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Over the last years, a number of stochastic models have been proposed for

analysing the spread of nosocomial infections in hospital settings. These

models often account for a number of factors governing the spread

dynamics: spontaneous patient colonization, patient–staff contamination/

colonization, environmental contamination, patient cohorting or healthcare

workers (HCWs) hand-washing compliance levels. For each model, tailor-

designed methods are implemented in order to analyse the dynamics of

the nosocomial outbreak, usually by means of studying quantities of interest

such as the reproduction number of each agent in the hospital ward, which

is usually computed by means of stochastic simulations or deterministic

approximations. In this work, we propose a highly versatile stochastic mod-

elling framework that can account for all these factors simultaneously, and

which allows one to exactly analyse the reproduction number of each

agent at the hospital ward during a nosocomial outbreak. By means of

five representative case studies, we show how this unified modelling frame-

work comprehends, as particular cases, many of the existing models in the

literature. We implement various numerical studies via which we (i) high-

light the importance of maintaining high hand-hygiene compliance levels

by HCWs, (ii) support infection control strategies including to improve

environmental cleaning during an outbreak and (iii) show the potential of

some HCWs to act as super-spreaders during nosocomial outbreaks.
1. Introduction
The risk of acquiring nosocomial infections is a recognized problem in health-

care facilities worldwide [1]. It has been estimated that nosocomial infections

affect more than 4 million patients in Europe each year, leading to E7 billion

of direct medical costs [2]. Moreover, the emergence and spread of antibiotic

resistance among these pathogens has posed a second major problem world-

wide, stressing the need for understanding their transmission routes in

healthcare facilities, and to identify the most effective infection control strategies

in these settings [3]. A paradigmatic example of an antibiotic-resistant nosoco-

mial pathogen is bacteria Staphylococcus aureus (SA), which is a normal

inhabitant of the skin and mucosal surfaces, but can cause different infections

when it flourishes in other areas (e.g. soft tissue, bloodstream or lung infec-

tions). SA resistance against penicillin-like antibiotics arose a few years after

the introduction of penicillin. Moreover, methicillin-resistant SA (MRSA) strains

were reported in Europe after only 2 years of the introduction of methicillin in

1959 [4]. Currently, new strains of MRSA have been reported which are also

resistant to vancomycin [4].

Healthcare environments such as hospitals or nursing homes are ideal set-

tings for the spread of multidrug-resistant bacteria (MDRB), due to, among

other reasons, opportunities for bacteria to enter into the bloodstream or

infect open wounds, the presence of immunocompromised and aged individ-

uals, and the high exposure levels to antibiotics [5,6]. The precise mode of
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transmission is uncertain for many nosocomial pathogens,

but usually both exogenous (e.g. cross-colonization) and

endogenous (e.g. selective pressure of antibiotics) routes are

considered as feasible for these pathogens [3]. While for

some nosocomial infections most of the transmission is con-

sidered to occur via HCW–patient contact routes [7], there

is increasing recognition in the literature of the potential

role played by environmental contamination and airborne

spread [8–10].

Infection control strategies usually implemented in hospital

settings include, among others, hand disinfection procedures,

environmental cleaning, active screening for colonization

among patients and isolation of colonized individuals, mana-

ging staffing levels, antibiotic prescription and decolonization

procedures, or patient cohorting [11]. However, control pro-

cedures followed in healthcare facilities worldwide usually

amount to combinations of the individual interventions listed

above, so that the efficacy of each individual strategy is hard

to measure. On the other hand, the application of classical epi-

demiology procedures for addressing this individual efficacy

is often not feasible due to financial and ethical restrictions

[4,12]. Thus, mathematical modelling is one of the best tools

available for understanding the role played by different factors

on the emergence and spread of these pathogens and their anti-

biotic resistance, while measuring the impact of individual

interventions [8,13].

A wide range of deterministic and stochastic mathematical

models for the spread of nosocomial pathogens have been

developed during the last years [2]. Although deterministic

models were originally proposed for capturing the main infec-

tion dynamics in single wards and hospitals, modelling efforts

were soon redirected towards the stochastic perspective due to

the small and highly heterogeneous populations usually pre-

sent in these settings. From a stochastic perspective, most of

the models proposed in the literature are based on Markov

processes, where it is assumed that inter-event times are expo-

nentially distributed. This simplifying assumption is usually

crucial for analytically and computationally treating the pro-

cesses under study; we refer the reader to Pelupessy et al. [3]

for a discussion on the advantages of stochastic (in particular,

Markovian) approaches, and to van Kleef et al. [2] and Assab

et al. [14] for systematic reviews in this field. Stochastic

models in this area can be classified as compartment-based,

where the population of individuals is classified in groups

according to their state against the disease, and wide homoge-

neities are assumed among the members within the same

group, or agent-based, where one keeps track of the state of

each individual within the population throughout time, allow-

ing one to model heterogeneities at the individual level [8].

Agent-based models can incorporate heterogeneity in, for

example, transmission risk profiles of specific patients or

HCWs [15], but are usually restricted to the implementation of

stochastic simulations in small wards, and are computationally

constrained [2].

When constructing and studying these stochastic models,

efforts have been focused, and tailor-designed analytical and

numerical methods have been implemented, in order to analyse

the dynamics of the nosocomial outbreak when accounting

for spontaneous colonization of patients, patient-to-staff and

staff-to-patient contamination/colonization, environmental

contamination, patient cohorting, room configuration of the

hospital ward, staff hand-washing compliance levels, the

presence of different types of HCWs or specific staff–patient
contact network structures. This analysis is usually carried

out by means of studying summary statistics directly related

to the nosocomial outbreak, such as the reproduction number

of each particular agent (e.g. of a colonized patient or a con-

taminated healthcare worker) in the hospital ward. This is

usually computed in an approximative fashion, for example

by means of stochastic simulations or in terms of determinis-

tic approximations [16]. On the other hand, the limitations of

analysing these processes by simulation approaches, and the

convenience of following exact procedures instead when

dealing with small populations (such as those usually

involved in nosocomial outbreaks), have been highlighted

in [17].

