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Whereas	most	other	chapters	 in	 this	book	study	computer	or	mathematical	models	of	

various	 aspects	 of	 brain	 function,	 here	 we	 focus	 on	 the	 value	 of	 physically-embodied	

models,	 in	 which	 simulated	 brain	 circuits	 are	 embedded	 within	 robotic	 bodies.	 	 The	

general	goal	in	doing	this	is	to	better	understand	the	interaction	of	the	brain,	the	body	

and	 the	environment	 in	generating	 the	adaptive	behavior	we	see	 in	animals.	 	 	We	call	

these	 embodied	 computational	 neuroscience	 models	 (Prescott,	 Montes	 Gonzalez	 et	 al.	

2006),	and	the	emerging	domain	of	research	in	such	systems	neurorobotics	(Ayers	2002,	

Dario,	Carrozza	et	al.	2005,	Krichmar	2008).		Although	the	main	emphasis	of	this	chapter	

will	on	the	value	of	such	models	to	neuroscience,	it	is	worth	noting	that	the	construction	

of	these	artifacts	to	address	scientific	aims,	can	also	lead	to	the	availability	of	a	new	class	

of	technologies	that	can	address	outstanding	challenges	in	engineering	(Prescott,	Lepora	

et	al.	2014).		

	

The	 structure	of	 our	 chapter	 is	 as	 follows.	 	 First,	we	 introduce	 the	 idea	of	 developing	

embodied	 models	 of	 animals	 and	 their	 nervous	 systems	 comparing	 and	 contrasting	

these	 with	 other	 types	 of	 models	 studied	 in	 neuroscience.	 	 Second,	 we	 discuss	 the	

relationship	 between	 brains	 and	 bodies	 explaining	 why	 the	 notion	 of	 embodiment	 is	

critical	 if	 we	 are	 to	 fully	 understand	 the	 role	 of	 brains	 in	 determining	 or	 influencing	

behavior.	 	 Third,	 we	 explore,	 in	 some	 detail,	 several	 example	 robot	 models	 of	

invertebrate	sensorimotor	co-ordination,	showing	how	useful	models	can	be	developed	

at	different	 levels	of	description—for	 instance,	 in	 terms	of	 information,	or	 in	 terms	of	

circuits,	and	how	the	best	models	can	combine	multiple	levels	of	description.		Fourth,	we	

investigate	how	the	layered	architecture	of	the	mammalian	brain	can	be	approximated	

in	 robot	 models	 that	 incorporate	 key	 aspects	 of	 animal	 behavior	 and	 morphology.		

Finally,	 we	 consider	 how	 such	 models	 could	 be	 scaled-up	 to	 address	 the	 challenge	 of	

understanding	the	whole	mammalian	brain.	

	

1.	Physical	models	in	neurobiology	

As	 explained	 in	 the	 introductory	 chapter,	 the	 goal	 of	 modeling	 is	 not	 to	 replicate	 as	

accurately	as	possible	what	we	see	in	biology.	 	Rather	it	 is	to	help	us	to	understand	of	

the	underlying	principles	that	are	exploited	by	biological	systems	to	maintain	life.			

	

Today,	modeling	often	takes	the	form	of	computer	simulation,	however,	physical	models	

have	also	played	an	important	role	in	biological	science.	For	instance,	the	discovery	by	

Watson	and	Crick	of	the	structure	of	our	genetic	material	was	based	on	the	construction	

of	a	physical	model	comprised	of	 little	metal	sheets.	 	This	 three-dimensional	structure	

allowed	Watson	and	Crick	to	conceive	of	a	shape—the	double	helix—that	could	account	

for	 the	 x-ray	diffraction	data	of	DNA	gathered	by	Rosalind	Franklin	 (Crick	1990).	The	

Watson	and	Crick	model	 facilitated	 the	scientific	discovery	process	without	 looking	 to	

accurately	mimic	biological	reality;	rather,	it	employed	a	suitably	defined	abstraction.		

	

In	1945,	eight	years	before	Watson	and	Crick’s	breakthrough,	Rosenblueth	and	Wiener	

proposed	that	the	criteria	for	a	good	model	was	not	how	accurately	 it	captured	all	 the	

details	of	 the	biological	phenomenon	of	 interest,	but	how	useful	 it	was	 in	casting	new	

light	 on	 that	 phenomenon.	 The	 Watson	 and	 Crick	 model	 succinctly	 demonstrates	 this	

principle—to	 intuit	 the	 structure	of	 the	DNA	molecule	became	much	easier	once	 they	

had	a	physical	model	they	could	manipulate.			
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A	further	strength	of	all	good	models	is	that	they	capture	the	major	common	features	or	

properties	 of	 the	 system	 under	 study	 and	 summarize	 the	 individual	 variation.	 This	 is	

true	 not	 only	 of	 physical	 models,	 robots	 and	 computer-based	 simulations,	 but	 also	 of	

biological	models.	Neurobiologists,	who	 can	 sometimes	be	dismissive	of	 simulation	 as	

