0.99

1.1 1 0.89 0.90 0.92 1 0.97 0.98 0.99 3 0.99 0.99 1.00
2 0.82 0.84 0.86 2 0.95 0.96 0.97 4 0.98 0.98 0.98
3 0.76 0.77 0.79 3 0.93 0.94 0.95 5 0.93 0.93 0.95
4 0.66 0.67 0.69 4 0.85 0.86 0.88 6 0.85 0.86 0.88

1.3 1 0.98 0.99 0.99 1 1.00 1.00 1.00 4 1.00 1.00 1.00
2 0.96 0.97 0.98 2 1.00 1.00 1.00 5 0.98 0.99 0.99
3 0.89 0.91 0.92 3 0.99 0.99 0.99 6 0.95 0.96 0.97
4 0.81 0.83 0.86 4 0.95 0.95 0.97 7 0.91 0.92 0.94

1.5 1 0.99 1.00 1.00 2 1.00 1.00 1.00 6 0.96 0.97 0.98
2 0.97 0.98 0.98 3 0.99 0.99 1.00 7 0.94 0.95 0.97
3 0.92 0.93 0.95 4 0.96 0.97 0.98 8 0.90 0.92 0.95
4 0.85 0.87 0.90 5 0.92 0.93 0.95 9 0.87 0.90 0.94

m out of n bootstrap

n = 100 n = 300 n = 900

λ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1.1 0.25 0.26 0.27 0.28 0.27 0.29 0.27 0.28 0.30
1.3 0.71 0.75 0.81 0.77 0.82 0.88 0.83 0.87 0.93
1.5 0.91 0.93 0.97 0.95 0.97 0.99 0.97 0.99 1.00

Subsampling

n = 100 n = 300 n = 900

λ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1.1 0.26 0.27 0.29 0.28 0.29 0.31 0.29 0.31 0.33
1.3 0.73 0.76 0.82 0.79 0.83 0.89 0.85 0.87 0.94
1.5 0.91 0.93 0.96 0.96 0.98 0.99 0.98 0.99 1.00
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Table 4: Coverage probabilities for E(x), x ∼ Fréchet(λ).

Transformation-based naive bootstrap, k = 1

n = 100 n = 300 n = 900

λ m 0.90 0.95 0.99 m 0.90 0.95 0.99 m 0.90 0.95 0.99

1.1 1 0.98 0.98 0.98 1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.57 0.58 0.59 2 0.95 0.97 0.98 2 1.00 1.00 1.00
3 0.46 0.48 0.52 3 0.96 0.97 0.98 3 0.66 0.68 0.72
4 0.50 0.53 0.56 4 0.95 0.96 0.98 4 0.68 0.71 0.76

1.3 1 1.00 1.00 1.00 1 1.00 1.00 1.00 8 0.98 0.99 0.99
2 0.86 0.89 0.92 2 0.95 0.97 0.98 12 0.96 0.97 0.98
3 0.87 0.89 0.92 3 0.96 0.97 0.98 16 0.93 0.94 0.96
4 0.86 0.88 0.91 4 0.96 0.97 0.98 20 0.90 0.92 0.94

1.5 1 0.99 0.99 0.99 2 0.99 1.00 1.00 14 0.98 0.99 0.99
2 0.95 0.96 0.98 3 0.99 1.00 1.00 20 0.96 0.97 0.98
3 0.94 0.96 0.97 4 0.99 0.99 1.00 25 0.94 0.95 0.97
4 0.93 0.94 0.96 5 0.99 0.99 0.99 30 0.91 0.93 0.96

Transformation-based naive bootstrap, k = 2

n = 100 n = 300 n = 900

λ m 0.90 0.95 0.99 m 0.90 0.95 0.99 m 0.90 0.95 0.99

1.1 1 0.88 0.89 0.90 1 0.97 0.97 0.98 3 0.99 0.99 1.00
2 0.82 0.83 0.85 2 0.95 0.96 0.97 4 0.97 0.98 0.98
3 0.75 0.76 0.78 3 0.92 0.93 0.94 5 0.92 0.93 0.94
4 0.64 0.66 0.68 4 0.85 0.86 0.88 6 0.85 0.86 0.88

1.3 1 0.98 0.99 0.99 1 1.00 1.00 1.00 4 1.00 1.00 1.00
2 0.96 0.96 0.97 2 1.00 1.00 1.00 5 0.98 0.98 0.99
3 0.89 0.90 0.92 3 0.98 0.99 0.99 6 0.95 0.96 0.97
4 0.81 0.83 0.85 4 0.95 0.96 0.97 7 0.91 0.92 0.94

