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Whereas most other chapters in this book study computer or mathematical models of
various aspects of brain function, here we focus on the value of physically-embodied
models, in which simulated brain circuits are embedded within robotic bodies. The
general goal in doing this is to better understand the interaction of the brain, the body
and the environment in generating the adaptive behavior we see in animals. We call
these embodied computational neuroscience models (Prescott, Montes Gonzalez et al.
2006), and the emerging domain of research in such systems neurorobotics (Ayers 2002,
Dario, Carrozza et al. 2005, Krichmar 2008). Although the main emphasis of this chapter
will on the value of such models to neuroscience, it is worth noting that the construction
of these artifacts to address scientific aims, can also lead to the availability of a new class
of technologies that can address outstanding challenges in engineering (Prescott, Lepora
etal. 2014).

The structure of our chapter is as follows. First, we introduce the idea of developing
embodied models of animals and their nervous systems comparing and contrasting
these with other types of models studied in neuroscience. Second, we discuss the
relationship between brains and bodies explaining why the notion of embodiment is
critical if we are to fully understand the role of brains in determining or influencing
behavior. Third, we explore, in some detail, several example robot models of
invertebrate sensorimotor co-ordination, showing how useful models can be developed
at different levels of description—for instance, in terms of information, or in terms of
circuits, and how the best models can combine multiple levels of description. Fourth, we
investigate how the layered architecture of the mammalian brain can be approximated
in robot models that incorporate key aspects of animal behavior and morphology.
Finally, we consider how such models could be scaled-up to address the challenge of
understanding the whole mammalian brain.

1. Physical models in neurobiology

As explained in the introductory chapter, the goal of modeling is not to replicate as
accurately as possible what we see in biology. Rather it is to help us to understand of
the underlying principles that are exploited by biological systems to maintain life.

Today, modeling often takes the form of computer simulation, however, physical models
have also played an important role in biological science. For instance, the discovery by
Watson and Crick of the structure of our genetic material was based on the construction
of a physical model comprised of little metal sheets. This three-dimensional structure
allowed Watson and Crick to conceive of a shape—the double helix—that could account
for the x-ray diffraction data of DNA gathered by Rosalind Franklin (Crick 1990). The
Watson and Crick model facilitated the scientific discovery process without looking to
accurately mimic biological reality; rather, it employed a suitably defined abstraction.

In 1945, eight years before Watson and Crick’s breakthrough, Rosenblueth and Wiener
proposed that the criteria for a good model was not how accurately it captured all the
details of the biological phenomenon of interest, but how useful it was in casting new
light on that phenomenon. The Watson and Crick model succinctly demonstrates this
principle—to intuit the structure of the DNA molecule became much easier once they
had a physical model they could manipulate.
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A further strength of all good models is that they capture the major common features or
properties of the system under study and summarize the individual variation. This is
true not only of physical models, robots and computer-based simulations, but also of
biological models. Neurobiologists, who can sometimes be dismissive of simulation as
“only a model”, should if they are being logically consistent, also dismiss the model
systems they study themselves. For instance, someone might use one animal as a model
of another (e.g. the rat as a model of a human); or an animal in an altered condition (e.g.
under anesthesia, or awake but immobilized) as a model of the same animal but awake
and behaving; or an isolated part, such as a brain slice or a muscle, as a model of that
component within an intact, functioning system. Hence the neurobiologist, like the
modeler, takes significant steps away from the actual system of interest—species
difference, anesthesia/immobility, dissection—for the practical benefits of having a
system that is easier to study.

For similar reasons of accessibility and ease of study, Rosenbleuth and Wiener argued
that a good model should translate a question about the natural world into a domain
that we understand better, and it should allow us to conduct experiments with relative
ease. In this chapter we contend that—for exploring a range of relationships between
brain, body, and behavior—robotics, which translates problems in biology into
problems in computing and engineering, meets the requirements of being easier to
study and to understand particularly well.

Let’s begin from the standpoint of the neurobiologist looking at potential model systems
for understanding the role of the brain in generating natural (ethologically-relevant)
behavior. Table 1 compares and contrasts neuroscientific models and robotic models in
order to show some of their advantages and disadvantages. Our table illustrates that
robotic models can nicely capture interesting properties of awake behaving animals that
are lost as we move to more accessible neurobiological models. In particular, robot
models are more amenable to investigation of their internal processes, such as the
current state of any calculations being performed, than any existing animal model. The
main issue for robot models, though, is how to capture enough of the relevant properties
of the neural and physical substrates of the target system to create a useful model.

System Properties Amenable to
Similar Intact Embedded in Expressing experimental
neural & system the ethologically- investigation
physical environment relevant of internal
substrates behavior processes

AWake free'mOVing skskskkok skskskkok skskskkok skskskkok *

)

organism (target)

Animal AWake, skskskkok skskskkok skskskkok ksksk Kk

models | restrained

Under skskskkok skskskkok ksksk * ksksk
anesthetic

Brain Slice or skskskkok * Kk * kskskk
similar

RObOtiC model * koK kK koK kK kKK koK kK

Table 3.1. Advantages and disadvantages of different neuroscientific models compared to robotic
(physical) models on an ordinal scale (more *s = better) (Adapted from Mitchinson, Pearson et al. (2011)).
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Note that for each of the different neuroscientific model systems considered in Table 1
we might also build a computer simulation to meet our requirement for accessibility and
ease of experimentation. Indeed, in this age of high-power computer systems with real-
time simulated physics engines, is it ever really worthwhile physically copying aspects
of the animal? Our answer is “not always”, or perhaps even, “generally not”. Depending
on your question (and one issue, as we will see, is whether you are asking the best
question) you may be better off staying in the world of simulation as many of the
excellent computational models in this book show. In this chapter we will argue,
nevertheless, that there are circumstances where a physical model is going to be a better
model, in the sense of being easier to build, study and understand, than a simulation.