In this work, we propose a versatile stochastic modelling

framework that can simultaneously account for all the factors

listed above, and which allows in §2 for the exact and analyti-

cal study of the reproduction number of each agent at the

hospital ward during the nosocomial outbreak. We make

use of five representative case studies in §3, regarding both

hypothetical and real nosocomial outbreaks at hospital

wards, to show how this unified modelling framework com-

prehend, as particular cases, many of the existing models in

the field. We conduct several numerical studies and our

results in §3 highlight the importance of maintaining high

hand-hygiene compliance levels by healthcare workers, sup-

port control strategies including to improve environmental

cleaning during nosocomial outbreaks and show the potential

of some healthcare workers to act as super-spreaders during

these outbreaks.
2. A unified stochastic modelling framework
In this section, we propose the unified stochastic modelling

framework for the spread of nosocomial infections, where

agents represented in the model can be of different type
(patients, HCWs, surfaces, patients located in different

rooms, etc.). This general framework, which is constructed in

terms of a continuous-time Markov chain, allows one to

follow an exact and analytical approach for computing the

reproduction number of each different agent playing a role in

the infection spread, which measures the number of infections
directly caused by this agent until the agent stops spreading

the nosocomial pathogen. We also show how this reproduction

number can be exactly analysed while deciphering among

which individuals this agent is spreading the disease, so that

this becomes a quantitative measure of the infectiousness of

a given agent among individuals of different type. This then

becomes a useful tool when analysing the role played by

different routes of infection during a nosocomial outbreak in

a given hospital ward, as shown in numerical results in §3.

2.1. The model
We consider model depicted in figure 1, which amounts to a

stochastic SIS epidemic model with multiple compartmental
levels. In case studies 1–5 in §3, this modelling framework is

used to represent the spread of nosocomial infections, such as

MDRB, within a hospital ward, where the meaning of a com-

partmental level depends on the particular case study,

showing the versatility and flexibility of this unified framework.

We consider the stochastic process X ¼ {X(t) ¼
(I1(t), . . . ,IM(t)): t � 0}, where Ij(t) amounts to the number of

infectives in compartmental level j at time t�0. We assume

http://rsif.royalsocietypublishing.org/
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that the number of individuals at each compartmental level

remains constant throughout time, which is directly related to

standard assumptions when modelling nosocomial infections

(see §3). This means that the number Sj(t) of susceptibles in

compartmental level j at time t is given by Sj(t) ¼ Nj 2 Ij(t)
for all t�0. Process X evolves among states in S ¼ C < {D},

where

C ¼ {(i1, . . . ,iM) [ NM
0 : 0 � ij � Nj, j [ {1, . . . ,M}}:

State (i1, . . ., iM) represents the presence of ij infected individ-

uals at compartmental levels 1 � j �M, while the final state

D represents the detection and declaration of the outbreak in

the hospital ward. In particular, process X transits among

states in S according to the following transitions:

— Removal at compartmental level j: (i1, . . . ,iM)!
(i1, . . . ,ij � 1, . . . ,iM), occurring at rate mj(i1, . . .,iM);

— Infection at compartmental level j: (i1, . . . ,iM)!
(i1, . . . ,ij þ 1, . . . ,iM), occurring at rate lj(i1, . . .,iM);

— Detection and declaration of the outbreak: (i1, . . . ,iM)! D,

occurring at rate d(i1, . . .,iM).

This unified model has been developed to account for

patients, different types of HCWs and/or surfaces involved

in a nosocomial outbreak in a hospital ward. The generality of

functions lj(i1, . . .,iM), mj(i1, . . .,iM) and d(i1, . . .,iM) allows for

incorporating into the model a wide range of factors having

an impact on the nosocomial spread dynamics. This means

that the particular meaning of each compartmental level

1 � j �M, as well as of each event (infections and removals

represented by arrows in figure 1) depends on the particular

hospital ward and pathogen under analysis; see §3 where

compartmental levels 1 � j �M can represent colonized/

non-colonized patients, contaminated/non-contaminated

HCWs, volunteers and surfaces, or can be related to the

specific spatial configuration of the hospital ward under

analysis, or the particular staff–patient contact network

(e.g. representing patient cohorting).

Outbreak detection and declaration rate d(i1, . . .,iM)

allows one to analyse situations where a nosocomial patho-

gen is introduced for the first time in a given hospital ward

(e.g. by admission of a colonized patient), starting an out-

break, and the spread dynamics are analysed until the

presence of this pathogen is detected by HCWs. By con-

veniently specifying the function rate d(i1, . . .,iM), different

hospital surveillance policies (e.g. detection by the first indi-

vidual showing symptoms, by random screening of patients

within the ward, or by systematic screening upon patient

admission) can be considered. However, as illustrated in §3,
scenarios where the interest is not in the spread dynamics

until detection, but in the long-term infection dynamics of

the pathogen (e.g. endemic situations) and in assessing the

infectiousness of each agent within this ward, can be

analysed by setting d(i1, . . .,iM) ¼ 0. We note that setting

d(i1, . . .,iM) ¼ 0 means deleting the final state D in figure 1,

so that the infection dynamics during the nosocomial

outbreak would amount to the stochastic movement of

individuals, throughout time, between the susceptible and

infective compartments at the different compartmental

levels in figure 1; see case studies 2–5.

In subsection 2.1, and for a given initial state (I1(0), . . .,

IM(0)) ¼ (i1, . . .,iM), we analyse the exact reproduction number
for an infective individual in compartmental level j: the

number of infections (understood in a broad sense, see §3)

directly caused by this individual until he/she is removed

or until the outbreak is detected, R( j )
(i1 ,. . . ,iM) [18–20]. Since

an infective individual at compartmental level j can infect

individuals at compartmental levels 1 � k �M, one can split

R(j)
(i1,...,iM) ¼

PM
k¼1 R(j)

(i1,...,iM)(k), where R( j )
(i1 ,. . . ,iM)(k) is the number

of infections directly caused by an infective individual

at compartmental level j, among individuals at compart-

mental level k. In this way, random variables R( j )
(i1 ,. . . ,iM)(k),

for 1 � j, k �M, allow one to assess the role played by the

different potential routes of infection during a nosocomial

outbreak in a hospital ward, in our numerical results in §3.

We note that the global variable R( j )
(i1 ,. . . ,iM) measures the

infectiousness of an infective individual in compartmental

level j, until this individual stops spreading the infection

(he/she is removed) or until the outbreak is detected and

declared (so that control strategies such as antibiotic prescrip-

tion, isolation of infected individuals, patient cohorting or

environmental cleaning, can be implemented, impacting on

the infection spread dynamics). These summary statistics

can be studied from the solution of systems of linear

equations, by implementing first-step arguments. In the elec-

tronic supplementary material, we explain the corresponding

algorithmic procedures designed for solving these systems in

a matrix-oriented fashion.
2.2. Reproduction number for an individual at
compartmental level j, among individuals at
compartmental level k

For a given compartmental level j and a given initial state

(i1, . . .,iM), we can define the random variable R( j )
(i1 ,. . . ,iM),

which amounts to the total number of infections directly

caused by a marked infective individual at compartmental

level j until he/she is removed, or until the outbreak is

declared. We note that since quantity R( j )
(i1 ,. . . ,iM) refers to an

infective individual at compartmental level j, it is only prop-

erly defined for initial states (i1, . . .,iM) with ij . 0. In case

studies 1–5 in §3, we focus on initial states of the form

(0, . . . ,0, 1|{z}
j

,0, . . . ,0),

representing that the infective individual under study is the

one at compartmental level j starting the outbreak. For this

initial state, the mean value E[R( j )
(0,. . . ,0,1,0, . . . ,0)] directly relates

to the basic reproduction number (measuring the average

number of individuals this individual directly infects until

http://rsif.royalsocietypublishing.org/
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he/she is removed—or, in this case, until the outbreak is

detected—for an initially fully susceptible population).