1.5 1 1.00 1.00 1.00 2 1.00 1.00 1.00 6 0.97 0.97 0.99
2 0.97 0.98 0.98 3 0.99 0.99 1.00 7 0.93 0.95 0.97
3 0.91 0.92 0.94 4 0.96 0.97 0.98 8 0.91 0.93 0.95
4 0.85 0.87 0.90 5 0.91 0.93 0.95 9 0.87 0.90 0.94

m out of n bootstrap

n = 100 n = 300 n = 900

λ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1.1 0.24 0.25 0.26 0.26 0.27 0.29 0.26 0.27 0.29
1.3 0.70 0.74 0.79 0.78 0.81 0.88 0.82 0.87 0.93
1.5 0.90 0.92 0.96 0.94 0.97 0.99 0.97 0.98 1.00

Subsampling

n = 100 n = 300 n = 900

λ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1.1 0.27 0.27 0.29 0.28 0.30 0.32 0.28 0.30 0.32
1.3 0.72 0.75 0.80 0.79 0.83 0.88 0.84 0.88 0.94
1.5 0.89 0.92 0.96 0.95 0.97 0.99 0.98 0.99 1.00
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Table 5: Coverage probabilities for E(x), x ∼ Log-Gamma(λ, ν), ν = 1.

Transformation-based naive bootstrap, k = 1

n = 100 n = 300 n = 900

λ m 0.90 0.95 0.99 m 0.90 0.95 0.99 m 0.90 0.95 0.99

1.1 1 0.97 0.98 0.98 1 1.00 1.00 1.00 1 1.00 1.00 1.00
2 0.57 0.58 0.60 2 0.91 0.91 0.91 2 1.00 1.00 1.00
3 0.47 0.50 0.54 3 0.54 0.57 0.62 3 0.68 0.70 0.74
4 0.51 0.53 0.57 4 0.61 0.63 0.68 4 0.69 0.72 0.78

1.3 1 1.00 1.00 1.00 1 1.00 1.00 1.00 8 0.98 0.99 0.99
2 0.86 0.89 0.92 2 0.95 0.97 0.98 12 0.96 0.97 0.98
3 0.87 0.89 0.92 3 0.96 0.97 0.98 16 0.93 0.94 0.96
4 0.86 0.88 0.91 4 0.96 0.97 0.98 20 0.90 0.92 0.94

1.5 1 0.99 0.99 0.99 2 0.99 1.00 1.00 14 0.98 0.99 0.99
2 0.95 0.96 0.98 3 0.99 1.00 1.00 20 0.96 0.97 0.98
3 0.94 0.96 0.97 4 0.99 0.99 1.00 25 0.94 0.95 0.97
4 0.93 0.94 0.96 5 0.99 0.99 0.99 30 0.91 0.93 0.96

Transformation-based naive bootstrap, k = 2

n = 100 n = 300 n = 900

λ m 0.90 0.95 0.99 m 0.90 0.95 0.99 m 0.90 0.95 0.99

1.1 1 0.89 0.90 0.92 1 0.97 0.98 0.99 3 0.99 0.99 1.00
2 0.82 0.84 0.86 2 0.96 0.96 0.97 4 0.97 0.98 0.99
3 0.76 0.78 0.79 3 0.93 0.94 0.96 5 0.92 0.93 0.95
4 0.66 0.67 0.69 4 0.86 0.87 0.88 6 0.85 0.86 0.88

1.3 1 0.99 0.99 0.99 1 1.00 1.00 1.00 4 1.00 1.00 1.00
2 0.96 0.97 0.98 2 1.00 1.00 1.00 5 0.98 0.99 0.99
3 0.89 0.90 0.92 3 0.99 0.99 0.99 6 0.95 0.96 0.97
4 0.81 0.83 0.86 4 0.95 0.96 0.97 7 0.91 0.92 0.95

1.5 1 1.00 1.00 1.00 2 1.00 1.00 1.00 6 0.96 0.97 0.98
2 0.97 0.98 0.98 3 0.99 0.99 1.00 7 0.93 0.95 0.97
3 0.91 0.93 0.95 4 0.96 0.97 0.98 8 0.90 0.92 0.95
4 0.85 0.87 0.90 5 0.92 0.93 0.95 9 0.88 0.90 0.94

m out of n bootstrap

n = 100 n = 300 n = 900

λ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1.1 0.24 0.25 0.27 0.27 0.31 0.33 0.30 0.34 0.37
1.3 0.61 0.64 0.70 0.77 0.81 0.86 0.80 0.84 0.90
1.5 0.78 0.81 0.87 0.90 0.93 0.96 0.91 0.94 0.97

Subsampling

n = 100 n = 300 n = 900

λ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

1.1 0.26 0.27 0.28 0.31 0.34 0.37 0.33 0.36 0.40
1.3 0.68 0.72 0.76 0.86 0.90 0.93 0.89 0.93 0.96
1.5 0.85 0.88 0.92 0.95 0.98 0.99 0.97 0.98 0.99
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