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RESEARCH ARTICLE

Effect of missing data on multitask 
prediction methods
Antonio de la Vega de León1* , Beining Chen2 and Valerie J. Gillet1

Abstract 

There has been a growing interest in multitask prediction in chemoinformatics, helped by the increasing use of deep 

neural networks in this field. This technique is applied to multitarget data sets, where compounds have been tested 

against different targets, with the aim of developing models to predict a profile of biological activities for a given com-

pound. However, multitarget data sets tend to be sparse; i.e., not all compound-target combinations have experimen-

tal values. There has been little research on the effect of missing data on the performance of multitask methods. We 

have used two complete data sets to simulate sparseness by removing data from the training set. Different models to 

remove the data were compared. These sparse sets were used to train two different multitask methods, deep neural 

networks and Macau, which is a Bayesian probabilistic matrix factorization technique. Results from both methods 

were remarkably similar and showed that the performance decrease because of missing data is at first small before 

accelerating after large amounts of data are removed. This work provides a first approximation to assess how much 

data is required to produce good performance in multitask prediction exercises.
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Introduction
Drug discovery has been changing focus for the last few 

years. he target-based approach, which has dominated 

the ield for many years, is currently giving way to a more 

systems-based focus, boosted by heavy investment and 

research in omics science. In this framework, individual 

targets are replaced by molecular pathways with phe-

notypic, or cell-based, responses [1] as the optimization 

targets. Phenotypic screening ofers several advantages 

over the one-target approach such as providing a biologi-

cal response that is physiologically relevant. It has great 

potential to identify irst-in-class drugs, however, deter-

mining the mechanism of action following a phenotypic 

screen is challenging. At the same time polypharmacol-

ogy, which refers to the binding of chemical compounds 

to more than one target, has also been intensively stud-

ied [2]. he aim of these approaches is to identify multi-

ple biological efects simultaneously, to better assess the 

selectivity proile of a compound across a range of related 

targets as well as potential side efects through of-target 

binding. One target family where these new approaches 

have informed recent drug discovery eforts is kinases. 

Kinases typically have very similar binding pockets [3] 

and many compounds originally thought to be selec-

tive kinase inhibitors later turned out to inhibit several 

kinases [4]. Today, many large kinase proiling exercises 

have been conducted to better assess the activity proile 

of kinase inhibitors [5].

In phenotypic screening and polypharmacology stud-

ies, the focus is on the biological response of compounds 

to a set of targets. Multitask machine learning methods 

are suitable in these scenarios, because they are able to 

predict several outputs with a single model. Data sets 

used for multitask prediction studies ought to be (near) 

complete, that is, each compound has been tested across 

the full set of targets. However, it is normally not possible 

to test so broadly in a cost-efective manner; leading to 

sparse data sets where not all molecules have been tested 

on all assays. his problem is exacerbated in academia, 

where data sets are usually assembled using public data 

sources such as PubChem [6] or ChEMBL [7]. he efect 
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of missing activity information on the performance of 

multitask prediction has not been intensively studied in 

the chemoinformatics ield. In many applications, miss-

ing activity records are assumed to be inactive, which 

may lead to false negatives [8]. Additionally, published 

guidance on how to best curate data for predictive mod-

elling provides little information on how to handle miss-

ing activity data [9, 10].

Multitarget data sets can be used as the basis to pre-

dict novel molecules with polypharmacological proper-

ties. Currently, deep neural networks (DNNs) are gaining 

fame in drug discovery because of their multitask capa-

bilities. hese models should be able to discover mole-

cules with speciic activity proiles. DNNs have previously 

been used to perform large-scale predictive eforts on 

ChEMBL activity sets [11] and PubChem assays [12, 

13]. hey have also outperformed more traditional 

approaches such as Random Forest [14] and Naïve Bayes 

in recent competitions like the Tox21 challenge [15] and 

the Kaggle competition organized by Merck [16]. Cur-

rent research focus on the applicability of these multitask 

capabilities for pharmaceutical companies [17]; as well 

as understanding the strengths and limitations of infor-

mation sharing between tasks in multitask prediction 

[18]. However, DNNs are not the only multitask machine 

learning technique available. Ensemble tree methods, 

similar to Random Forest, have been modiied to improve 

their performance in multitask scenarios [19, 20] and 

techniques based on Bayesian probabilistic matrix factor-

ization have been applied to multitask chemoinformatics 

problems [21].