As will become clear, tackling the problem of creating a physical model may sometimes
also drive the researcher to ask a different set of questions that result in a new way of
thinking about that system that is closer to biological reality. Building a physical model
can also take us a step closer to creating a novel behaving system that may be of some
real benefit in the world (and one of the goals of science must be to create this kind of
useful artifact). In general, however, it is rarely a question of either/or. In developing
robotic models we will often use simulation as a tool for exploring the design space for
biomimetic artifacts before we build them, and we will look to use our completed
physical model to validate and extend the insights obtained through simulation.

2. Embodiment matters

The existence of directed swimming in single-celled eukaryotes such as Paramecia
(Jensen 1959) reminds us that nervous conduction is not a prerequisite for movement
or action. Indeed, the first nervous systems evolved some hundreds of millions of years
after the appearance of the first active mobile animals (Bengston 1994). What the
nervous system certainly does, however, is to enable movement to be more rapid, more
efficient, and better adapted to the environment.

The importance of the body in generating coordinated movement is beautifully
illustrated in machines that exploit the natural dynamics of their parts for periodic
motion. For example, McGeer (1990) showed that a bipedal walking machine, with no
control system whatsoever, can generate a stable walking gait on a suitably sloped
surface by relying on the passive dynamics of suitably configured mechanical parts. This
synergy between form and function has also been called morphological computation
(Pfeifer and Bongard 2006). Animals provide control through their nervous systems in a
manner that complements their natural body dynamics. In walking or running, for
example, many legged animals exploit the pendulum-like natural motion of jointed limbs
to help generate a suitable cyclic pattern. In a similar way, a parent pushing a child on a
swing controls the back-and-forth motion by periodically interjecting energy into the
natural dynamics of the system. By relinquishing some aspects of control to the body
animals also benefit from the energy recycling capability of elastic tissues. Muscles and
tendons, for instance, convert kinetic energy to potential energy as the foot hits the
ground, providing a store of energy to be released in the next step cycle. Designing
controllers modeled on animal locomotion pattern generators, that exploit these
principles, provides a very promising path for building efficient legged robots (see
Chapter 9, Motor Pattern, Generation, Ijspeert (2014), and Section 3 below). Such
controllers can be simpler—for instance, having fewer control parameters—than more
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traditional forms of continuous robot control, and will entrain themselves to the
dynamics of the body making them highly adaptable. A broader lesson is that rather
than thinking of the nervous system as the coordinator of the body, in the way that a
conductor directs an orchestra, we might think of it more as “one of a group of players
engaged in jazz improvisation” (Chiel and Beer 1997, p. 555) influencing, but also being
influenced by, the body and environment in which it is embedded.

Exploiting the physical properties of body parts leads to a simplification of the problem
of locomotion for walking and running animals and machines. Similarly, exploiting the
physical properties of the world allows animals and robots to generate apparently
complex behavior through simple principles. This has been recognized many times but
some examples are worth noting.

The neurologist Grey Walter built one of the first brain-inspired robots in the 1950s
when he created his robot ‘tortoises’ Elmer and Elsie (Walter 1953). Each tortoise
(figure 1 left) had a single light sensitive ‘eye’, a shell that was sensitive to touch, and a
pilot light that was configured to extinguish when a second light source was detected.
Control was provided by simple analogue electrical circuits, termed relays, designed to
mimic some of the properties of biological neural networks. As shown in Figure 1
(centre), these relays implemented a layered control hierarchy. The lowest level
behavior provided forward movement (explore), if light was detected this was
suppressed and replaced by a movement towards the light (phototaxis), and if the shell
touched against an obstacle, the robot would stop anything else it was doing and exhibit
a simple escape maneuver (wriggle). By photographing his robot in darkness, with a
lengthy shutter time, Grey Walter was able to record its trajectory when moving in
environments such as that illustrated in Figure 1 (right panel). Here, after interacting
with various obstacles the robot eventually approaches a light source. In other
photographs the robot can be seen homing in on its ‘hutch’ in order to recharge its
battery, or traversing alongside a mirror with an oscillating locomotion movement
pattern (alternately approaching and then moving away from its own reflection) that
Grey Walter termed a ‘dance’.

()~ _Wriggle
> "eny Phototaxis I
. , Explore motors

Figure 1. Grey Walter’s tortoise “Elsie”. The robot (left) generates apparently complex behavior as the
result of a simple layered control system (centre) interacting with an environment of obstacles and light
sources. The photograph on the right illustrates the robot’s trajectory recorded using a long shutter speed,
with a light source placed on the robot’s outer shell. (Walter 1953).

This idea of configuring a control system as a set of reflexes with a fixed priority scheme
was adopted with enthusiasm in the 1980s by researchers interested in generating
robust behavior for fast-acting mobile robots (e.g. Brooks (1986)) that can engage in
simple but reliable activities such as wall-following (see also Mataric (1997)). Similar
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principles may also have underpinned the behavior of bilaterian creatures who left
spiraling or meandering foraging trails that then became trace fossils in Precambrian
rocks, and that are our earliest evidence of the behavior of multi-celled animals
(Prescott and Ibbotson 1997). These fossil meanders belong to the class of stigmergic
processes in which the behavior of the organism restructures its environment which in
turn effects the activity of that organism (Theraulaz and Bonabeau 1995). Stigmergy
can be thought of as a form of “information offloading” (Hutchins 1995, Beer and
Williams 2014), whereby some aspects of the processing that are required to implement
a behavior are externalized by altering the environment’s structure. In other words, we
should think of the system formed by the organism in its environment as the substrate
for the computation that results in the observed behavioral pattern, not just the
organism and its nervous system.

) cm 3 Rl St )

Figure 2. Robot modeling of stigermic processes. Left: Fossilized animal from the
Precambrian era likely to have been left by an early bilaterian animal, from Crimes and
Anderson (1985). Right: A custum-built robot configured to leave a meandering paper trail using
a fixed control hierarchy of reactive mechanisms . For details see Prescott and Ibbotson (1997).