We note that R( j )
(i1 ,. . . ,iM) is in fact the sum of several

contributions,

R(j)
(i1,...,iM) ¼

XM
k¼1

R(j)
(i1,...,iM)(k),

where R( j )
(i1 ,. . . ,iM)(k) represents the number of infections

caused, by this individual who is at compartmental level j,
only among individuals at compartmental level k. The analy-

sis of each variable R( j )
(i1 ,. . . ,iM)(k) helps to measure not only

how infectious an individual that belongs to compartmental

level j is, but also how much of a risk he/she is for individ-

uals at a given compartmental level k. This allows us in §3

to explore the role played by the different potential trans-

mission routes during a nosocomial outbreak.

The probability distribution of each random variable

R( j )
(i1 ,. . . ,iM)(k) is given in terms of probabilities

n
(j)
(i1,...,iM)(k; n) ¼ P(R(j)

(i1,...,iM)(k) ¼ n), n � 0:

Since these probabilities refer to a particular infected indi-

vidual, it is necessary to specify the contribution that

each infective individual has in the global infection rates

lj(i1, . . .,iM), as well as the rate at which this particular indivi-

dual is removed. Thus, we analyse quantities R( j )
(i1 ,. . . ,iM)(k)

and R( j )
(i1 ,. . . ,iM) for the following family of infection and

removal rates:

mj(i1,i2, . . . ,iM) ¼ mjij,

lj(i1,i2, . . . ,iM) ¼ lj þ
XM
k¼1

lkjik

 !
(Nj � ij),

for 1 � j �M, and any outbreak detection and declaration

rate d(i1, . . .,iM). This specification of rates is based on the

following general assumptions:

— Each infective individual at compartmental level j is

removed independently at rate mj;
— Each susceptible individual at compartmental level j can

be infected due to an external source of infection, with

rate lj, or by an infective individual at compartmental

level k, with rate lkj.

We note that these functions have been defined in this

way so that they can be used in case studies 1–5 for the spread

of nosocomial pathogens in hospital wards, where events

related to rates mj, lj and lkj have specific meanings in each

case study in §3, according to different scenarios and hypoth-

eses considered in [15,19,21–23].

We follow here a first-step argument conditioning on the

next event to occur in the process. In particular, for the initial

state i ¼ (i1, . . ., iM), we have

P(R(j)
i (k) ¼ n) ¼ P(R(j)

i (k) ¼ n j i! D)P(i! D)

þ
XM
r¼1

P(R(j)
i (k) ¼ n j i! (i1, . . . ,ir � 1, . . . ,iM))

� P(i! (i1, . . . ,ir � 1, . . . ,iM))

þ
XM
r¼1

P(R(j)
i (k) ¼ n j i! (i1, . . . ,ir þ 1, . . . ,iM))

� P(i! (i1, . . . ,ir þ 1, . . . ,iM)):

ð2:1Þ

Notation i! (i1, . . . ,ir � 1, . . . ,iM) represents the event that, if

the process is at state i at present time, the next event that

occurs in the process is the transition to state (i1, . . ., ir 2 1,

. . ., iM) (i.e. a removal occurs at compartmental level r). The

equation above, if we use notation

i ¼ (i1, . . . ,iM),

iþ(s) ¼ (i1, . . . ,is þ 1, . . . ,iM),

i�(s) ¼ (i1, . . . ,is � 1, . . . ,iM),

leads to the system of equations:
uin
(j)
i (k; n) ¼ (mj þ d(i))1n¼0|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

removal of the marked individual,

or outbreak declaration

þmj(ij � 1)n
(j)
i�(j)(k; n)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

removal of an individual,

–not the marked one –

at compartmental level (CL) j

þ1n.0l jk(Nk � ik)n
(j)
iþ(k)

(k; n� 1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection of an individual at CL k,

caused by the marked individual

þ
XM

p¼1, p=j

mpipn
(j)
i�(p)(k; n)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

removal of an individual

at CL p = j

þ
XM

p¼1, p=k

(Np � ip) lp þ
XM
l¼1

llpil

 !
n

(j)
iþ(p)

(k; n)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection of an individual at CL p=k

þ(Nk � ik) lk þ l jk(ij � 1)þ
XM

l¼1, l=j

llkil

0
@

1
An

(j)
iþ(k)

(k; n),

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
infection of an individual at CL k, not caused by the marked individual

ð2:2Þ
for n�0 and (i1, . . . ,iM) [ C, with ij . 0. 1A above is a function

equal to 1 if A is satisfied, and 0 otherwise, and

ui ¼ d(i)þ
XM
k¼1

mkik þ (Nk � ik) lk þ
XM
l¼1

llkil

 ! !
:

We note that equation (2.2) is obtained by following argu-

ments in equation (2.1), and conditioning on the next event

that can potentially occur in the process. For example, let us

assume that process is at state i ¼ (i1, . . .,iM) at present time,

and we are computing probability n
(j)
i (k; n) ¼ P(R(j)

i (k) ¼ n),

which relates to the reproduction number R( j )
i (k) for a

http://rsif.royalsocietypublishing.org/
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marked infective individual at compartmental level j, among

individuals at compartmental level k. A potential event

which can occur is the recovery of an individual—different

to the marked one—at compartmental level j, which by

the theory of Markov processes occurs with probability

mj(ij 2 1)/u(i1,. . . ,iM), moving the process to the new

state i2( j) ¼ (i1, . . ., ij 2 1, . . .,iM). This leads to the addend

mj(ij 2 1)n
ðjÞ
i�ðjÞðk; nÞ in equation (2.2), and similar arguments

can be applied for the rest of potential possible events that

can occur. Finally, we point out that the system of equations

given by equation (2.2) can be represented in matrix form,

and solved by starting with n ¼ 0, and then sequentially sol-

ving the system of equations for any value n�1 by using

previously computed probabilities for n 2 1, in an iterative

fashion; see the electronic supplementary material.