It is generally stated that deep learning methods like 

DNNs require large amounts of data [22]. he corol-

lary from that statement is that more data produce bet-

ter results. However, there has been little research into 

how sensitive these methods are to sparse data sets 

such as those currently being assembled in drug discov-

ery eforts. Previous analyses have mainly focused on 

the efect of noisy data, especially in the context of high 

throughput screening data [23–25]. In these analyses, 

labels of some compounds were switched from active to 

inactive and vice versa.

In order to explore the efect of missing data on multi-

task prediction techniques, we assembled complete mul-

titarget data sets to perform activity prediction based on 

both regression and classiication. hese data sets were 

made progressively sparser by removing activity records 

and the models re-learnt. Predictive performance of the 

models derived from the sparse data sets were compared 

with models learnt from the complete data sets to assess 

how much performance was lost through data removal. 

hree data removal models were compared, where indi-

vidual activity labels, whole compounds, or whole assays 

were removed. Estimates were then determined for the 

point at which further data collection would not bring 

large improvements in performance. We compared 

DNNs to Macau, an alternative multitask prediction 

method, to test if the robustness of DNNs to data spar-

sity in this scenario is due to their multitask or their deep 

learning nature. Additionally, we also compared these 

methods to Random Forest, but implementation details 

restricted the analyses that could be performed on this 

technique.

Materials and methods
Datasets

In order to test prediction performance with respect to 

increasing data sparsity, we needed complete data sets 

where compounds had been tested consistently across 

a set of assays. We investigated two data sets: the PKIS 

data set, which was used for regression; and a data set 

extracted from PubChem, which was conigured as a 

classiication. For both data sets, SMILES strings [26] 

were obtained from the respective repositories. he 

molecules were standardized using MOE’s [27] wash 

function accessed through KNIME [28]. After standardi-

zation, Morgan ingerprints of radius 2 (equivalent to 

ECFP4 [29]) hashed to 1024 bits were computed using 

RDKit [30] in Python [31]. hese ingerprints were used 

to represent molecules in the machine learning methods. 

Molecules that could not be read by MOE or RDKit were 

removed. he data sets are made available on an online 

repository (see Declarations section for details).

he PKIS data set [32] was provided by GSK to 

ChEMBL to promote the development of selective kinase 

probe compounds [33]. It consists of percent inhibi-

tion values for 367 compounds in 454 kinase assays. he 

majority of these assays were performed at Nanosyn, and 

a small fraction were performed by Frye’s Lab at Uni-

versity of North Carolina at Chapel Hill. In cases where 

several inhibition percent values were provided for indi-

vidual compound-assay combinations, the mean of all 

reported values was used as the inal value. Additionally, 

in 87 compound-assay combinations no activity value 

was provided, representing 0.05% of the activity proile 

matrix. hese values were left empty.

he second data set was assembled using PubChem 

assays. We followed a previous report, where a set of 243 

assays was selected to generate a public high-throughput 

screening ingerprint (HTSFP) [34]. he data were com-

bined using the CIDs provided by the assays. he activ-

ity outcome was used as the activity label. Only ‘active’ 

and ‘inactive’ records were considered, and ‘inconclu-

sive’ values were ignored. If a compound had more than 

one annotation for the same assay, and the annotations 

were diferent, that compound was also ignored. We used 



Page 3 of 12de la Vega de León et al. J Cheminform  (2018) 10:26 

this large data set to generate two smaller subsets. For 

each subset, we chose a number of assays (ive and ten) 

with the largest number of active molecules. We com-

bined all records across the selected assays to generate 

a compound-assay matrix. Compounds were excluded 

if they were not active at least in one assay. he subset 

with ive assays (HTSFP5) had 49,713 compounds while 

the set with 10 assays (HTSFP10) had 56,892 com-

pounds. Table  1 describes the assays that were selected 

for HTSFP5 (the irst ive) and HTSFP10 (all assays in the 

table).