Grey Walter’s tortoises showed that the interaction of a reactive, but appropriately
configured, control system with the environment, via suitable, but often primitive,
sensors and actuators can give rise to behavior that is surprisingly complex. Thirty years
later, in a series of thought experiments, the neurobiologist Valentino Braitenberg
(1986) imagined a series of robot “vehicles” of increasing sophistication, beginning with
machines with only sensory and motor elements, and finishing with variants that had
simple artificial nervous systems capable of properties such as logic, memory and
abstraction. These internal processing elements hint at some likely functions of animal
brains that go beyond reactive control. Indeed, in many animal nervous systems,
theoretical and computational analyses point to the presence of “hybrid” control
architectures that combine elements of reactive control with integrative mechanisms
that operate both in space, co-ordinating different parts of the body, and in time,
organizing behavior over multiple time-scales (for discussion see, Verschure, Krose et al.
(1992), Arbib and Liaw (1995), Prescott, Redgrave et al. (1999) and Sections 3 to 5
below).

Braitenberg relied on his imagination to conceive of how his vehicles might behave. The
ability to do this degrades rapidly as internal or external complexity is added to the
scenario envisaged, imagination is also susceptible bias. Embodied computational
neuroscience on the other hand, via the medium of robotics, allows us to explore
theories of brain architecture that reflect more of the true complexity of animal nervous
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systems. By embedded hypothesized control mechanisms into the dynamics of a real-
world interaction they are able to take seriously the role of body and environment in
generating behavior. We can even do this in the same environment as that inhabited by
the organism whose behavior we wish to understand. We present some specific
examples of this possibility in section 2 below.

One of the first examples of neurorobotic modeling is the work by Edelman and co-
workers on the NOMAD series of real-world artifacts (Edelman, Reeke et al. 1992).
These robot models, also known as brain-based devices (see also Seth, McKinstry et al.
(2004), Krichmar (2008), Krichmar and Wagatsuma (2011)), aimed at validating the
theory of neuronal group selection, or “neural Darwinism”, that Edelman had proposed.
In particular, they tested the putatively fundamental principle that differential selection
of neuronal connections can lead to repertoires of neurons that are tuned to specific
states of the world. Reentry or recurrence across these populations can allow the
network to achieve higher-level function, and their behavior can be shaped through
value-based learning such as that derived from reward and punishment.

Edelman’s brain-based devices helped to demonstrate that the interaction with the
environment is important not just for understanding how we control behavior, but also
for how we acquire new forms of control. From birth, action shapes the animal’s
experience which in turn has a profound influence on the coding systems used by the
brain (Verschure, Voegtlin et al. 2003, Lungarella, Pegors et al. 2005). These self-
organize so as to efficiently represent the kinds of signals that occur most frequently,
and also, perhaps, those signals that will be most effective in predicting how the sensory
world will unfold in the near future (see, also Clark (2013)), or that are most
behaviorally-relevant to the activity in which the animal is currently engaged (Prescott,
Diamond et al. 2011). In the brain both of these forms of learning occur and we will later
describe Distributed Adaptive Control theory (Verschure, Krose et al. 1992, Verschure,
Voegtlin et al. 2003), which explores how different learning, and memory systems, in the
mammalian brain, work together to generate perception, cognition and action. In
chapter 14 (Neural Maps), Bednar and Williams also detail how self-organization shapes
the function and development of neural maps that underlie the major mammalian
perceptual systems.

The role of morphology in computation
Over time, evolution selects physical morphologies that create and enhance behaviorally
relevant signals prior to any processing by the nervous system.

For instance, the harbor seal has perfected the skill of tracking the hydrodynamic trails
left by fish prey as they move through the water allowing them to detect and follow an
animal whose movement has disturbed the water up to several minutes previously
(Dehnhardt, Mauck et al. 2001). The sensor mechanism by which seals achieve this task
is a specialization of the facial vibrissae, which in seals have richly innervated follicles
that allow the detection of minute changes in water currents. The capacity to detect
these changes is enhanced by an adaptation in the morphology of the whisker whereby
the smoothly tapered vibrissal shaft of land mammals has been replaced by a non-
tapered and undulating shape (see Figure 3, left). Hydrodynamic tests of this whisker
shape show that it has a remarkable capacity to eliminate the sensory noise due to the
animal’s own movement (Hanke, Witte et al. 2010). Whereas a smooth and tapered
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whisker would bend as the animal swims through the water due to the effects of drag,
the undulating shape of the seal whiskers creates micro-vortices that cancel and largely
eliminate drag giving a much improved signal-to-noise ratio for detecting disturbances
in the water created by prey animals. These changes to the sensory system of the seal
are matched by adaptations of the body, such as streamlining for efficient swimming,
that demonstrate how mechanisms for perception co-evolve with those for action.

A second example of morphology simplifying the problem faced by the nervous system
is provided by the mating behavior of the female cricket which requires it to identify and
track-down a male of its species by attending to its distinctive chirping sound. The task
of distinguishing and orienting towards a male “song” is facilitated by the physical
structure of the cricket's tracheal tube whose four openings (see Figure 3 right)
differentially amplify sounds arriving at the left and right ears depending on the sound-
source direction (Michelsen, Popov et al. 1994). The physics of this system is such that
directional selectivity is greatest for auditory vibrations at the specific wavelength
produced by the male animal, thus providing a non-neural mechanism that assists the
female in orienting towards ethologically-appropriate stimuli. Using robot models,
Webb and her co-workers have explored the relative contributions of physical
morphology and of identified neural circuits in the cricket brain to generating integrate
phonotaxis behavior (see Webb (2002) for review). Further examples of the importance
of morphology for simplifying perception and control in animals and robots are
discussed by Chiel and Beer (1997), and Pfeifer and Bongard (2006).

\.i:Ers:'Il."\.
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Figure 3. Examples of morphological computation in animal sensory systems. Left: The whisker of
harbor seal (Phoca vitulina) in dorsal (A) and frontal view (B) showing the flattening, in the dorso-ventral
direction, and presence of undulations that serve to reduce the drag caused by the whisker (from Hanke et
al, 2010). Right: The tracheal tube of the cricket showing the four openings (two on each side) that
provide enhanced directional-sensitivity to sounds at the wavelength produced by the male cricket (from
Webb, 2002).

When is the real world better than simulation?