It is clear that, since

R(j)
(i1,...,iM) ¼

XM
k¼1

R(j)
(i1,...,iM)(k),

we can also focus on computing probabilities

n
(j)
(i1,...,iM)(n) ¼ P(R(j)

(i1,...,iM) ¼ n), n � 0,

for any initial state (i1, . . . ,iM) [ C with ij . 0. Probabilities

n( j )
(i1 ,. . . ,iM)(n) satisfy

uin
(j)
i (n) ¼

XM
k¼1, k=j

mkikn
(j)
i�(k)(n)þ mj(ij � 1)n

(j)
i�(j)(n)

þ (mj þ d(i))1n¼0 þ
XM
k¼1

(Nk � ik)l jkn
(j)
iþ(k)

(n� 1)1n.0

þ
XM
k¼1

(Nk � ik) lk þ
XM

l¼1, l=j

llkil þ l jk(ij � 1)

0
@

1
An

(j)
iþ(k)

(n

ð2:3Þ

for n�0 and for any (i1, . . . ,iM) [ C, with ij . 0. This system is

expressed in matrix form, and solved in an iterative fashion,

in the electronic supplementary material.
3. Case studies
In this section, we focus on five different representative exist-

ing models in the literature for the spread of nosocomial

infections. Our aim is to show how these models can be

seen as particular cases of the unified stochastic modelling

framework presented in §2, so that the methodology in sub-

section 2.1 can be directly applied, and the infectiousness of

each agent in the hospital ward can appropriately be quanti-

fied. In particular, case studies 1–5 can be represented into

our framework by specifying the number M of compart-

mental levels and their meaning, as well as the meaning of

the infection and removal events occurring at each com-

partmental level, and the specifications of rates mj, lj, ljk

and d(i1, . . ., iM). These rates are general enough in §2 in

order to account for all hypotheses usually considered

when modelling nosocomial infections (such as those con-

sidered in [15,19,21–23] related to case studies 1–5), and

also allow one to consider different hospital surveillance

policies for outbreak detection and declaration [24,25]. A

summary of these rates for each case study studied in this

section can be found in the electronic supplementary

material, Table S6.
3.1. Modelling spread among patients and healthcare
workers

We focus here on the model by Artalejo [21], for a nosocomial

outbreak in a hospital ward with Np patients and NHCW

HCWs. Patients can be colonized or non-colonized at any

given time, and are discharged at rate m, regardless of their

colonization status. HCWs can have their hands contami-

nated or uncontaminated, and they wash their hands at rate

m0. Each colonized patient contaminates (the hands of) each

uncontaminated HCW at rate b0, while each contaminated

HCW colonizes each non-colonized patient at rate b. Admis-

sion of new patients occurs immediately after discharge, and

newly admitted patients can be colonized with probability s.

It is assumed in [21] that each colonized patient is detected at

rate g, which can be incorporated here by setting d(i1, i2) ¼ gi1
(i.e. outbreak declaration occurs upon detection of the first

colonized patient).

We note that the outbreak detection and declaration rate

d(i1, . . ., iM) can be set to account for different hypotheses

regarding hospital surveillance and screening. By setting

d(i1, i2) ¼ gi1 as above, one can represent random screening

being in place as the surveillance policy in the hospital

ward, where each patient is screened at an average time g21

[24], where this screening policy is identified as one of the

most efficient ones for the control of nosocomial outbreaks.

We also note that outbreak declaration rate d(i1, i2) ¼ gi1 can

also be used to represent the scenario where outbreak is

declared after the first colonized patient showing some symp-

toms, each colonized patient showing symptoms at rate g

(e.g. norovirus outbreaks are declared upon detection of sus-

pected cases, consisting of patients showing symptoms such

as diarrhoea and vomiting). On the other hand, if a colonized

patient is admitted into a hospital ward, and detection occurs

by screening upon admission where laboratory results take an

average time d21 to arrive, one could represent this by setting

d(i1, i2) ¼ d and with time t ¼ 0 representing the admission of

the colonized patient into the ward.

In figure 2, we show how this model can be represented

into our framework, by setting M ¼ 2, N ¼ Np þ NHCW,

where compartmental level j ¼ 1 amounts to colonized/

non-colonized patients and j¼ 2 amounts to uncontaminated/

contaminated HCWs. In order to incorporate the hypotheses

above, rate functions lj(i1, i2), mj(i1, i2) and d(i1, i2) are

defined as in figure 2, and summarized in the electronic

supplementary material, Table S6. Moreover, summary

statistics analysed in §2 have specific meanings in this par-

ticular case study, as described in table 1. We note here

that an alternative existing approach in the literature,

such as the model in [3], is to consider only colonized/

non-colonized patients explicitly in the model, where the

role played by contaminated HCWs is only implicitly

incorporated via a transmission rate b. Model in [3] could

be represented into our framework by setting M ¼ 1 (colo-

nized/non-colonized patients) and appropriately setting

rates m1(i1), l1(i1) and d(i1), which is omitted here for the

sake of brevity.

We use here parameter values considered in [21], for the

spread of MRSA in an hypothetical intensive care unit,

which are reported in the electronic supplementary material,

Table S1. When analysing the infectiousness of colonized

patients and contaminated HCWs, we can focus on comput-

ing the reproduction number of these individuals, as

http://rsif.royalsocietypublishing.org/
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Table 1. Meaning of our summary statistics for model in figure 2. Case
study 1.

R(1)
(1,0) ¼ R(1)

(1,0)(2) reproduction number of a colonized patient

starting the outbreak (among HCWs)

R(2)
(0,1) ¼ R(2)

(0,1)(1) reproduction number of a contaminated HCW

starting the outbreak (among patients)
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described in §2 (table 1). While the reproduction number can

be computed, for a contaminated HCW (R(2)
(0,1)), by direct

application of equation (2.3), a slight modification needs to

be considered when analysing the reproduction number of

a colonized patient; that is, when computing probabilities

n
(1)
(i1,i2)(n) ¼ P(R(1)

(i1,i2) ¼ n). In particular, equation (2.3) for

model and rate functions in figure 2 leads to

u(i1,i2)n
(1)
(i1,i2)(n) ¼ m0i2n

(1)
(i1,i2�1)(n)þ 1n¼0((1� s)mþ gi1)

þ (i1 � 1)((1� s)mn(1)
(i1�1,i2)(n)

þ (N2 � i2)b0n(1)
(i1,i2þ1)(n))

þ (N1 � i1)(smþ bi2)n(1)
(i1þ1,i2)(n)

þ 1n.0(N2 � i2)b0n(1)
(i1,i2þ1)(n� 1)

ð3:1Þ

with u(i1,i2) ¼ m0i2 þ (1 2 s)m(i1 2 1) þ (N1 2 i1)(sm þ bi2) þ
(N2 2 i2)b0i1 þ (1 2 s)m þ gi1. However, we note that R(1)

(1,0)

should amount to the number of infections (i.e. in this case,

HCW hands contaminations) directly caused by a given colo-

nized patient starting the outbreak until this patient is

discharged or the outbreak is detected, regardless of the

newly admitted patient being or not colonized. This means

that terms 1n¼0(1 2 s)m in equation (3.1) and (1 2 s)m in

u(i1,i2) need to be replaced by 1n¼0m and m, respectively, and

the same applies when analysing the reproduction number

of a colonized patient in case studies 2–4.