Simulating sparse data sets

Once complete data sets were assembled, they were 

used as a basis to simulate sparse data sets. he data sets 

were split randomly into training and test sets with a 3:1 

ratio. For the training set, increasing numbers of activity 

labels (from no labels to all labels) were removed using 

three diferent removal models. In the irst model (label 

removal, Additional ile 1: Figure S1A), individual activ-

ity labels were randomly chosen and removed. his pro-

cess maintained the size of the activity matrix but made 

it sparse (it generated empty cells in the matrix). For the 

second model (compound removal, Additional ile 1: Fig-

ure S1B), whole compounds were removed at random. 

he third model (assay removal, Additional ile  1: Fig-

ure S1C) removed whole assays at random and was only 

applied to the PKIS data set, as the number of assays in 

the HTSFP subsets was deemed too small. In the second 

and third models, the size of the activity matrix became 

smaller, as compounds or assays with no information 

were discarded, but the matrix was still complete. For the 

test set, no activity label removal was performed.

Multitask prediction

hree machine learning methods were used to predict 

activity labels. All methods are able to produce multitask 

predictions, in which all assays are predicted with one 

model. herefore, the model generates a proile of pre-

dicted values.

Deep neural networks are machine learning meth-

ods based on large numbers of simple, non-linear units 

called neurons [22]. We used fully connected DNNs, 

where neurons are organized in layers and all neurons in 

one layer are connected to all neurons in the next layer. 

hese neurons accept a set of input values, perform a 

weighted sum and then use a non-linear activation func-

tion whose output is passed on to the next layer. We used 

the rectiied linear unit (ReLU) as the activation function. 

Training a neural network is done through backward 

propagation with a gradient descent algorithm. Given a 

cost function that is minimized during training, the gra-

dient around the current parameter values is estimated 

and new values of parameters are chosen that reduce 

the cost function. hese gradients are irst computed for 

the output layer and then are propagated backwards. We 

used the Adagrad optimizer function with a learning rate 

value of 0.05 (the default settings) to train all the net-

works. DNNs were implemented using the Python library 

Tensorlow [35].

Macau is a machine learning technique based on 

Bayesian probabilistic matrix factorization (BPMF) [21]. 

BPMF is a method frequently used in recommender sys-

tems, where the preference of a user for a speciic item 

is predicted. It gained fame when matrix factorization 

methods were used in the winning submission to the 

Netlix prize [36]. In this competition, Netlix made avail-

able more than 100 million ratings that around 480,000 

users gave to more than 17,000 movies, leading to a data 

set that was very sparse, containing ratings for only 1.2% 

of all user-movie combinations. Macau is a regression 

technique speciically designed to deal with sparse data 

sets. Because this is one of the irst applications of this 

technique in chemoinformatics, we provide an abridged 

Table 1 Information for selected assays from PubChem

For each selected assay the assay ID (AID), the number of active molecules, the title of the assay and the assay type are reported

AID Actives Title Assay type

2314 36968 Cycloheximide Counterscreen for Inhibitors of Shiga Toxin Cell-based

1814 21686 MLPCN Alpha-Synuclein 5′UTR—5′-UTR binding—activators Cell-based

743279 17142 Inhibitors of Inflammasome Signaling: IL-1-β AlphaLISA Primary Screen Cell-based

504652 11249 Antagonist of Human D 1 Dopamine Receptor: qHTS Cell-based

485346 10019 uHTS for Inhibitors of Mdm2/MdmX interaction Cell-based

652054 9080 qHTS of D3 Dopamine Receptor Antagonist: qHTS Cell-based

588726 8214 Inhibitors of the fructose-bisphosphate aldolase (FBA) of M. tuberculosis Biochemical

2796 7988 Activators of the Aryl Hydrocarbon Receptor (AHR) Cell-based

463190 7317 uHTS for inhibitors of tim10-1 yeast Cell-based

687014 6834 Agonists of the DAF-12 from the parasite H. glycines (hgDAF-12) Cell-based
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explanation of the technique below based on the details 

provided in ref. [21].