“only	 a	 model”,	 should	 if	 they	 are	 being	 logically	 consistent,	 also	 dismiss	 the	 model	

systems	they	study	themselves.	For	instance,	someone	might	use	one	animal	as	a	model	

of	another	(e.g.	the	rat	as	a	model	of	a	human);	or	an	animal	in	an	altered	condition	(e.g.	

under	anesthesia,	or	awake	but	immobilized)	as	a	model	of	the	same	animal	but	awake	

and	behaving;	or	an	 isolated	part,	such	as	a	brain	slice	or	a	muscle,	as	a	model	of	 that	

component	 within	 an	 intact,	 functioning	 system.	 Hence	 the	 neurobiologist,	 like	 the	

modeler,	 takes	 significant	 steps	 away	 from	 the	 actual	 system	 of	 interest—species	

difference,	 anesthesia/immobility,	 dissection—for	 the	 practical	 benefits	 of	 having	 a	

system	that	is	easier	to	study.	

	

For	similar	reasons	of	accessibility	and	ease	of	study,	Rosenbleuth	and	Wiener	argued	

that	 a	 good	model	 should	 translate	 a	 question	 about	 the	natural	world	 into	 a	 domain	

that	we	understand	better,	and	it	should	allow	us	to	conduct	experiments	with	relative	

ease.	 	 In	this	chapter	we	contend	that—for	exploring	a	range	of	relationships	between	

brain,	 body,	 and	 behavior—robotics,	 which	 translates	 problems	 in	 biology	 into	

problems	 in	 computing	 and	 engineering,	 meets	 the	 requirements	 of	 being	 easier	 to	

study	and	to	understand	particularly	well.		

	

Let’s	begin	from	the	standpoint	of	the	neurobiologist	looking	at	potential	model	systems	

for	 understanding	 the	 role	 of	 the	 brain	 in	 generating	 natural	 (ethologically-relevant)	

behavior.	Table	1	compares	and	contrasts	neuroscientific	models	and	robotic	models	in	

order	 to	 show	 some	 of	 their	 advantages	 and	 disadvantages.	 Our	 table	 illustrates	 that	

robotic	models	can	nicely	capture	interesting	properties	of	awake	behaving	animals	that	

are	 lost	 as	 we	 move	 to	 more	 accessible	 neurobiological	 models.	 	 In	 particular,	 robot	

models	 are	 more	 amenable	 to	 investigation	 of	 their	 internal	 processes,	 such	 as	 the	

current	state	of	any	calculations	being	performed,	than	any	existing	animal	model.	The	

main	issue	for	robot	models,	though,	is	how	to	capture	enough	of	the	relevant	properties	

of	the	neural	and	physical	substrates	of	the	target	system	to	create	a	useful	model.		

	

System	 Properties	 Amenable	to	

experimental	

investigation	

of	internal	

processes		

Similar	

neural	&	

physical	

substrates	

Intact	

system	

Embedded	in	

the	

environment	

Expressing	

ethologically-

relevant	

behavior	

Awake,	free-moving	

organism	(target)	
*****	 *****	 *****	 *****	 *	

Animal	

models	

Awake,	

restrained		
*****	 *****	 *****	 ***	 **	

Under	

anesthetic		
*****	 *****	 ***	 *	 ***	

Brain	slice	or	

similar	
*****	 *	 **	 *	 ****	

Robotic	model	 *	 *****	 *****	 ****	 *****	

Table	 3.1.	 Advantages	 and	 disadvantages	 of	 different	 neuroscientific	 models	 compared	 to	 robotic	

(physical)	models	on	an	ordinal	scale	(more	*s	=	better)	(Adapted	from	Mitchinson,	Pearson	et	al.	(2011)).	
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Note	that	for	each	of	the	different	neuroscientific	model	systems	considered	in	Table	1	

we	might	also	build	a	computer	simulation	to	meet	our	requirement	for	accessibility	and	

ease	of	experimentation.	Indeed,	in	this	age	of	high-power	computer	systems	with	real-

time	simulated	physics	engines,	 is	 it	ever	really	worthwhile	physically	copying	aspects	

of	the	animal?	Our	answer	is	“not	always”,	or	perhaps	even,	“generally	not”.	Depending	

on	 your	 question	 (and	 one	 issue,	 as	 we	 will	 see,	 is	 whether	 you	 are	 asking	 the	 best	

question)	 you	 may	 be	 better	 off	 staying	 in	 the	 world	 of	 simulation	 as	 many	 of	 the	

excellent	 computational	 models	 in	 this	 book	 show.	 In	 this	 chapter	 we	 will	 argue,	

nevertheless,	that	there	are	circumstances	where	a	physical	model	is	going	to	be	a	better	

model,	in	the	sense	of	being	easier	to	build,	study	and	understand,	than	a	simulation.		