In figure 3, we plot the probability mass functions of

the reproduction number of a colonized patient (R(1)
(1,0))

and of a contaminated HCW (R(2)
(0,1)) starting the outbreak.

While the average outbreak declaration time is crucial for

limiting the reproduction number of a colonized patient,

this is not the case when looking at the reproduction

number of a contaminated HCW. This is related to the
fact that the main limiting factor for the infectiousness

of a HCW is his/her hand-washing rate, which is some-

thing that we explore in more depth in the following

case studies.
3.2. Considering different healthcare worker types
We focus here on the model by Wang et al. [22], which incor-

porates volunteers working at the hospital ward. They also

consider the spread of MRSA in the respiratory intensive

care unit (RICU) at Beijing Tongren Hospital, which is

formed by Np patients, NHCW HCWs and NV volunteers.

As assumed in [22], patients are admitted at rate l, who

can already be colonized upon admission with probability

w, and discharged at rate dC (if colonized) or dU (if non-colo-

nized). HCW–patient transmission rate bPH(1 2 h)/NP

consists of two contributions: the hygienic level h [ (0, 1)

during each HCW–patient contact, which is encoded in a

probability (1 2 h) of transmission per contact, and a contact

rate bPH, and similar comments apply to volunteer–patient

transmission rate bPV(1 2 j)/NP (for details, see [22, p. 3]

and related equations in [22, appendix]). In figure 4, we

depict how this model is represented into our framework,

in the asymptotic situation where immediate arrival of

patients is assumed after discharge (i.e. l! þ1), which is

a reasonable approximation for hospital wards under high

demand [3,23]. Since no detection is considered in [22],

where the interest is in the long-term dynamics of the

nosocomial spread and in analysing the infectiousness of

each individual in the ward, we set d(i1, . . ., iM) ¼ 0.

For parameter values in the electronic supplementary

material, Table S2, we plot in figures 5 and 6 the mean repro-

duction numbers of the different agents in this ward, for

varying values of model parameters. We compute in figure

5 the mean reproduction number of a colonized patient start-

ing the outbreak, among HCWs (E[R(1)
(1,0,0)(2)]) and volunteers

(E[R(1)
(1,0,0)(3)]), versus (d21

C , h) and (d21
C , j), respectively. Our

results suggest that transmission from patients to HCWs

played a significant role in this outbreak, where a given colo-

nized patient contaminates E[R(1)
(1,0,0)(2)] ¼ 10.05 HCWs

during his/her stay in the ward. On the other hand, our

model suggests little transmission from colonized patients

to volunteers, with E[R(1)
(1,0,0)(3)] ¼ 0.65. This remains true

even though the low hygienic level during patient–volunteer

http://rsif.royalsocietypublishing.org/
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contacts (j ¼ 0.23 for volunteers versus h ¼ 0.46 for HCWs),

and seems to be related to the low intensity of these

contacts (bPV ¼ 0.2 for volunteers versus bPH ¼ 0.72 for

HCWs). Stochastic variability of the reproduction numbers

E[R(1)
(1,0,0)(2)] ¼ 10.05 and E[R(1)

(1,0,0)(3)] ¼ 0.65 can also be

assessed by our methodology in §2, in terms of standard

deviations SD[R(1)
(1,0,0)(2)] ¼ 10.50 and SD[R(1)

(1,0,0)(3)] ¼ 0.94.

These are readily obtained from the probability distributions

computed from equation (2.2).

When looking at possible control strategies, it seems clear

that the reproduction number of a colonized patient among

HCWs can be significantly reduced by improving the hygie-

nic level of each HCW–patient contact, while reducing the

length of stay of each patient does not significantly reduce

the infectiousness (i.e. contamination ability) of this patient,

and similar comments apply to patient–volunteer contacts.

In figure 6, the mean reproduction number of a contami-

nated HCW or volunteer is computed for varying values of
the hygienic levels during each contact, as well as of the

hand-washing rates. The fact that HCWs wash their hands

an average of 24 times d21 in this ward keeps the reproduc-

tion number of these agents low, and only under significantly

low hand-washing compliance levels (gH , 5) a substantial

increase for this reproduction number is predicted. Thus,

for a particular HCW with low hand-washing compliance

level, hygienic level during each HCW–patient contact

becomes the most important factor determining the infection

spread, and similar comments apply to volunteers.
3.3. Assessing environmental contamination
The important role played by environmental contamination

in nosocomial spread has been discussed in recent works in

the field [8,9], since pathogens such as MRSA and vancomy-
cin-resistant enterococci (VRE) are able to survive on dry

surfaces for weeks [26]. We consider here the model by

http://rsif.royalsocietypublishing.org/
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Wolkewitz et al. [23], which incorporates contaminated/non-

contaminated surfaces. The authors in [23] consider Np

patients, Ns HCWs and Ne surfaces for analysing an VRE out-

break in the onco-haematological unit at the University

Medical Center Freiburg in Germany. Colonized patients

are discharged at rate g 0, while non-colonized patients are

discharged at rate g. Discharged patients are immediately

replaced by newly admitted patients, who can be colonized

with probability f. HCWs wash their hands at rate m,

while surfaces are decontaminated at rate k. Transmission

between patients, HCWs and surfaces occur at rates (bsp,

bse, bps, bpe, bes, bep), where s stands for staff (HCWs), p for

patients and e for environment (surfaces). In figure 7,

we show how this model can be represented into our frame-

work, with the corresponding definition of the function

rates. Since no outbreak detection is considered in [23], we

set d(i1, i2, i3) ¼ 0.