Matrix factorization is the process where a matrix is 

decomposed into two matrices linked through a latent 

space of predeined dimension:

where X , U , and V  are matrices of dimensions n × m , 

n × k , and m × k , respectively. n , m , and k are the num-

ber of rows, columns, and latent dimensions, respec-

tively. his process is well understood for complete 

matrices, and is the basis of singular value decomposition 

and principal component analysis.

Probabilistic matrix factorization expands the scope 

of this technique to incomplete matrices, allowing it to 

predict empty values in the matrix. It turns the matrix 

decomposition into an optimization problem formulated 

as:

where Xij is the observed value, ui and vj are the latent 

vectors of the i th row and j th column, IX is the set of 

matrix cells with illed values, F is the Frobenius norm, 

and �u as well as �v are regularization parameters.

BPMF, in turn, improves on the optimization by model-

ling the latent matrices as priors using Gaussian distribu-

tions. hese priors are based on a set of means ( µu and 

µv ) and precision matrices ( Λu and Λv ), as well as Normal 

and Normal-Wishart hyperpriors. BPMF uses Markov 

chain Monte Carlo sampling, speciically Gibbs sampling, 

to perform its inference over parameters and latent vec-

tors. Additionally, BPMF provides a distribution of val-

ues, rather than a single value, during the prediction.

Macau adds to BPMF methods by integrating side 

information, among other improvements. Side informa-

tion are features related to the entities represented by the 

rows or columns. In ref. [21], the authors used substruc-

ture ingerprints as side information for compounds and 

protein sequence features as side information for the tar-

gets. his information is combined into the mean of the 

Gaussian priors to be used during the model training.

Macau was implemented using the Python package 

Macau. To make results as comparable to DNN as pos-

sible, only molecules were given side information in the 

form of ingerprints. Assays were not provided with side 

information. he inal predicted value was the mean of 

the distribution of values predicted. To perform classi-

ication on the HTSFP sets, ‘active’ and ‘inactive’ labels 

were transformed to integers and predicted values were 

X ≈ UV
T

min
u,v

∑

(i,j)∈IX

(

Xij − uiv
T
j

)2

+ �u �u�2F + �v �v�2F

rounded to the nearest integer and assigned the corre-

sponding label.

Random Forest is a tree ensemble method. Several 

decision trees are constructed using a subset of the com-

pounds and the ingerprint bit positions. he inal output 

combines the individual predictions of each tree. Random 

Forest was implemented using the Python package scikit-

learn. his implementation could not train the model if 

there was missing training data. For the application of 

Random Forest to the PKIS data set, which contained 87 

missing activity labels in the original data, missing val-

ues were imputed using the average activity of the assay. 

Because the Random Forest could not be applied to the 

data sets generated using the label removal model, it was 

only used with the compound removal model.

Performance measurements

For each machine learning method applied, several per-

formance measures were calculated. In all cases, perfor-

mance measures were calculated per assay. For regression 

models, the square of the correlation coeicient ( ρ2 ), 

the coeicient of determination ( R2 ), the mean abso-

lute error ( MAE ), and the root mean square deviation 

( RMSD ) were calculated. he formulae can be found in 

the Supplemental Information.

For classiication models, the precision, the recall, the 

 F1 score, and the Matthews correlation coeicient ( MCC ) 

were calculated. he formulae can be found in the Sup-

plemental Information.