	

As	will	become	clear,	tackling	the	problem	of	creating	a	physical	model	may	sometimes	

also	drive	the	researcher	to	ask	a	different	set	of	questions	that	result	in	a	new	way	of	

thinking	about	that	system	that	is	closer	to	biological	reality.			Building	a	physical	model	

can	also	take	us	a	step	closer	to	creating	a	novel	behaving	system	that	may	be	of	some	

real	benefit	in	the	world	(and	one	of	the	goals	of	science	must	be	to	create	this	kind	of	

useful	artifact).	 	In	general,	however,	it	is	rarely	a	question	of	either/or.	 	In	developing	

robotic	models	we	will	often	use	simulation	as	a	tool	for	exploring	the	design	space	for	

biomimetic	 artifacts	 before	 we	 build	 them,	 and	 we	 will	 look	 to	 use	 our	 completed	

physical	model	to	validate	and	extend	the	insights	obtained	through	simulation.	

	

2.	 Embodiment	matters	

The	 existence	 of	 directed	 swimming	 in	 single-celled	 eukaryotes	 such	 as	 Paramecia	

(Jensen	1959)	reminds	us	that	nervous	conduction	is	not	a	prerequisite	for	movement	

or	action.	Indeed,	the	first	nervous	systems	evolved	some	hundreds	of	millions	of	years	

after	 the	 appearance	 of	 the	 first	 active	 mobile	 animals	 (Bengston	 1994).	 What	 the	

nervous	system	certainly	does,	however,	is	to	enable	movement	to	be	more	rapid,	more	

efficient,	and	better	adapted	to	the	environment.			

	

The	 importance	 of	 the	 body	 in	 generating	 coordinated	 movement	 is	 beautifully	

illustrated	 in	 machines	 that	 exploit	 the	 natural	 dynamics	 of	 their	 parts	 for	 periodic	

motion.	 	For	example,	McGeer	(1990)	showed	that	a	bipedal	walking	machine,	with	no	

control	 system	 whatsoever,	 can	 generate	 a	 stable	 walking	 gait	 on	 a	 suitably	 sloped	

surface	by	relying	on	the	passive	dynamics	of	suitably	configured	mechanical	parts.	This	

synergy	 between	 form	 and	 function	 has	 also	 been	 called	 morphological	 computation	

(Pfeifer	and	Bongard	2006).	Animals	provide	control	through	their	nervous	systems	in	a	

manner	 that	 complements	 their	 natural	 body	 dynamics.	 In	 walking	 or	 running,	 for	

example,	many	legged	animals	exploit	the	pendulum-like	natural	motion	of	jointed	limbs	

to	help	generate	a	suitable	cyclic	pattern.	In	a	similar	way,	a	parent	pushing	a	child	on	a	

swing	 controls	 the	 back-and-forth	 motion	 by	 periodically	 interjecting	 energy	 into	 the	

natural	 dynamics	 of	 the	 system.	By	 relinquishing	 some	aspects	 of	 control	 to	 the	body	

animals	also	benefit	from	the	energy	recycling	capability	of	elastic	tissues.	Muscles	and	

tendons,	 for	 instance,	 convert	 kinetic	 energy	 to	 potential	 energy	 as	 the	 foot	 hits	 the	

ground,	 providing	 a	 store	 of	 energy	 to	 be	 released	 in	 the	 next	 step	 cycle.	 Designing	

controllers	 modeled	 on	 animal	 locomotion	 pattern	 generators,	 that	 exploit	 these	

principles,	 provides	 a	 very	 promising	 path	 for	 building	 efficient	 legged	 robots	 (see	

Chapter	 9,	 Motor	 Pattern,	 Generation,	 Ijspeert	 (2014),	 and	 Section	 3	 below).	 Such	

controllers	can	be	simpler—for	instance,	having	fewer	control	parameters—than	more	
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traditional	 forms	 of	 continuous	 robot	 control,	 and	 will	 entrain	 themselves	 to	 the	

dynamics	 of	 the	 body	making	 them	highly	 adaptable.	 	 A	 broader	 lesson	 is	 that	 rather	

than	 thinking	of	 the	nervous	 system	as	 the	 coordinator	of	 the	body,	 in	 the	way	 that	a	

conductor	directs	an	orchestra,	we	might	think	of	it	more	as	“one	of	a	group	of	players	

engaged	in	jazz	improvisation”	(Chiel	and	Beer	1997,	p.	555)	influencing,	but	also	being	

influenced	by,	the	body	and	environment	in	which	it	is	embedded.		

	

Exploiting	the	physical	properties	of	body	parts	leads	to	a	simplification	of	the	problem	

of	 locomotion	 for	walking	and	running	animals	and	machines.	Similarly,	exploiting	the	

physical	 properties	 of	 the	 world	 allows	 animals	 and	 robots	 to	 generate	 apparently	

complex	behavior	through	simple	principles.	This	has	been	recognized	many	times	but	

some	examples	are	worth	noting.		