In figures 8–10, we compute the mean reproduction

number of all the agents (i.e. patients, HCWs and surfaces)

in this hospital ward, for parameter values in the electronic
supplementary material, Table S3, which are the ones con-

sidered in [23] for the VRE outbreak in the onco-

haematological unit, and carry out a sensitivity analysis for

several model parameters. In particular, we plot in figure 8

the mean reproduction number of a colonized patient

among HCWs and among surfaces, versus the patient-to-

HCW (respectively, patient-to-surface) transmission rate bps

(bpe), and the average length of stay g 021 of any given colo-

nized patient. For the VRE outbreak considered in [23], an

average number of E[R(1)
(1,0,0)(2)] ¼ 9.09 HCWs and

E[R(1)
(1,0,0)(3)] ¼ 96.83 surfaces are contaminated by a colonized

patient during his/her stay in the ward, these results

suggesting that environmental contamination might be play-

ing a significant role in the infection spread, as suspected by

authors in [23]. Stochastic variability of these summary stat-

istics can be represented in terms of the standard deviations

SD[R(1)
(1,0,0)(2)] ¼ 9.40 and SD[R(1)

(1,0,0)(3)] ¼ 73.75, these large

quantities suggesting that the corresponding infection pro-

cesses are highly stochastic. We note that for a colonized

patient staying in the ward for an average of 20 days, and

http://rsif.royalsocietypublishing.org/
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an environmental cleaning rate of k ¼ 1 time d21, the same

surface can be contaminated several times by this patient

during his/her stay. According to results in figure 8, both

reducing the average length of stay of patients and decreasing

contact rates (i.e. avoiding when possible patient–surface con-

tacts, or improving the hygienic level during each patient–

HCW contact) can help to reduce these mean reproduction

numbers.

Once a HCW is contaminated, his/her infectious potential

can be measured by means of his/her mean reproduction

number, which is analysed in figure 9. It seems clear from

results in figure 9 that the hand-washing rate m¼ 24 times d21

allows to keep this mean reproduction number, for a con-

taminated HCW, low among patients, although it can be

still significant (above 1) among surfaces. Results in figure 9

also suggest that HCWs with significantly low hand-hygiene

compliance levels (m , 10) could lead to reproduction num-

bers above 1.75 (among patients) and above 30 (among
surfaces), so that our results support the fact that a single

HCW with relatively low hand-hygiene compliance level

could play a significant infectious role by means of contami-

nating a large amount of surfaces, and colonizing several

patients, until he/she washes his/her hands.

In figure 10, we plot analogous values for a contaminated

surface. Although for parameters considered in [23] the

reproduction numbers of any given contaminated surface

(among HCWs and patients) are relatively low, given the sub-

stantial number of surfaces that can be contaminated by a

colonized patient (figure 8) or a contaminated HCW with a

low hand-hygiene compliance level (figure 9), these numbers

should still not be neglected. It seems clear from figure 10 that

decontamination rate k ¼ 1 time d21 cannot be considered as

optimal during the course of a nosocomial outbreak, since

just by increasing this up to k ¼ 2 times d21 a significant

reduction in the reproduction number of any contaminated

surface could be achieved. This seems to support existing

http://rsif.royalsocietypublishing.org/
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control policies such as the ones recommended within the

national guidelines on the management of outbreaks of norovirus
infection in healthcare settings [27] issued by the National Disease

Surveillance Centre in Ireland, which involve cleaning affected

areas of the ward twice daily during norovirus outbreaks.

Results in figure 10 also suggest that, if k ¼ 1 time d21 had to

be maintained for any reason, then recommendations among

HCWs and patients on reducing as much as possible infectious
contacts with surfaces during an outbreak could still have a sig-

nificant impact in reducing the infectivity of any given

contaminated surface, specially among patients.

3.4. Incorporating space through room configuration of
the ward

The model by López-Garcı́a [19] incorporates room configur-

ation into the nosocomial infection dynamics, where the main

hypothesis is that for some nosocomial pathogens, the trans-

mission rate between patients in the same room would be

higher than the transmission rate for patients in different
rooms (this might be the case, for example, when considering

airborne transmission [10], if patients in the same room are

treated by the same common HCW [15] or when considering

isolation rooms where specific control protocols are followed

[19]). Since the infection dynamics in [19] are model for an

intensive care unit with four rooms, by a simple SIR epidemic

model, where no discharge and arrival of patients is con-

sidered, we analyse a more realistic scenario here where

patients are discharged at rate n, and immediately replaced

by newly admitted patients, who can be colonized with prob-

ability pC. A transmission rate bSR is considered for patients

in the same room, while bDR is the transmission rate for

patients in different rooms, and HCWs are not explicitly

included into the model. A spontaneous colonization rate l

is also considered in [19], and no outbreak detection and

declaration is assumed so that we set d(i1, i2, i3, i4) ¼ 0; see

figure 11 for the representation into our framework.

For parameter values considered in [19], reported in the

electronic supplementary material, Table S4, we compute in

figure 12 the reproduction number of a colonized patient
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Figure 11. Hospital ward room configuration from López-Garcı́a [19] and its representation in our framework. Our representation leads to an arguably more realistic
stochastic process to that in [19], where patients arrival and discharge are incorporated. Case study 4. (Online version in colour.)

reproduction number of
a patient at room 1

infection rate for patients
in the same room

in
fe

ct
io

n 
ra

te
 f

or
 p

at
ie

nt
s

in
 d

if
fe

re
nt

 r
oo

m
s

0.06

(a) (b)

2.4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.01
0.01 0.060.050.040.030.02 0.01 0.060.050.040.030.02

0.02

0.03

0.04

0.05

0.06

0.01

0.02

0.03

0.04

0.05

reproduction number of
a patient at room 2

b D
R

in
fe

ct
io

n 
ra

te
 f

or
 p

at
ie

nt
s

in
 d

if
fe

re
nt

 r
oo

m
s

b D
R

bSR

infection rate for patients
in the same room

bSR

E
[R

(1
,0

,0
,0

)]
(1

)

E
[R

(0
,1

,0
,0

)]
(2

)

Figure 12. Mean reproduction number of a colonized patient at Room 1 (E[R(1)
(1,0,0,0)], a) and at Room 2 (E[R(2)

(0,1,0,0)], b) starting the outbreak, versus (bSR, bDR). Blue
dot corresponds to parameter values (bSR, bDR) ¼ (0.0366, 0.0238) in electronic supplementary material, Table S4, leading to values E[R(1)

(1,0,0,0)] ¼ 1.62 and
E[R(2)

(0,1,0,0)] ¼ 1.54. Case study 4.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180060

11

 on July 3, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
starting the outbreak at Room 1 (figure 12a) and 2 (figure 12b),

versus transmission rates (bDR, bSR). We note that Rooms 3

and 4 are equivalent to Room 2, and are thus not analysed.