Results
Characterization of the data sets

he PKIS data set is a kinase proiling data set containing 

367 compounds. We computed Tanimoto similarity val-

ues between all compound pairs. Similarity values varied 

between 0.02 and 1, with an average of 0.15 and a median 

of 0.13. he number of bits present in the ingerprints 

varied between 26 and 88, with a mean value of 52.5 and 

median value of 52. he percent inhibition values for all 

454 kinase assays ranged from − 77 to 130, and 80% of 

the values were between 0 and 100.

he HTSFP data set was assembled from PubChem 

assays, following a previous publication. In this analysis, 

we chose the ten assays with largest number of actives. In 

the case of HTSFP5, the ratio of actives to inactives per 

assay varied from 2.9 to 0.25, while for HTSFP10 the ratios 

were generally lower, from 1.9 to 0.14. For both subsets, 

the average Tanimoto similarity between all pairs of mol-

ecules was 0.14 and the median was 0.13. he minimum, 

maximum, and median numbers of bits present was also 

the same in the two subsets; 12, 43, 102, respectively.
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Testing the effect of missing training data in multitask 

prediction

First, an exploratory analysis was performed on DNN, 

Macau, and Random Forest to assess the efect of hyper-

parameter selection on performance (data not shown). 

For DNN, the hyperparameters that were varied included 

number of hidden layers, number of neurons per layer, 

amount of dropout in hidden layers, number of training 

steps, activation function of neurons in the hidden layer, 

and size of the mini-batch during training. For Macau, 

the main hyperparameters studied were the number of 

samples in the training, the number of samples to burn 

in, and the size of the latent space. For Random Forest, 

the number of trees, the maximum number of features, 

and whether bootstrap was used during tree generation 

were varied. he speciic values tested for each method 

and data set can be found in the Supplemental Informa-

tion (Additional ile  1: Tables S1–S6). In our tests, the 

ReLU activation function outperformed the sigmoid 

function consistently on DNNs. herefore, it was used 

for all DNNs. his result was consistent with previous 

analysis [16].

Based on the results of the exploratory analysis, 10 

hyperparameter sets were chosen for each method and 

data set. All hyperparameter sets can be found in the 

Supplemental Information (Additional ile  1: Tables 

S7–S12). For each hyperparameter set, several predic-

tive models (100 for PKIS and 39 for HTSFP subsets) 

were built using increasingly sparse training data (label 

removal model, Additional ile  1: Figure S1A) as well 

as one model using the complete training data. he full 

results of all generated models are provided in an online 

repository (see Declarations for details). It is important 

to emphasize that we were not interested in achieving 

the highest possible performance for a model. Rather, we 

were interested in how the performance progresses as 

increasing amounts of training data were removed.

he results on the PKIS data set can be found in Fig. 1. 

We focused the regression analysis on the RMSD results; 

however, the trends were very similar for the other meas-

ures calculated (results for other performance measures 

are available in the online repository). Figure  1 displays 

the median of the RMSD values of all assays, DNN values 

in blue and Macau values in red, compared to the pro-

portion of training data removed. In Fig. 1a, the median 

RMSD values are shown while in Fig. 1b values are scaled 

relative to the performance for the complete training set. 

he results for the ten hyperparameter sets are shown in 

a lighter color while the average over the ten sets is shown 

with a darker color. Overall, results for Macau were 

slightly worse than for DNNs when a small amount of 

activity labels were removed. However, the performance 

progression in relative terms was very similar for both 

machine learning techniques applied, as well as between 

all hyperparameters sets. On average, the median RMSD 

increase slowly at irst; reaching a 10% increase only after 

60% of the training set is removed. However, the increase 

in RMSD accelerates steeply afterwards. For models 

where more than 98% of the data were removed, the 

methods were not able to provide predictions because 

one or more assays had no activity annotation left. his 

is the reason why the trend lines do not extend to the full 

range (0.0–1.0) of data removal values tested.