	

The	 neurologist	 Grey	 Walter	 built	 one	 of	 the	 first	 brain-inspired	 robots	 in	 the	 1950s	

when	 he	 created	 his	 robot	 ‘tortoises’	 Elmer	 and	 Elsie	 (Walter	 1953).	 Each	 tortoise	

(figure	1	left)	had	a	single	light	sensitive	‘eye’,	a	shell	that	was	sensitive	to	touch,	and	a	

pilot	 light	 that	was	configured	 to	extinguish	when	a	second	 light	source	was	detected.	

Control	was	provided	by	simple	analogue	electrical	circuits,	termed	relays,	designed	to	

mimic	 some	 of	 the	 properties	 of	 biological	 neural	 networks.	 As	 shown	 in	 Figure	 1	

(centre),	 these	 relays	 implemented	 a	 layered	 control	 hierarchy.	 The	 lowest	 level	

behavior	 provided	 forward	 movement	 (explore),	 if	 light	 was	 detected	 this	 was	

suppressed	and	replaced	by	a	movement	towards	the	light	(phototaxis),	and	if	the	shell	

touched	against	an	obstacle,	the	robot	would	stop	anything	else	it	was	doing	and	exhibit	

a	 simple	 escape	 maneuver	 (wriggle).	 By	 photographing	 his	 robot	 in	 darkness,	 with	 a	

lengthy	 shutter	 time,	 Grey	 Walter	 was	 able	 to	 record	 its	 trajectory	 when	 moving	 in	

environments	 such	 as	 that	 illustrated	 in	 Figure	1	 (right	 panel).	Here,	 after	 interacting	

with	 various	 obstacles	 the	 robot	 eventually	 approaches	 a	 light	 source.	 In	 other	

photographs	 the	 robot	 can	 be	 seen	 homing	 in	 on	 its	 ‘hutch’	 in	 order	 to	 recharge	 its	

battery,	 or	 traversing	 alongside	 a	 mirror	 with	 an	 oscillating	 locomotion	 movement	

pattern	 (alternately	 approaching	 and	 then	 moving	 away	 from	 its	 own	 reflection)	 that	

Grey	Walter	termed	a	‘dance’.		

	

	

	
Figure	1.	Grey	Walter’s	tortoise	“Elsie”.	The	robot	(left)	generates	apparently	complex	behavior	as	the	

result	of	a	simple	layered	control	system	(centre)	interacting	with	an	environment	of	obstacles	and	light	

sources.	The	photograph	on	the	right	illustrates	the	robot’s	trajectory	recorded	using	a	long	shutter	speed,	

with	a	light	source	placed	on	the	robot’s	outer	shell.	(Walter	1953).	

	

This	idea	of	configuring	a	control	system	as	a	set	of	reflexes	with	a	fixed	priority	scheme	

was	 adopted	 with	 enthusiasm	 in	 the	 1980s	 by	 researchers	 interested	 in	 generating	

robust	 behavior	 for	 fast-acting	 mobile	 robots	 (e.g.	 Brooks	 (1986))	 that	 can	 engage	 in	

simple	 but	 reliable	 activities	 such	 as	wall-following	 (see	 also	Mataric	 (1997)).	 Similar	
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principles	 may	 also	 have	 underpinned	 the	 behavior	 of	 bilaterian	 creatures	 who	 left	

spiraling	 or	 meandering	 foraging	 trails	 that	 then	 became	 trace	 fossils	 in	 Precambrian	

rocks,	 and	 that	 are	 our	 earliest	 evidence	 of	 the	 behavior	 of	 multi-celled	 animals	

(Prescott	 and	 Ibbotson	1997).	These	 fossil	meanders	belong	 to	 the	 class	of	 stigmergic	

processes	in	which	the	behavior	of	the	organism	restructures	its	environment	which	in	

turn	 effects	 the	 activity	 of	 that	 organism	 (Theraulaz	 and	Bonabeau	1995).	 	 Stigmergy	

can	 be	 thought	 of	 as	 a	 form	 of	 “information	 offloading”	 (Hutchins	 1995,	 Beer	 and	

Williams	2014),	whereby	some	aspects	of	the	processing	that	are	required	to	implement	

a	behavior	are	externalized	by	altering	the	environment’s	structure.		In	other	words,	we	

should	think	of	 the	system	formed	by	the	organism	in	 its	environment	as	 the	substrate	

for	 the	 computation	 that	 results	 in	 the	 observed	 behavioral	 pattern,	 not	 just	 the	

organism	and	its	nervous	system.			