It is interesting to note that for parameter values considered

in [19], the reproduction number of a patient at Room 1 is

E[R(1)
(1,0,0,0)] ¼ 1.62, while it is E[R(2)

(0,1,0,0)] ¼ 1.54 for a patient

at Room 2. Stochastic variability of these summary statistics

can be represented in terms of the standard deviations

SD[R(1)
(1,0,0,0)] ¼ 1.73 and SD[R(2)

(0,1,0,0)] ¼ 1.67. A threshold be-

haviour can be observed in both plots in figure 12, where

reducing the contact rate between patients in the same

room does not seem to have a significant effect on the repro-

duction number of a patient starting the outbreak at Room

2. For this room, it is the transmission rate between different

rooms bDR which has a significant impact. This seems to sup-

port the idea of implementing patient cohorting as an

infection control strategy, where a given HCW treating

patients in the same room would avoid, when possible, to

treat patients in a different room during the course of a noso-

comial outbreak. On the other hand, a parameter threshold

can also be observed for a patient starting the outbreak at
Room 1, but this threshold depends on a nonlinear combi-

nation of the values (bSR, bDR). In particular, both reducing

the contact rate between patients in the same room and

between patients in different rooms can move the value of

the reproduction number near or below 1.
3.5. Modelling healthcare workers – patient contact
network with different healthcare workers
infection risk profiles

Finally, we focus here on the model by Temime et al. [15],

where the potential of some HCWs in a hospital ward to

act as super-spreaders during a nosocomial outbreak is

assessed. Temime et al. [15] consider an hypothetical hospital

ward with three types of HCWs: AP1 (a profile involving fre-

quent contacts with a limited number of patients, typically a

nurse), AP2 (a profile involving fewer contacts with more

patients, typically a physician) and a peripatetic HCW (invol-

ving a single daily contact with all patients, for instance a

therapist or a radiologist). These different HCW profiles

http://rsif.royalsocietypublishing.org/
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lead to different transmission risks, where AP1-patient con-

tacts can be considered as high risk, AP2-patient contacts

have moderate risk and peripatetic-patient contacts have

low risk [15, fig. 1]. This is encoded here by considering trans-

mission rates bAP1 . bAP2 . bPeri. The authors in [15]

consider an hypothetical hospital ward with 18 beds, that

all HCWs wash their hands at rate m, and that all patients

are discharged at rate g, being immediately replaced by

new non-colonized admitted patients. By means of agent-

based stochastic simulations, authors simulate the spread of

a nosocomial pathogen (using data for MRSA and VRE) in

this ward while incorporating details such as the duration

of each HCW–patient contact, the probability of pathogen

transmission during a 20 min HCW–patient contact, or the

existence of day/night HCW shifts.

In figure 13, we represent a simplified version of this

model into our framework, for a smaller hospital ward with

eight patients, four AP1 HCWs, two AP2 HCWs and one

peripatetic HCW, but when considering the same contact

network structure than the one studied in [15, fig. 1]. Trans-

mission rates bAP1, bAP2 and bPeri in electronic supplementary

material, Table S5 are obtained by taking into account the

duration of each HCW–patient contact type, as well as the

probability of pathogen transmission during each contact,

by using values in [15, table 1] and following the arguments

in [15, supplementary material I]. Since no outbreak detection

is considered in [15], we set d(i1, . . ., i11) ¼ 0 and

lj(i1, . . . ,i11)¼ (bAP1i4þjþbAP2i9þbPerii11)(Nj� i j), 1� j� 2,

lj(i1, . . . ,i11)¼ (bAP1i4þjþbAP2i10þbPerii11)(Nj� i j), 3� j� 4,

lj(i1, . . . ,i11)¼bAP1i j�4(Nj� i j), 5� j� 8,

l9(i1, . . . ,i11)¼bAP2(i1þ i2)(N9� i9),

l10(i1, . . . ,i11)¼bAP2(i3þ i4)(N10� i10),

l11(i1, . . . ,i11)¼bPeri(i1þ i2þ i3þ i4)(N11� i11),

mj(i1, . . . ,i11)¼ gij, 1� j� 4,

mj(i1, . . . ,i11)¼mij, 5� j� 11:

Given the complexity of this model, we report in table 2

the meanings of our summary statistics in §2. In figure 14,

we plot the mean reproduction number of a representative

colonized patient (e.g. P1,a) starting the outbreak, among

those HCWs that treat him/her (AP11, AP21 and peripatetic).

These values are mainly dominated by bAP1 and g21;

that is, by the contact rate for high transmission risk con-

tacts and the length of stay of the patient in the ward.

For parameters in the electronic supplementary material,

Table S5, a colonized patient contaminates around

E[
P

j[{5,9,11} R(1)
(1,0,...,0)(j)] ¼ 5:3 HCWs during his/her stay,

with SD[
P

j[{5,9,11} R(1)
(1,0,...,0)(j)] ¼ 5:78. By analysing values of

E[R(1)
(1,0,. . . ,0)(5)], E[R(1)

(1,0,. . . ,0)(9)] and E[R(1)
(1,0,. . . ,0)(11)] separately,

one can decipher that this corresponds to E[R(1)
(1,0,. . . ,0)(5)] ¼

3.42 contamination events to the AP11, E[R(1)
(1,0,. . . ,0)(9)] ¼ 1.19

to the AP21 and E[R(1)
(1,0,. . . ,0)(11)] ¼ 0.69 to the peripatetic

HCW. However, we note that since AP11 only treats two

patients, while the peripatetic treats eight patients, the peripa-

tetic HCW might have his/her hands contaminated for longer

periods during a nosocomial outbreak.

In figure 15, we plot the mean reproduction number of

the AP11 (E[R(5)
(0,0,0,0,1,0,. . . ,0)(1)]), the AP21 (E[R(9)

(0,. . . ,0,1,0,0)(1) þ
R(9)

(0,. . . ,0,1,0,0)(2)]) and the peripatetic (E[
P4

j¼1 R(11)
(0,...,0,1)(j)])

HCW starting the outbreak. Larger values are found for the
peripatetic HCW, even though its low transmission risk per

contact (bPeri , bAP2 , bAP1), which is directly related to

the large number of patients this peripatetic HCW treats.

Larger mean reproduction numbers found for AP11 than

for AP21 suggest, however, that there exists a trade-off

between the transmission risk profile of each contact

(encoded by rates bAP2 and bAP1) and the number of patients

that each HCW treats (i.e. the particular contact network

within the hospital ward). The potential for the peripatetic

HCW to act as a super-spreader can be noticed from a com-

bination of results in figures 14 and 15. In particular, we note

that the infectious potential of the peripatetic HCW is

enhanced by the fact that this HCW might have his/her

hands contaminated for long periods, since each of the

eight patients treated by this HCW, who might be colonized,

contaminates peripatetic HCW hands an average of 0.69

times during their stay. Moreover, it is clear from our results

that low hygiene levels during peripatetic-patient contacts

(i.e. increasing values of bPeri) might significantly increase the

number of patients that this HCW colonizes until washing

his/her hands, and results in figure 15 suggest that the same

applies for his/her hand-washing compliance level, which

could enhance his/her role as a super-spreader during a

nosocomial outbreak.
4. Discussion
In this work, we present a unified stochastic modelling frame-

work for the analysis of the spread of nosocomial infections.