Fig. 1 Results of training data sparseness on PKIS data set. a Median RMSD values for DNN (blue) and Macau (red). The light colored traces cor-

respond to the ten sets of hyperparameters, while the dark colored trace is the average of the ten light colored ones. b The RMSD values are scaled 

relative to the performance of the model on the complete training set; the color scheme is the same as (a)
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Figure 2 shows results for the two subsets of the HTSFP 

data set. For classiication problems, we focused the anal-

ysis on the MCC results but the trends for other perfor-

mance measures were very similar. Figure 2 displays the 

median of the MCC values of all assays, following the 

color scheme of Fig.  1. Figure  2a, b focus on HTSFP5 

while Fig. 2c, d focus on HTSFP10. In this analysis, per-

formance of Macau was noticeably worse than DNN. his 

is likely because Macau is a regression technique that we 

have adapted to the task of classiication through the use 

of threshold values as described in the Methods. How-

ever, performance progression was still similar to that 

seen in Fig. 1. Performance values decrease slowly for low 

amounts of data removed before decreasing sharply when 

most (≈ 80%) of the data was removed. Looking at abso-

lute values (Fig.  2a, c) Macau’s progression might seem 

slower, but that could be attributed to its lower starting 

MCC value. When percentage changes were compared 

(Fig. 2b, d), the diference in progression between DNN 

and Macau was less severe.

Fig. 2 Results of training data sparseness on HTSFP subsets. a Median MCC values for DNN and Macau on the HTSFP5 subset. b The median MCC 

values for HTSFP5 are scaled relative to the performance of the model on the full training set. c Median MCC values on the HTSFP10 subset. d The 

median MCC values for HTSFP10 are scaled relative to the model with full training set. The color scheme follows the description in Fig. 1
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Controlling for randomness in training data

A control calculation was performed to test that the per-

formance progression observed was not due to the spe-

ciic data partitions performed. Four diferent seed values 

were generated and used to perform (a) the training/test 

split and (b) the removal of random activity labels. his 

generated 16 diferent runs where the training data fed 

to each model were diferent. For each run, 101 predic-

tive models were built at diferent degrees of sparseness 

using the irst set of hyperparameters for each method 

on the PKIS data set. Results are shown in Additional 

ile  1: Figure S2, where DNN is shown left and Macau 

is shown right. In each plot, the relative median RMSD 

of all 16 diferent runs are shown, that is, the values are 

relative to the performance seen for the complete train-

ing set. he training/test split seed is represented using 

color, while the label removal seed is represented using 

line style. Some diference in absolute performance can 

be seen for the diferent training/test splits, however, the 

performance progression across all models follows a sim-

ilar trend with a gradual increase in RMSD up to 60% of 

the data being removed.

he same analysis was performed on data sets HTSFP5 

and HTSFP10, with 40 models trained for the same 16 

combinations of seed values using the irst set of hyper-

parameter values. Results are shown in Additional ile 1: 

Figure S3, which uses the same representation of seed 

values as Additional ile 1: Figure S2. Similar to the PKIS 

data set, each seed combination led to a very similar per-

formance progression. Macau results on the HTSFP10 

set show the largest variations. As discussed previously, 

this could be attributed to its lower absolute MCC values, 

such that small variations in median MCC resulted in 

larger percentage change values. hese results show that 

the observed efects are independent of the speciic data 

used for training.

Comparison of different data removal models

Further control calculations were performed by com-

paring the three data removal models: label removal, 

compound removal, and assay removal. In all cases, the 

number of activity labels was reduced. However, in the 

case of the compound and assay removal models, the 

data matrix became smaller, as compounds or assays with 

no activity annotation were discarded, but was complete. 

On the other hand, the label removal model led to data 

matrices that were sparser but kept the original size. he 

assay removal model was only applied to the PKIS data 

set because the number of assays on the HTSFP subsets 

was considered too small.