ENIAC, the first general purpose programmable electronic computer was used by the US
military to calculate artillery firing tables based on measures such as the azimuth of the
gun barrel, weight and shape of the missile, and the strength and direction of the wind
(Reed 1952). Thus, since their origins, one of the important uses of computers has been
to simulate the physics of the real world. Today, a range of simulated physics systems
exist from the quick-and-dirty, but real-time, engines that drive gaming environments,
to computationally intensive programs that provide accurate, but domain-limited
simulation for specific problem spaces such as fluid dynamics, weather forecasting or
the dynamics of global warming. Simulators are available that can be configured to
replicate the physical design and sensory and actuating systems of standard robot
platforms (see, e,g. Michel and Heudin (1998), Koenig and Howard (2004)). Special
purpose simulators have also been developed that capture aspects of the physical
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morphology of target animals such as the lamprey (Beauregard, Kennedy et al. 2006),
quadrupeds such as the salamander (See Chapter 9 and Ijspeert (2000)), and, of course,
humans (Fenner, Brook et al. 2008, Tikhanoff, Cangelosi et al. 2008). However, current
simulations of real-world physics struggle to capture all of its mechanical and dynamical
properties such as collision elasticity, surface friction, absorption, etc. Interactions
between objects that are deformable, possess irregular surfaces, or are subject to
environmental disturbances are a particular challenge (Ijspeert 2014). Validation of
these properties, which may be essential for trusting the scientific conclusions obtained
with simulations, can be an immense undertaking.

The use of simulation for exploring nervous system, body, and environment interactions
is therefore not always a ‘no-brainer’. Simulators for games platforms are designed to
give a believable impression of real-world physics but cut corners on the true physics in
their pursuit of perceptual acceptability; special-purpose simulators are likewise
generally not developed with the application of testing embodied brain models as their
focus. Adapting any simulator to provide an embedded testing environment for a
computational neuroscience model is therefore likely to require some work. Consider,
for instance, the problem of how animals are able to track odor plumes in turbulent
liquid flows. Experimental studies of animal behavior indicate that animals are
sampling, and altering their behavior, at time scales (sub-second) and spatial scales
(sub-millimeter) that are outside the limits of currently available simulators of real
flows (see below). Below we explore how research in embodied robotics has allowed
scientists to side-step this problem by embedding suitably-configured robots in real
environments.

Although the world comes “for free” with a robot model, something that replicates key
properties of the body has to be provided as the interface between model nervous
system and the environment. Ideally the properties of the physical robot model should
match relevant biomechanical constraints, identified in the animal, at least as far as
these are thought to be relevant for the behaviors targeted. One of the trade-offs in
modeling is then to decide when the benefits of having an embodied model, in terms of
access to real-world physics, justifies the cost of building and running a bespoke
physical system. As we will see in the examples discussed below, valuable results can
often be obtained by attending to a key set of morphological constraints, rather than
mimicking an entire creature. Indeed, holding to our view that a physical model should
be useful rather than accurate, one usually abstracts away many of the physical details
in order to get a good understanding of both the problem that a biological system is
solving and the way in which this is accomplished. However, the challenge is also to be
cogent and clear about these assumptions and how they affect the results and their
interpretation (see Prescott, Montes Gonzalez et al. (2006) for further discussion of this
issue).

3. Embodied models as means to understand animal sensorimotor and
information processing capabilities

Often when we look at the animal world we see abilities that neither we, nor our
technologies, possess. Hydrodynamic trail-tracking in seals is one example we have
already mentioned, another is the memory abilities of Clarke’s nutcrackers, a bird who
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can recall the locations of up to 30,000 seeds stored in the summer the following winter
over a 25 km area (Balda and Kamil 1992). Such feats humble those of us who lose our
car keys between the time we return home from work or school in the evening and the
time we leave the next morning! The homing ability of salmon is another often cited, but
under-appreciated, example. These fish are able to swim thousands of miles across the
(to us) featureless expanse of the Pacific ocean to an exact location to which they had
just a brief exposure years before, using learned magnetic, olfactory and visual cues
(Crossin, Hinch et al. 2007). The secrets possessed by these birds and fish are not yet
understood to a degree that permits their instantiation in designs for implementable
technology. Therefore their study in streamlined simpler devices that are not
encumbered by biological processes that are essential for the animal but not required
for the task (waste elimination, reproduction, etc.), are an attractive approach to
understanding how they do it.

Plume-tracking in a robot lobster

Nor are vertebrates the sole keepers of the secrets to information processing abilities
not realized by human technology. Invertebrates also possess abilities that we have yet
to understand and that we would like to have in our technologies. American lobsters, as
well as several other crustacean species, are able to locate the source of an attractive
smell by walking to it, following the odor over distances of many meters (Grasso and
Basil 2002). This does not seem so startling until one realizes the complicated and
unpredictable path that each whiff of aroma travels between the aromatic object and the
lobster’s “nose”. The odor does not just make its leisurely slow way through molecular
diffusion to the animal (this would take an inordinate amount of time) but it is carried
by water flow. Thus the lobster’s behavior, also known as rheotaxis, is “go with (or
against) the flow.” In the real ocean, where the lobster makes its living, real water flows
are also chaotic or, in the language of fluid mechanics, they are turbulent.

Turbulence is not completely random but consists of eddies and vortices that appear
and disappear on many scales and that interact with each other. The structure of
turbulent flow is related to the Reynolds number, Re, where:

Ul
Re = 2=,
u

Here U is the mean velocity of the object relative to the fluid; / is a characteristic length
used to specify spatial scale; is the dynamic viscosity of the fluid (it’s “stickiness”); and
is the density of the fluid.

The value of Re gives an indication of the expected degree of turbulence. The ratio here
is one of inertial forces (the numerator) to viscous forces (the denominator). If the value
is less than one, then the viscous forces dominate and diffusion determines the rate and
pattern of aroma transport from the source to the lobster’s sensor. If it is greater than
one, however, inertial forces dominate, and the flow patterns determine the rate and
pattern of movement of aromas through space. The higher the Reynolds number the
more chaotic. For each given range of numbers (say, 10-100, 100-1000 etc.), however,
the pattern of flow, and therefore the movement of aromas through space, is
“dynamically similar” regardless of the medium. In other words, within each range,
characteristic dispersal patterns emerge that are the same if the fluid is air, water, or



Chapter 17 Embodied Models & Neurorobotics 11

liquid mercury, or if the spatial scale is a few centimeters in a fish tank or the
atmosphere of the planet Jupiter. A fuller discussion of turbulence and of experimental
and simulation approaches to understanding turbulence is provided by Benzi and Frish
(2010).