	

	 	
Figure	 2.	 Robot	 modeling	 of	 stigermic	 processes.	 	 Left:	 Fossilized	 animal	 from	 the	

Precambrian	 era	 likely	 to	 have	 been	 left	 by	 an	 early	 bilaterian	 animal,	 from	 Crimes	 and	

Anderson	(1985).	Right:	A	custum-built	robot	configured	to	leave	a	meandering	paper	trail	using	

a	fixed	control	hierarchy	of	reactive	mechanisms	.		For	details	see	Prescott	and	Ibbotson	(1997).	

	

Grey	 Walter’s	 tortoises	 showed	 that	 the	 interaction	 of	 a	 reactive,	 but	 appropriately	

configured,	 control	 system	 with	 the	 environment,	 via	 suitable,	 but	 often	 primitive,	

sensors	and	actuators	can	give	rise	to	behavior	that	is	surprisingly	complex.	Thirty	years	

later,	 in	 a	 series	 of	 thought	 experiments,	 the	 neurobiologist	 Valentino	 Braitenberg	

(1986)	imagined	a	series	of	robot	“vehicles”	of	increasing	sophistication,	beginning	with	

machines	with	only	 sensory	and	motor	elements,	 and	 finishing	with	variants	 that	had	

simple	 artificial	 nervous	 systems	 capable	 of	 properties	 such	 as	 logic,	 memory	 and	

abstraction.	These	internal	processing	elements	hint	at	some	likely	functions	of	animal	

brains	 that	 go	 beyond	 reactive	 control.	 Indeed,	 in	 many	 animal	 nervous	 systems,	

theoretical	 and	 computational	 analyses	 point	 to	 the	 presence	 of	 “hybrid”	 control	

architectures	 that	 combine	 elements	 of	 reactive	 control	 with	 integrative	 mechanisms	

that	 operate	 both	 in	 space,	 co-ordinating	 different	 parts	 of	 the	 body,	 and	 in	 time,	

organizing	behavior	over	multiple	time-scales	(for	discussion	see,	Verschure,	Krose	et	al.	

(1992),	 Arbib	 and	 Liaw	 (1995),	 Prescott,	 Redgrave	 et	 al.	 (1999)	 and	 Sections	 3	 to	 5	

below).			

	

Braitenberg	relied	on	his	imagination	to	conceive	of	how	his	vehicles	might	behave.	The	

ability	 to	 do	 this	 degrades	 rapidly	 as	 internal	 or	 external	 complexity	 is	 added	 to	 the	

scenario	 envisaged,	 imagination	 is	 also	 susceptible	 bias.	 Embodied	 computational	

neuroscience	 on	 the	 other	 hand,	 via	 the	 medium	 of	 robotics,	 allows	 us	 to	 explore	

theories	of	brain	architecture	that	reflect	more	of	the	true	complexity	of	animal	nervous	
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systems.	By	 embedded	hypothesized	 control	mechanisms	 into	 the	dynamics	 of	 a	 real-

world	 interaction	 they	are	able	 to	 take	 seriously	 the	 role	of	body	and	environment	 in	

generating	behavior.	We	can	even	do	this	in	the	same	environment	as	that	inhabited	by	

the	 organism	 whose	 behavior	 we	 wish	 to	 understand.	 We	 present	 some	 specific	

examples	of	this	possibility	in	section	2	below.	

	

One	 of	 the	 first	 examples	 of	 neurorobotic	 modeling	 is	 the	 work	 by	 Edelman	 and	 co-

workers	 on	 the	 NOMAD	 series	 of	 real-world	 artifacts	 (Edelman,	 Reeke	 et	 al.	 1992).	

These	robot	models,	also	known	as	brain-based	devices	 (see	also	Seth,	McKinstry	et	al.	

(2004),	 Krichmar	 (2008),	 Krichmar	 and	 Wagatsuma	 (2011)),	 aimed	 at	 validating	 the	

theory	of	neuronal	group	selection,	or	“neural	Darwinism”,	that	Edelman	had	proposed.	

In	particular,	they	tested	the	putatively	fundamental	principle	that	differential	selection	

of	 neuronal	 connections	 can	 lead	 to	 repertoires	 of	 neurons	 that	 are	 tuned	 to	 specific	

states	 of	 the	 world.	 Reentry	 or	 recurrence	 across	 these	 populations	 can	 allow	 the	

network	 to	 achieve	 higher-level	 function,	 and	 their	 behavior	 can	 be	 shaped	 through	

value-based	learning	such	as	that	derived	from	reward	and	punishment.	