Similar to the irst analysis, 101 models were trained 

for all 10 hyperparameter sets for each method and data 

removal model on the PKIS. Results are shown in Fig. 3 

individually for DNN and Macau. Relative median RMSD 

values for the label removal model are shown in blue, 

while red is used for the compound removal model and 

green is used for the assay removal model. Diferences 

between the compound and label removal models were 

more pronounced for DNNs, where there was a sharp dif-

ference in the progression from the very beginning. For 

Macau, diferences became accentuated after 40% of the 

training data was removed. For the assay removal model, 

Fig. 3 Comparison of removal models on PKIS data set. Median RMSD values relative to the model with complete training data are shown. Results 

from models that removed individual activity labels are shown in blue, results from models that removed whole compounds are shown in red, and 

results from models that removed whole assays are shown in green. Results for DNN (left) and Macau (right) are shown independently
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there is a linear decrease in performance, contrast-

ing greatly to the performance progression of the label 

removal model. Removal of either whole compounds or 

whole assays generally led to worse performance. How-

ever, this trend was not observed on the HTSFP5 and 

HTSFP10 data sets (Fig.  4). For these data sets, perfor-

mance progression between the label removal model and 

the compound removal model was very similar. here 

were not large diferences in the results between DNN 

and Macau. he assay removal model was not applied 

because of the low number of assays in this data set, as 

previously mentioned.

he compound removal model allowed the comparison 

of DNN and Macau to Random Forest for all data sets. 

Figure  5 shows the performance of DNN (blue), Macau 

(red), and Random Forest (green) for the PKIS and 

HTSFP data sets when whole compounds are removed. 

he performance progression of Random Forest was very 

similar to DNN on the PKIS data set (Fig.  5a). For the 

HTSFP data set, the decrease in performance was faster 

Fig. 4 Comparison of removal models on HTSFP subsets. Median MCC values relative to the model with complete training data are shown. Results 

from models that removed individual activity labels are shown in blue, while results from model that removed whole compounds are shown in red. 

Results for DNN (left) and Macau (right), as well as results for HTSFP5 (top) and HTSFP10 (bottom), are shown independently
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than either Macau or DNN (Fig.  5b, c). However, there 

was still an acceleration of the performance degrada-

tion as the amount of training data removed increased. 

Random Forest also showed larger variability between 

the results of the diferent hyperparameter sets than the 

other techniques. his variability is related to the large 

efect that some hyperparameters, such as whether boot-

strap is used to construct the trees or the maximum num-

ber of features to use, have on the model performance.

Discussion
We have analysed the efect of missing data on the per-

formance of diferent multitask prediction methods. Our 

results showed that the performance decreases gradually 

as progressively larger amounts of data were removed 

from the training set. Indeed it was only when the 

amount of data removed was larger than 80% of the origi-

nal data that the performance decrease became much 

steeper. his efect was visible in both DNN and Macau 

and it was not dependant on the hyperparameters of the 

model or the speciic data that were seen by the models. 

It was also observed in both classiication and regression 

problems. As the mathematical underpinnings of the two 

methods are so diferent, our results suggest that it is the 

multitask character that drives the beneits of these tech-

niques for dealing with sparse data.

he comparison of the data removal models on the 

PKIS data set seems to lend further support to this 

hypothesis, as the performance progression is quite dif-

ferent between the models that generate complete but 

smaller data set and the label removal model that gen-

erates sparse data sets. Performance is higher in the 

Fig. 5 Comparison of Random Forest to DNN and Macau. a Median RMSD values relative to the model with complete training data for the PKIS 

data set are shown. b, c Median MCC values relative to the model with complete training data are shown for HTSFP5 (b) and HTSFP10 (c). Results for 

DNN are shown in blue, red for Macau and green for Random Forest
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label removal model, where the removed activity labels 

might be compensated by activity values of the same 

compound on related assays. his is not possible in the 

other removal models, as whole compounds or assays are 

removed. However, the performance progression on the 

HTSFP subsets for label and compound removal models 

is very similar.

One explanation for the diference between the data 

removal models on the two data sets could be the small 

number of compounds in the PKIS data set, as the efect 

of the removal of compounds would have a bigger impact 

on this data set. It does not seem to be connected to dif-

ferences in the chemical diversity of the compounds in 

each data set. In both data sets, the average and median 

similarity between all pairs of compounds are very simi-

lar. hese results do not allow us to obtain a clear answer 

on this aspect and more analysis would be needed to fully 

ascertain what is behind the diference in performance 

progression between the data sets.