This unified model allows one to move from more compart-

ment-based models for highly homogeneous scenarios (M� 1),

to agent-based type models when dealing with highly hetero-

geneous settings (M � N , where N is the total number of

individuals in the population). We note that when considering

the asymptotic case M ¼ N, with Nj ¼ 1 for all 1 � j �M, the

resulting space of states C contains
QM

j¼1 (Nj þ 1) ¼ 2N states,

as in this case one is in fact analysing the SIS epidemic

model on a network [18,19]. Our unified framework allows

one to consider different hypotheses related to the detection

and declaration of the nosocomial outbreak, or to analyse

the long-term infection spread when this detection is not rel-

evant. This versatile model also allows us to represent a

wide range of agents involved in the nosocomial outbreak,

to account for hand-washing compliance levels, environ-

mental cleaning, patients arrival/discharge, spatial

components such as the hospital ward room configuration,

different types of HCWs corresponding to different pathogen

transmission risks, as well as specific patient–staff contact net-

work topologies.

Our methodology within this unified framework allows

one to exactly analyse the probability distribution of the

exact reproduction number of each agent in the ward. More-

over, this summary statistic can be split into several ones

accounting for the infections caused by a given individual

among individuals of a particular type. This translates into

analysing the infectiousness of patients, HCWs, volunteers

or surfaces among individuals of each of these groups, so

that the role played by each potential contact transmission

route can be assessed for nosocomial outbreaks correspond-

ing to different healthcare facilities and pathogens. To the

best of our knowledge, this is the first time that this analytical

approach, which has been usually neglected when analysing
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Table 2. Meaning of our summary statistics for model in figure 13. Case study 5.

R(1)
(1,0,. . . ,0) ¼ R(1)

(1,0,. . . ,0)(5) þ R(1)
(1,0,. . . ,0)(9) þ R(1)

(1,0,. . . ,0)(11) reproduction number of patient P1,a

R(5)
(0,0,0,0,1,0,. . . ,0) ¼ R(5)

(0,0,0,0,1,0,. . . ,0)(1) reproduction number of the AP11 HCW

R(9)
(0,. . . ,0,1,0,0) ¼ R(9)

(0,. . . ,0,1,0,0)(1) þ R(9)
(0,. . . ,0,1,0,0)(2) reproduction number of the AP21 HCW

R(11)
(0,...,0,1) ¼

P4
j¼1 R(11)

(0,...,0,1)(j) reproduction number of the peripatetic HCW
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infection spread among individuals in populations of moder-

ate-to-large sizes—due to computational constraints—is

applied in the area of nosocomial infections where popu-

lations are usually small and heterogeneous, making its

implementation feasible. We note that, although the focus

here has been on studying the reproduction number of each

individual, alternative summary statistics of interest allowing

for first-step analysis (such as the length or the final size of

the outbreak [18,19]) could be analysed in the same way by

means of this unified framework and our methodology in §2.

Our unified framework, together with the analytical

approach in §2, allows one to exactly compute the corre-

sponding reproduction numbers and to use these to assess

the role played by the different routes of infection during a

nosocomial outbreak. At the same time, the fact that all scen-

arios in §3—and potentially others—can be represented
into our unified framework, means that computer codes

developed for solving equations (2.2)–(2.3) for the general

model in figure 1 can be readily applied in all these scen-

arios, just by specifying the corresponding mj(i1, . . ., iM),

lj(i1, . . ., iM) and d(i1, . . ., iM) rates. On the other hand, we

acknowledge that this unified stochastic framework represented

by the diagram in figure 1 entails several simplifying

assumptions and limitations. The constant size assumed for

each compartmental level means that the total number of

agents of each type (patients, HCWs, surfaces, volunteers,

etc.) remains constant during the course of the nosocomial

outbreak. When focusing on patients, this is only appropriate

under high demand situations, where the time during which

any given bed is empty is short enough and can be neglected

in the corresponding model. Under moderate demand, and

if one needs to incorporate empty beds explicitly in the

http://rsif.royalsocietypublishing.org/
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model, the stochastic process in §2 could be modified so that

S1(t) (if j ¼ 1 represents the compartmental level correspond-

ing to patients) is incorporated as an additional variable into

the continuous-time Markov chain X , so that S1(t) þ I1(t) is

not necessarily constant throughout time. Moreover, more

complex situations such as nosocomial outbreaks occurring

across several hospital wards, with patient movement

between wards, or competitive scenarios where several bac-

terial strains (e.g. antibiotic-sensitive versus antibiotic-

susceptible [28]) are spreading simultaneously within the

same hospital ward, cannot be directly represented into our

framework by just specifying rates mj(i1, . . ., iM), lj(i1, . . ., iM)

and d(i1, . . ., iM). Instead, alternative diagramatic represen-

tations to that in figure 1 should be explored, potentially

including movement of agents between different compart-

mental levels.

We also note that our methodology directly relies on

the fact that the model proposed is a continuous-time

Markov chain, so that events are Markovian and inter-event

times are assumed to be exponentially distributed. While

this is a typical assumption in the literature when analysing

nosocomial outbreaks from a stochastic perspective, we

acknowledge that the exponential distribution might not be

appropriate for some particular events in these processes,

such as patients’ lengths of stay. Although relaxing the Mar-

kovian assumption in these models is out of the scope of this

paper, it is worth to point out here that some attempts have

already been made in this area, some of them based on the

use of phase-type distributions for incorporating these non-

Markovian events [29,30].

Finally, we acknowledge here that additional limita-

tions of our approach are of computational nature, related

to solving systems of around #C ¼
QM

k¼1 (Nk þ 1) linear
equations. However, populations usually involved in nosoco-

mial outbreaks are small enough for this methodology to be

efficiently implemented, where specific procedures for deal-

ing with systems of equations involving highly sparse

matrices can be specially useful. We also note that while

N ¼ 20 þ 5 þ 100 ¼ 125 individuals in case study 3 (patients,

HCWs and surfaces) lead to analysing a stochastic process

with #C ¼ 12726 states, only N ¼ 2 þ 2 þ 2 þ 2 þ 1 þ 1 þ
1 þ 1 þ 1 þ 1 þ 1 ¼ 15 individuals in case study 5 (patients,

AP1, AP2 and peripatetic HCWs) lead to #C ¼ 10368

states, which is directly related to the high level of individual

heterogeneity introduced into this model (encoded by the

number of compartmental levels M ¼ 3 versus M ¼ 11).

These comments suggest that while agent-based simulation

approaches should prevail under highly heterogeneous scen-

arios, such as the complete model by Temime et al. [15], more

homogeneous or low-to-moderate heterogeneous settings

allow for this exact approach to be implemented.
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