It makes sense, then, that animal brains would evolve to make use of this universal
patterning and, indeed, they have (see Vogel (1994) for a fascinating comprehensive
tour of the relationship between fluid flow and design of biological systems). In the case
of the lobster, it gets better at tracking the longer it is engaged in following a given
turbulent odor plume; specifically, it moves faster, as if more confident, and also reduces
its steering error relative to the target. This suggests that memories of recent
encounters with whiffs of odor inform its later decisions (Moore and Atema 1991, Basil
and Atema 1994). Unfortunately, the principle of “dynamic similarity” does not allow us
to model the exact time series of aromas encountered by the animal using a simulation,
rather, it merely tells us that the patterns are “similar”. Further, the more powerful
Navier-Stokes equations, which describe all of turbulent flow, provide statistical
averages of flows at points in space and time but not the exact sequence of inputs a single
animal moving through a plume would receive. In the case of chemical plume tracking in
turbulent flows, then, standard modeling techniques cannot provide us with an accurate
series of concentration values along the path an animal would take, only a series of
independent estimates of the averages. A test of the hypothesis that the lobster
remembers the aroma it encounters during tracking, if conducted in such a simulator,
might miss out on the key information that the lobster uses and therefore be no test at
all.

On the other hand, applying a suitable robotic model of lobster information processing
should be an effective way to adequately test the hypothesis. Simply place the physical
model into real plumes and let its behavior provide evidence for the effectiveness of the
proposed model in explaining the information processing that occurs in the animal
(Figure 4). Indeed, when researchers did this they found a role for memory in a robot
lobster (Grasso and Atema 2002) that might not have been obvious if the researchers
had studied a simulated plume with a simulated lobster. Specifically, Grasso and Atema
(2002) compared three different control schemes, exploiting (i) a single chemo-sensor,
(ii) a stereo sensor pair, and (iii) a stereo pair with memory, as illustrated in Figure 5. A
measure of overall tracking performance compared with a lobster showed significant
benefit of the stereo sensor pair, and of the additional memory component, although the
best model fell some way short of lobster performance, suggesting that there may yet be
better algorithms to be discovered (perhaps by looking in more detail at the neural
substrates).
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Figure 4: Robot ‘lobster’ tracking a chemical plume. The problem of locating the plume source in this
robot is decomposed into transforming a series of chemical concentration signals (visualized by dye in the
photo) into a series of differential commands to the wheels of the robot which form a path in space. This
robot demonstrated that a ‘memory’ of recent concentration series lead the robot to more efficient paths
to the source; revealing the plausibility of the information processing method and memory for the
biological lobster. From (Grasso and Atema 2002).

In this study the robot was a relatively simple device with two driven wheels capable of
moving on the bottom of a fume or flow tank, or a relatively smooth portion of the ocean
floor as shown in figure 4, with sensors for flow detection that broadly replicated the
sensitivity of lobster antennae rather than seeking to match specific chemosensory
mechanisms. Key features such as the scale and positioning of the sensors relative to
the flow were tuned to match the biological target. The results do not rule out
alternative models of lobster rheotaxis but, at the same time, they do provide proof-of-
principle of the memory-based method as a plausible strategy that can work with real-
world flows. More generally, these results suggest that as the physics of the part of the
world that is of interest becomes more difficult to model, an effective approach is to use
the world as its own model and to test physical models of embodied sensorimotor
processing against it.
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Figure 5. Illustration of the plume-tracking strategy used by the robot. The sequence of motion is
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indicated by the progression of arrows. Chemical samples are collected at each successive location to
inform the next move. Upstream motion (U), triggered by detection of the plume, is in a series of upstream
steps. Failure to detect the plume at one of the sampling positions leads to an across stream motion called
a cast. The choice of casting left (C) or right (Cr) is one of the parameters that is under algorithmic
control. Grasso and Atema (2002) found that a strategy using memory of past patterns of stimulation to
control the direction of cast gave results closest to those found with living animals. From Grasso and
Atema (2002).

Modeling the neural circuits underlying bilaterian pattern generation

The example of lobster rheotaxis, described above, illustrates how robots can be used to
evaluate theories of animal behavior couched at an algorithmic or informational level,
however, embodied modeling can also be used to directly test the capacity of model
neural circuits to generate adaptive behavior.

The nervous systems of all bilateral animals have been characterized as having an innate
neuronal architecture based on command neurons, coordinating neurons and central
pattern generators (CPGs) modulated by phase and amplitude modulating reflexes
(Kennedy and Davis 1977, Stein 1978, Stein, Grillner et al. 1997, Pearson 2005, Jordan,
Liu et al. 2008). These network components appear to underlie innate behaviors such as
the control of posture, repetitive movement and inter-segmental coordination (Ayers
2002). In invertebrates, these components have been demonstrated and analyzed at the
level of identifiable neurons and underlying molecular processes (Selverston and Ayers
2006) and key underlying mechanisms have been shown to be conserved between
invertebrates and vertebrates (Grillner, Hellgren et al. 2005, Grillner, Markram et al.
2005, Pearson 2005). Biological cellular CPGs have been described in model animals
where the relevant circuitry can be established by pairwise recordings between neurons
(Selverston, Russell et al. 1976, Buchanan and McPherson 1995). An important aspect
of these biological model systems is that they accommodate complex integrative
phenomena such as neuromodulation (Hasselmo 1995, Dickinson 2006, Harris-Warrick
2011) and that the details of their function can be characterized by anatomical (Weeks
1981) and cellular dissection (Selverston 1980). (Note that, in Chapter 8, Fellous,
Hasselmo and Canavier describe a number of rather different functions of
neuromodulation in mammals.)