	

Edelman’s	 brain-based	 devices	 helped	 to	 demonstrate	 that	 the	 interaction	 with	 the	

environment	is	important	not	just	for	understanding	how	we	control	behavior,	but	also	

for	 how	 we	 acquire	 new	 forms	 of	 control.	 From	 birth,	 action	 shapes	 the	 animal’s	

experience	which	 in	 turn	has	a	profound	 influence	on	 the	coding	systems	used	by	 the	

brain	 (Verschure,	 Voegtlin	 et	 al.	 2003,	 Lungarella,	 Pegors	 et	 al.	 2005).	 These	 self-

organize	 so	 as	 to	 efficiently	 represent	 the	kinds	of	 signals	 that	occur	most	 frequently,	

and	also,	perhaps,	those	signals	that	will	be	most	effective	in	predicting	how	the	sensory	

world	 will	 unfold	 in	 the	 near	 future	 (see,	 also	 Clark	 (2013)),	 or	 that	 are	 most	

behaviorally-relevant	to	the	activity	in	which	the	animal	is	currently	engaged	(Prescott,	

Diamond	et	al.	2011).	In	the	brain	both	of	these	forms	of	learning	occur	and	we	will	later	

describe	Distributed	Adaptive	 Control	 theory	 (Verschure,	Krose	 et	 al.	 1992,	Verschure,	

Voegtlin	et	al.	2003),	which	explores	how	different	learning,	and	memory	systems,	in	the	

mammalian	 brain,	 work	 together	 to	 generate	 perception,	 cognition	 and	 action.	 In	

chapter	14	(Neural	Maps),	Bednar	and	Williams	also	detail	how	self-organization	shapes	

the	 function	 and	 development	 of	 neural	 maps	 that	 underlie	 the	 major	 mammalian	

perceptual	systems.	

	

The	role	of	morphology	in	computation	

Over	time,	evolution	selects	physical	morphologies	that	create	and	enhance	behaviorally	

relevant	signals	prior	to	any	processing	by	the	nervous	system.	

		

For	instance,	the	harbor	seal	has	perfected	the	skill	of	tracking	the	hydrodynamic	trails	

left	by	fish	prey	as	they	move	through	the	water	allowing	them	to	detect	and	follow	an	

animal	 whose	 movement	 has	 disturbed	 the	 water	 up	 to	 several	 minutes	 previously	

(Dehnhardt,	Mauck	et	al.	2001).	The	sensor	mechanism	by	which	seals	achieve	this	task	

is	a	specialization	of	 the	 facial	vibrissae,	which	 in	seals	have	richly	 innervated	 follicles	

that	 allow	 the	 detection	 of	 minute	 changes	 in	 water	 currents.	 The	 capacity	 to	 detect	

these	changes	is	enhanced	by	an	adaptation	in	the	morphology	of	the	whisker	whereby	

the	 smoothly	 tapered	 vibrissal	 shaft	 of	 land	 mammals	 has	 been	 replaced	 by	 a	 non-

tapered	and	undulating	 shape	 (see	Figure	3,	 left).	Hydrodynamic	 tests	of	 this	whisker	

shape	show	that	it	has	a	remarkable	capacity	to	eliminate	the	sensory	noise	due	to	the	

animal’s	 own	 movement	 (Hanke,	 Witte	 et	 al.	 2010).	 Whereas	 a	 smooth	 and	 tapered	
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whisker	would	bend	as	the	animal	swims	through	the	water	due	to	the	effects	of	drag,	

the	undulating	shape	of	the	seal	whiskers	creates	micro-vortices	that	cancel	and	largely	

eliminate	drag	giving	a	much	improved	signal-to-noise	ratio	for	detecting	disturbances	

in	the	water	created	by	prey	animals.	 	These	changes	to	the	sensory	system	of	the	seal	

are	matched	 by	 adaptations	 of	 the	 body,	 such	 as	 streamlining	 for	 efficient	 swimming,	

that	demonstrate	how	mechanisms	for	perception	co-evolve	with	those	for	action.	

	

A	second	example	of	morphology	simplifying	the	problem	faced	by	the	nervous	system	

is	provided	by	the	mating	behavior	of	the	female	cricket	which	requires	it	to	identify	and	

track-down	a	male	of	its	species	by	attending	to	its	distinctive	chirping	sound.		The	task	

of	 distinguishing	 and	 orienting	 towards	 a	 male	 “song”	 is	 facilitated	 by	 the	 physical	

structure	 of	 the	 cricket’s	 tracheal	 tube	 whose	 four	 openings	 (see	 Figure	 3	 right)	

differentially	amplify	sounds	arriving	at	the	left	and	right	ears	depending	on	the	sound-

source	direction	(Michelsen,	Popov	et	al.	1994).	The	physics	of	this	system	is	such	that	

directional	 selectivity	 is	 greatest	 for	 auditory	 vibrations	 at	 the	 specific	 wavelength	

produced	by	 the	male	animal,	 thus	providing	a	non-neural	mechanism	that	assists	 the	

female	 in	 orienting	 towards	 ethologically-appropriate	 stimuli.	 Using	 robot	 models,	

Webb	 and	 her	 co-workers	 have	 explored	 the	 relative	 contributions	 of	 physical	

morphology	and	of	identified	neural	circuits	in	the	cricket	brain	to	generating	integrate	

phonotaxis	behavior	(see	Webb	(2002)	for	review).	Further	examples	of	the	importance	

of	 morphology	 for	 simplifying	 perception	 and	 control	 in	 animals	 and	 robots	 are	

discussed	by	Chiel	and	Beer	(1997),	and	Pfeifer	and	Bongard	(2006).	