Our results are consistent with other recent analyses of 

multitask learning on DNNs which have shown that the 

beneit of multitask DNNs seems to arise when there is 

mathematical correlation between the test set of one task 

and the training set of another [18]. It is likely that when 

individual activity annotations are removed, correlated 

values from similar assays remain in the data set and are 

the reason that the loss in performance is not linear. his 

could be another explanation for the diference between 

the data removal models on the two data sets. here 

could be diferences in the correlation between the assays 

when the data is removed.

One of the more surprising results of this analysis was 

the comparison of DNNs and Macau. he results on the 

PKIS data set show very similar performance on the full 

training set, as well as very similar performance progres-

sion. However, results on the HTSFP subsets were less 

favourable for Macau. his may be because we are using 

a regression technique to simulate classiication rather 

than a true classiication technique. It is likely that a thor-

ough exploration of hyperparameters would change the 

diference in performance on the PKIS set between the 

two techniques. However, the objective of this work was 

not to achieve the highest possible performance for any 

model, and therefore an exhaustive search and optimiza-

tion of these two methods was not carried out.

One advantage of Macau is that it does not require a 

GPU to train a model in a reasonable time frame and the 

implementation used in this work was able to parallelize 

the computation across diferent CPU cores to speed up 

the process. Although GPUs have become more widely 

available in workstations and high performance com-

puting clusters, they are still less prevalent than CPUs. 

herefore, we would encourage research groups to try 

Macau for multitask learning before investing in a GPU. 

In our PKIS results, which represented the fairest com-

parison between the two methods as it was a regression 

problem, the diference between Macau and DNNs was 

surprisingly small. Macau also exhibited robustness to 

sparse data.

he comparison of these novel methods to more estab-

lished multitask methods in use in the chemoinformatics 

ield, such as Random Forest, is of great interest. How-

ever, implementations we had available were not able to 

handle missing activity data. Because of that, we were 

able to perform only a limited comparison to Random 

Forest, which showed similar performance trends to 

DNN and Macau.

Our results provide a irst approximation of how much 

data is required to carry out efective multitask model-

ling. However, it is unlikely that missing activity labels in 

real sparse data sets follow a random distribution. here-

fore, it is not possible to assure that the results seen here 

reproduce what would be seen in real data sets. It would 

be interesting to see if our methodology could be applied 

to large and complete activity matrices that have grown 

over time. In this setting, a better approximation of how 

much data is required could be obtained. However, we 

did not access to this type of data to use in the study.

Our analysis shows that it is not necessary to have a 

complete data set to obtain good results. Indeed, the dif-

ference in the performance we obtained between train-

ing on the complete data and data with half of its activity 

labels removed was very small. It brings an interesting 

counter argument to the common perception that “more 

data is better”. While it is true that performance on the 

complete training set was better, it would be interesting 

to look at how cost efective the improvement is com-

pared to the cost of additional experimental testing.

Conclusion
Multitask modelling is becoming increasingly prevalent 

in chemoinformatics, following the popularity of deep 

neural networks. Data sets extracted from public sources 

are frequently sparse, but little research has been done to 

test how performance is afected by the missing data. To 

explore this issue, we have used two complete data sets to 

simulate sparseness by removing activity labels progres-

sively. We tested two methodologically distinct multitask 

techniques on these data sets. Our results show that the 

performance decrease is at irst slow as training data is 

removed. he rate of performance decrease accelerates 

after 80% of the training data is deleted. his behaviour is 

seen in all data sets and techniques we tested. Our work 

also shows that Macau, a novel technique in the chemo-

informatics ield, provided very similar results to DNN in 

our regression tests, and would be of interest to groups 
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performing multitask modelling without access to large 

GPU computing resources. We were also able to partially 

compare these novel techniques to a more established 

one, Random Forest, and the performance progression 

was similar between all three techniques. Our analysis 

provides a irst estimate of the amount of performance 

lost due to missing data during training, that is, how 

much data is required for an efective multitask learning.
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