Key to developing a robot model that can capture the functionality of these circuits is the
capability to compute in real time and to achieve realistic mechanistic models of
phenomena such as neuronal integration (Ayers, Rulkov et al. 2010) and
excitation/contraction coupling of artificial muscle (Witting, Ayers et al. 2000) within a
physical plant that adequately approximates the biomechanics of the animal. This can
be achieved by using phenomenological models of neurons and their synapses,
incorporated into a CPG control architecture organized around exteroceptive reflexes
(i.e. those concerned with external stimuli), and embedded within a biomimetic robot
body plan (Ayers and Rulkov 2007, Ayers and Witting 2007, Westphal, Rulkov et al.
2011).

A critical component of bilaterian innate behavior is the CPG that drives central motor
programs that mediate the behavioral contributions of single body segments (Selverston
2010). Although some CPGs produce relatively fixed action patterns (Hume, Getting et
al. 1982) most are subject to extensive neuromodulation that allows the underlying
networks to reconfigure to generate different behavioral acts (Heinzel 1988). In others,
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gating synaptic input can switch between alternative patterns such as walking in
different directions (Ayers and Davis 1977, Ayers and Witting 2007).

Using the lobster, lamprey, and honeybee as target animals, and focusing on the neural
circuitry underlying locomotion, Ayers and Rulkov (2007) developed embodied models
using electronic Discrete Time Map-based (DTM) neurons whose membrane dynamics
evolve according to the state-space plot illustrated in Figure 6 which is intended to
capture some of the dynamics of biological neurons. Here the membrane voltage in a
given cycle n+1 is specified relative to its value in cycle n according to two difference
equations based on synaptic current input and two control parameters a and o whose
values are specific to each neuron type, shape the function of the map, and define the
characteristics of individual neurons. A detailed specification of this model is given in
Box 1. As shown in the figure, when configured into different regions of a/c space,
neurons are either silent, tonically firing, bursting, or, in the highlighted saddle region
between bursting and spiking, exhibit chaotic discharge (Shilnikov and Rulkov 2003).

To create synthetic neural networks that could simulate locomotor CPGs, Ayers and
Rulkov configured networks of electronic neurons in bursting mode (Figure 6a) using
predominantly inhibitory model synapses. The difference between postsynaptic voltage
and the reversal potential of the spiking state of the presynaptic neuron was used to
define the model synapses, with the topology of the network maintained in a look-up
table of pre and post- synaptic neurons. Because the neuron model is based on
difference equations rather than differential equations it is possible to control a large
number of neurons and synapses in real time and tune their properties to behavioral
context. This allows us to model phenomena such as neuromodulation (see below)
using behaving robots (Ayers, Blustein et al. 2012). Moreover the option to vary chaos
(figure 6b) allows us to model the adaptations underlying the wiggling and squirming
behaviors observed in animals.
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Figure 6. State space for Discrete Time Map-based (DTM) neurons. The yellow region (b) indicates
where chaotic firing occurs. a & ¢ indicate regions of bursting & spiking discharge Adapted from Rulkov
(2002).
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Figure 7 illustrates CPGs configured in this way as either reciprocal half-center (7a) or
endogenous pacemaker inhibitory networks (7b) to model lamprey-like swimming
(Westphal, Rulkov et al. 2011) and lobster-like walking respectively (Ayers and Davis
1977). In both types of networks, synergies—pools of neurons operating together—are
formed by excitatory synapses between elements. Relative timing between synergies is
then adjusted by differentially varying the control parameters a, o, and the relative
strength of the inhibitory synapses between synergies.

The half-center model of lamprey swimming, illustrated for a segment of the spinal cord
in figure 7a, relies on reciprocal inhibition between the cross caudal interneurons (CCs)
and on post inhibitory rebound (that is, increased neuronal excitability following the
cessation of inhibition) in these cells (Perkel and Mulloney 1974, Buchanan and
McPherson 1995, Buchanan 1996). This mechanism is sufficient to generate
proportional symmetric alternating bursts driving bending of the tail to the left or right
(Westphal, Rulkov et al. 2011).

In the lobster walking model (7b), an endogenous pacemaker-configured neuron, elev
(elevator), establishes an oscillation with an antigravity synergy, dep (depressor), and a
stance synergy that recovers later than dep from elev inhibition to create the late swing
epoch (figure 7c). The stance synergy alternates with a swing synergy. Elev and swing
generate the early phase while swing and dep generate the late swing phase (Figure 7c;
see also figure 10 for patterns of model neural activity). The stance phase of stepping is
mediated by the stance and dep synergies. Command neurons gate off synapses between
protractor and retractor bi-functional synergies during forward and backward walking
to mediate forward and backward walking, and between swing and stance and extensor
and flexor synergies during lateral walking (Ayers and Davis 1977).
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Figure 7. Central pattern generators for lamprey-like swimming (a) and lobster-like
omnidirectional walking (b). In these diagrams the circles represent individual DTM neurons. In A, the
contralateral synergies alternate due to intrinsic bursting mechanisms and reciprocal inhibition.
Abbreviations: CC, cross caudal interneurons; LIN, lateral inhibitory neurons; EIN, excitatory interneuron
(adapted from Westphal, Rulkov et al. (2011)). In B, differential inhibitory synaptic strength between the
elevator synergy and depressor or swing synergy creates a three-phase rhythm characteristic of walking
in the four directions. Descending walking commands gate connectivity between swing and stance phase
interneurons and bi-functional motor neurons, at a pattern-generating nexus, to mediate walking in
different directions. The three-phase pattern of walking is indicated in C.

Ayers and co-workers have used DTM networks to control three biomimetic robots
RoboLobster, RoboLamprey and RoboBee (Ayers, Blustein et al. 2012), as shown in Figure
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8. These robotic implementations have verified that the command neuron/coordinating
neuron/CPG architecture, when instantiated with phenomenological models of neurons
and synapses, can achieve adaptive behavior through swimming, walking and flying
(Ayers, Blustein et al. 2012).

Figure 8. Biomimetic Robots (a). RoboLobster. (b) A helicopter proxy RoboBee. (c). RoboBee. (f).
RoboLamprey. See Ayers, Blustein et al. (2012) for further details.