	

	
	
Figure	3.	Examples	of	morphological	computation	in	animal	sensory	systems.	 	Left:	The	whisker	of	

harbor	seal	(Phoca	vitulina)	in	dorsal	(A)	and	frontal	view	(B)	showing	the	flattening,	in	the	dorso-ventral	

direction,	and	presence	of	undulations	that	serve	to	reduce	the	drag	caused	by	the	whisker	(from	Hanke	et	

al.,	 2010).	 Right:	 The	 tracheal	 tube	 of	 the	 cricket	 showing	 the	 four	 openings	 (two	 on	 each	 side)	 that	

provide	enhanced	directional-sensitivity	to	sounds	at	the	wavelength	produced	by	the	male	cricket	(from	

Webb,	2002).	
	

When	is	the	real	world	better	than	simulation?	

ENIAC,	the	first	general	purpose	programmable	electronic	computer	was	used	by	the	US	

military	to	calculate	artillery	firing	tables	based	on	measures	such	as	the	azimuth	of	the	

gun	barrel,	weight	and	shape	of	the	missile,	and	the	strength	and	direction	of	the	wind	

(Reed	1952).	Thus,	since	their	origins,	one	of	the	important	uses	of	computers	has	been	

to	simulate	 the	physics	of	 the	real	world.	Today,	a	range	of	simulated	physics	systems	

exist	 from	the	quick-and-dirty,	but	real-time,	engines	 that	drive	gaming	environments,	

to	 computationally	 intensive	 programs	 that	 provide	 accurate,	 but	 domain-limited	

simulation	 for	 specific	 problem	 spaces	 such	 as	 fluid	dynamics,	weather	 forecasting	 or	

the	 dynamics	 of	 global	 warming.	 Simulators	 are	 available	 that	 can	 be	 configured	 to	

replicate	 the	 physical	 design	 and	 sensory	 and	 actuating	 systems	 of	 standard	 robot	

platforms	 (see,	 e,g.	 Michel	 and	 Heudin	 (1998),	 Koenig	 and	 Howard	 (2004)).	 Special	

purpose	 simulators	 have	 also	 been	 developed	 that	 capture	 aspects	 of	 the	 physical	
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morphology	of	 target	animals	 such	as	 the	 lamprey	 (Beauregard,	Kennedy	et	al.	2006),	

quadrupeds	such	as	the	salamander	(See	Chapter	9	and	Ijspeert	(2000)),	and,	of	course,	

humans	(Fenner,	Brook	et	al.	2008,	Tikhanoff,	Cangelosi	et	al.	2008).	However,	current	

simulations	of	real-world	physics	struggle	to	capture	all	of	its	mechanical	and	dynamical	

properties	 such	 as	 collision	 elasticity,	 surface	 friction,	 absorption,	 etc.	 Interactions	

between	 objects	 that	 are	 deformable,	 possess	 irregular	 surfaces,	 or	 are	 subject	 to	

environmental	 disturbances	 are	 a	 particular	 challenge	 (Ijspeert	 2014).	 Validation	 of	

these	properties,	which	may	be	essential	for	trusting	the	scientific	conclusions	obtained	

with	simulations,	can	be	an	immense	undertaking.		

	

The	use	of	simulation	for	exploring	nervous	system,	body,	and	environment	interactions	

is	 therefore	not	always	a	 ‘no-brainer’.	 Simulators	 for	games	platforms	are	designed	 to	

give	a	believable	impression	of	real-world	physics	but	cut	corners	on	the	true	physics	in	

their	 pursuit	 of	 perceptual	 acceptability;	 special-purpose	 simulators	 are	 likewise	

generally	not	developed	with	the	application	of	testing	embodied	brain	models	as	their	

focus.	 	 Adapting	 any	 simulator	 to	 provide	 an	 embedded	 testing	 environment	 for	 a	

computational	neuroscience	model	 is	 therefore	 likely	 to	 require	 some	work.	Consider,	

for	 instance,	 the	 problem	 of	 how	 animals	 are	 able	 to	 track	 odor	 plumes	 in	 turbulent	

liquid	 flows.	 Experimental	 studies	 of	 animal	 behavior	 indicate	 that	 animals	 are	

sampling,	 and	 altering	 their	 behavior,	 at	 time	 scales	 (sub-second)	 and	 spatial	 scales	

(sub-millimeter)	 that	 are	 outside	 the	 limits	 of	 currently	 available	 simulators	 of	 real	

flows	 (see	 below).	 Below	we	 explore	 how	 research	 in	 embodied	 robotics	 has	 allowed	

scientists	 to	 side-step	 this	 problem	 by	 embedding	 suitably-configured	 robots	 in	 real	

environments.				