To achieve intersegmental coordination in a model system such as RoboLobster,
interneurons are incorporated that pass information from one governing oscillator to
another causing the phase advances or delays that mediate gait (Ayers and Selverston
1979). The system is also modulated parametrically by inter-segmental commands that
shift the elements into a bursting mode and control average frequency (Ayers and
Witting 2007). This architecture is illustrated in figure 9a.

Command neurons exist in a heterogeneous population that mediates a variety of
behavioral acts (Bowerman and Larimer 1974a, Bowerman and Larimer 1974b). In the
lamprey some commands preferentially excite anterior segments to mediate forward
swimming while others excite more posterior segments to mediate backward swimming
(Matsushima and Grillner 1992).

Exteroceptive reflexes link sensors to taxic and compensatory behavior (Figure 8b-c)
and can operate in parallel when triggered by environmental contingencies. For
example, parallel exteroceptive reflex circuits for collision and heading control in
RoboLamprey are illustrated in figure 8c. In robot implementations, small
microprocessors are used to analyze analog sensor reports and generate ‘labeled-line’
codes (Bullock 1978). For example, to guide heading control, a heading estimate,
provided by an analog compass, is compared with a desired heading; a current
proportional to this difference is then used to activate a “heading deviation” neuron.
Modulatory interneurons can target the neuronal oscillator or the motor neurons
directly to modulate amplitude.
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Fig. 9. Inter-segmental modulatory systems. A. Command neuron, coordinating neuron central pattern
generator organization of RoboLobster. B. Pathways for command (CN) and MI modulatory control of the
RoboLobster CPGs by exteroceptive sensors. C. Layered exteroceptive reflex architecture of RoboLamprey
to mediate collision and heading control. A hierarchy of lamprey inter-segmental and brain commands
project the sensor inputs for heading deviation and rapid deceleration.

The exteroceptive reflex architecture works interchangeably between the three robot
platforms demonstrating its adaptability to different physical morphologies (Ayers
2002). For example, a neuronal compass based on heading deviation neurons works
equally well during walking in RoboLobster, swimming in RoboLamprey or flying in
RoboBee (Ayers, Blustein et al. 2012, Westphal, Blustein et al. 2013). Reflexes have also
been implemented for optical flow (optical flow sensors), hydrodynamic flow
(antennae), heading (compass), collision (accelerometer), gravity (inclinometer),
odometry (optical flow sensors with neuronal integrators) and beacon tracking (short
baseline sonar array) and these operate well in parallel (Westphal, Blustein et al. 2013).

By approximating the biomechanics of the animal model, the dynamics of the robot
vehicle behavior provides a good match to that of the living animal (Ayers 2004).
Furthermore, in underwater robots, the use of shape memory alloy actuators (Mohd
Jani, Leary et al. 2014) allows employment of heat to mediate excitation/contraction
coupling much as living muscle uses intracellular calcium (Witting, Ayers et al. 2000).
Thus the motor programs characteristic of the model neuromuscular system perform in
an analogous fashion to that of the animal.

The processes that give rise to the motor rhythm (endogenous bursting, postinhibitory
rebound, etc.) are also excellent models of the corresponding processes in the living
networks (Selverston and Ayers 2006). A key feature of these models is that because
they seek to capture the nonlinear dynamical behavior of neurons, rather than being
neuronal conductance models, they are simpler, can operate in real time and are
therefore suitable for robot control applications (Ayers and Rulkov 2007). As shown in
Figure 10, the use of neuronal network models, instead of finite state systems, allows
one to replicate in great detail the real behavior of the neurobiological system (a
network) and, thanks to spiking nature of the models, provides a link between the
electronic neurons and experimental measurements of neuronal activity from the
animal.
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Figure 10. Motor programs for forward and backward walking selected from an electronic neuronal
network shown in Fig. 7b. The forward command gates off synapses linking the stance phase and
protractor neurons as well as those linking the swing phase and retractor neurons.

Chemosensors based on principles of synthetic biology are currently under
development that will allow tests of circuit-based models of odor-guided plume-
following building on the more algorithmic approach described earlier (Grasso and
Atema 2002). By merging the information processing hypotheses developed by Grasso
and co-workers, with the more mechanistic understanding developed by Ayers and his
associates it should be possible, in the future, to develop embodied models in which we
have confidence that we are matching the target biological system at multiple levels of
description. By matching multiple constraints in this way we can achieve a form
convergent validation (Verschure 1996). That is, we not only obtain a more complete
understanding, we also increase the likelihood that our model captures how the living
system actually works rather than merely how it ‘might’ work.

4. Neurorobotics of the mammalian vibrissal system

The above embodied models have focused largely on invertebrate target animals, but
can neurorobotics also help us to gain insight into brains more similar to our own; that
is, those of other mammals?

One of the most popular model systems in which to study processing in mammalian
brains is the whisker, or vibrissal, sensorimotor system owing to its discrete
organization from the sensory apparatus (the whisker shaft) all the way to the sensory
cortex (see Figure 11 and Diamond, von Heimendahl et al. (2008)), its relative ease of
manipulation (for a living biological system), and, not least, its presence in laboratory
rats and mice. Whisker signals are processed at multiple brain sites, crossing a
minimum of two synapses, in the brainstem and in the thalamus, before reaching the
sensory cortex. The whisker cortex, which is know as the barrel cortex due to the
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presence of cellular aggregates that have a one-to-one mapping with the facial vibrissae,
is itself a target for huge research effort (see, e.g. Petersen (2007)). This is due to the
ability to be able to tweak a whisker at the periphery, in a known and quantifiable way,
and then record in a precise area of cortex to determine the effect of that stimulus.
Barrel cortex is therefore widely viewed as a preparation in which neuroscientific
research could unlock the secret of the ‘cortical microcircuit’. That is, if we can
understand the processing going on in the barrel field, then we may understand
something about the generic processing capacities of mammalian six-layered cortex that
is replicated, with some variation, across both of the cerebral hemispheres and in all
mammalian species. It is no surprise then, that new data on the barrel cortex, is
published on a weekly, if not daily, basis.
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Figure 11. The rodent vibrissal system. The vibrissal system (left) of rats and mice is a major target of
studies aimed at understanding mammalian brain architecture, partly due to the one-to-one
correspondence (right) between single vibrissae on the snout and cellular aggregates in the vibrissal
“barrel” cortex. Right figure adapted from Diamond, von Heimendahl et al. (2008).

But what of the stimuli with which neuroscientists are probing the rat brain in order to
understand what the barrel cortex is doing? Perhaps unsurprisingly, many of the
studies of barrel cortical function have been performed in anaesthetized animals or in
brain slices. Less frequent historically, but now increasing in number, are studies in
immobilized animals (head-fixed) that are awake and able to move their whiskers. Due
to the difficulty of stably recording from electrodes implanted in free moving animals
(where the recording device is usually connected via a springy umbilical cable) the
number of studies that have looked at barrel cortex processing in more natural
circumstances remains comparatively small. Moreover, the practical difficulties
associated with recording in moving animals mean that such studies generally record
extra-cellular activity—i.e. they use electrodes that pick-up activity in multiple nearby
cells; the capacity to distinguish what is happening in single neurons is therefore
limited. Overall then, the picture is much as we have described it in table 1—as you
move from the freely moving rat to more tractable experimental models—head-fixed,
anaesthetized, or slice—the ability to interrogate the processing system improves but
the capacity of those signals to tell you about the nature of processing in awake
naturally behaving animals falls away. This situation indicates there could scope for
robotic models that can capture some of the physics of how whiskers interact with
surfaces in exploring animals, and thus perhaps shed light on the nature of the
processing occurring in this part of the mammalian sensorimotor system.
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The closed loop of active vibrissal touch

There are two other strong motivations for investigating physical models of rodent
vibrissal processing. First, as we have already encountered with lobster plume tracking,
simulation of real sensory transduction can be difficult. In the case of whiskers, you
have a tapered flexible shaft one end of which is embedded in a soft deformable body—
the whisker follicle—packed with mechanoreceptors. Tactile sensing involves contact of
the (usually) moving whisker with surfaces that often have complex microgeometry (e.g.
texture), which may also be moving. Various simulation approaches have been
developed including a recent dynamic model that includes effects of damping, inertia,
and collisions (Quist, Seghete et al. 2014), however, accurate simulation of the
encounters of whiskers with interesting surface geometry remains an unsolved problem
that may be more easily addressed by building a physical model.

The second motivation concerns the nature of vibrissal sensing itself. Like many natural
sensing systems, vibrissae are not deployed passively to detect the consequences of
objects brushing against them. Rather, many whiskered animals, and particularly
rodents, actively move their whiskers against objects and surfaces of interest (see figure
12). Indeed, rats and mice move their whiskers back and forth many times per second
(a rate of about 8hz in rats), in a behavior known as “whisking”, generating multiple
touches of the whiskers against salient objects. The control of whiskers happens
alongside orienting movements of the head and body (Grant, Mitchinson et al. 2009,
Grant, Sperber et al. 2012), thus we can think of whisking as one component of an active
sensing system that uses the musculoskeletal system to help isolate and enhance the
stimulus features of the environment that are of particular interest (Prescott, Diamond
et al. 2011). We can immediately begin to see a major compromise that studies of brain
slices and anaesthetized animals have to make when they study barrel cortex. Electrical
stimulation of a brain slice, or passive deflection of the whisker of a sleeping mouse or
rat, are both poor substitutes for the kinds of signals that are ascending from the
brainstem of an awake and active animal. Even in the head-restrained case, the animal
is detecting with its whiskers what the researcher has chosen to expose it too rather
than deciding for itself, through head and body movements, where to deploy its
whiskers (Mitchinson and Prescott 2013). Indeed, it is well-known that in head-fixed
animals the normal whisking behavior is not generally expressed and when it is evoked
(e.g. by stimulation of the olfactory system) may have somewhat different
characteristics from the whisking of the free-moving animal.
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Figure 12. Active vibrissal touch is supported by a nested-loop brain architecture. Many animals
generate rhythmic whisking movements, shown here is a bout of rat whisking at two temporal scales as
measured optoelectronicaly in a head fixed animal (Gao, Bermejo et al. 2001). The upper trace shows the
average left and right whisker movement over the course of an 8.5s bout. The lower trace shows that the
movement of the left and right whisker fields are usually strongly coupled. Vibrissal signals are processed
in multiple nested sensorimotor loops that show a tight coupling between sensing and actuation (whisker
movement) (adapted from Kleinfeld, Ahissar et al. (2006)).

How important is this for understanding the signals that are being processed in barrel
cortex? This only becomes clear when we carefully study the nature of the whisker
movements expressed by animals, and the architecture of the neural circuits that
process vibrissal signals. In the case of the latter, it is now well known (e.g. Kleinfeld,
Ahissar et al. (2006)) that the barrel cortex does not simply sit atop a feed-forward
circuit relaying whisker deflection systems up from the periphery as somewhat
misleadingly implied in figure 11 above. Rather, as indicated in figure 12 (right), it is
embedded within a complex architecture of nested sensorimotor loops at the brainstem,
midbrain, and cortical levels, each of which implements a relatively short-latency
coupling between sensory input and motor output. Thus both the behavior of the animal
(movement of the whiskers) and the neural circuits themselves, suggest that barrel
cortical activity cannot be properly understood in isolation from the sensorimotor
activity—exploratory whisking—that generates it. We return to consideration of this
larger architecture after first homing in on the whiskers and their role in generating the
sensory signals we find in the brain.

Towards a robot model—how engineers sometimes ask the right questions

What can we find out about the vibrissal system and processing in key brain areas such
as the barrel cortex by building a robot model of the rat vibrissae? First off we have to
build such a model. How then should the robot move its whiskers? Back-and-forth
certainly, and at some speed, but when the whiskers touch an object should they keep
moving forward regardless or should they change their behavior? Surprisingly, when
researchers began to develop robot vibrissae the answer to this key question was not
available in the scientific literature despite almost a century of effort to try to
understand rat vibrissal sensing. Therefore, urged on by the robot engineers,
Mitchinson, Martin et al. (2007) carefully recorded free-moving rats interacting with an
object using their whiskers and studied the trajectories and timing of whisker motion,
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before and after obj