	

Although	the	world	comes	“for	free”	with	a	robot	model,	something	that	replicates	key	

properties	 of	 the	 body	 has	 to	 be	 provided	 as	 the	 interface	 between	 model	 nervous	

system	and	the	environment.	Ideally	the	properties	of	the	physical	robot	model	should	

match	 relevant	 biomechanical	 constraints,	 identified	 in	 the	 animal,	 at	 least	 as	 far	 as	

these	 are	 thought	 to	 be	 relevant	 for	 the	 behaviors	 targeted.	 	 	 One	 of	 the	 trade-offs	 in	

modeling	is	then	to	decide	when	the	benefits	of	having	an	embodied	model,	in	terms	of	

access	 to	 real-world	 physics,	 justifies	 the	 cost	 of	 building	 and	 running	 a	 bespoke	

physical	system.	 	As	we	will	see	 in	the	examples	discussed	below,	valuable	results	can	

often	 be	 obtained	 by	 attending	 to	 a	 key	 set	 of	 morphological	 constraints,	 rather	 than	

mimicking	an	entire	creature.		Indeed,	holding	to	our	view	that	a	physical	model	should	

be	useful	rather	than	accurate,	one	usually	abstracts	away	many	of	the	physical	details	

in	 order	 to	 get	 a	 good	 understanding	 of	 both	 the	 problem	 that	 a	 biological	 system	 is	

solving	and	the	way	in	which	this	is	accomplished.		However,	the	challenge	is	also	to	be	

cogent	 and	 clear	 about	 these	 assumptions	 and	 how	 they	 affect	 the	 results	 and	 their	

interpretation	(see	Prescott,	Montes	Gonzalez	et	al.	(2006)	for	further	discussion	of	this	

issue).	

	

3.	 Embodied	models	as	means	to	understand	animal	sensorimotor	and	

information	processing	capabilities	

	

Often	 when	 we	 look	 at	 the	 animal	 world	 we	 see	 abilities	 that	 neither	 we,	 nor	 our	

technologies,	 possess.	 Hydrodynamic	 trail-tracking	 in	 seals	 is	 one	 example	 we	 have	

already	mentioned,	another	is	the	memory	abilities	of	Clarke’s	nutcrackers,	a	bird	who	
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can	recall	the	locations	of	up	to	30,000	seeds	stored	in	the	summer	the	following	winter	

over	a	25	km	area	(Balda	and	Kamil	1992).	Such	feats	humble	those	of	us	who	lose	our	

car	keys	between	the	time	we	return	home	from	work	or	school	in	the	evening	and	the	

time	we	leave	the	next	morning!	The	homing	ability	of	salmon	is	another	often	cited,	but	

under-appreciated,	example.	These	fish	are	able	to	swim	thousands	of	miles	across	the	

(to	us)	 featureless	expanse	of	 the	Pacific	ocean	 to	an	exact	 location	 to	which	 they	had	

just	 a	 brief	 exposure	 years	 before,	 using	 learned	 magnetic,	 olfactory	 and	 visual	 cues	

(Crossin,	Hinch	et	al.	2007).	The	secrets	possessed	by	 these	birds	and	 fish	are	not	yet	

understood	 to	 a	 degree	 that	 permits	 their	 instantiation	 in	 designs	 for	 implementable	

technology.	 Therefore	 their	 study	 in	 streamlined	 simpler	 devices	 that	 are	 not	

encumbered	by	biological	processes	 that	are	essential	 for	 the	animal	but	not	 required	

for	 the	 task	 (waste	 elimination,	 reproduction,	 etc.),	 are	 an	 attractive	 approach	 to	

understanding	how	they	do	it.		

	

Plume-tracking	in	a	robot	lobster	

Nor	are	vertebrates	 the	 sole	keepers	of	 the	 secrets	 to	 information	processing	abilities	

not	realized	by	human	technology.		Invertebrates	also	possess	abilities	that	we	have	yet	

to	understand	and	that	we	would	like	to	have	in	our	technologies.			American	lobsters,	as	

well	 as	 several	 other	 crustacean	 species,	 are	 able	 to	 locate	 the	 source	of	 an	 attractive	

smell	 by	walking	 to	 it,	 following	 the	odor	over	distances	of	many	meters	 (Grasso	 and	

Basil	 2002).	 This	 does	 not	 seem	 so	 startling	 until	 one	 realizes	 the	 complicated	 and	

unpredictable	path	that	each	whiff	of	aroma	travels	between	the	aromatic	object	and	the	

lobster’s	“nose”.		The	odor	does	not	just	make	its	leisurely	slow	way	through	molecular	

diffusion	to	the	animal	(this	would	take	an	inordinate	amount	of	time)	but	it	is	carried	

by	 water	 flow.	 Thus	 the	 lobster’s	 behavior,	 also	 known	 as	 rheotaxis,	 is	 “go	 with	 (or	

against)	the	flow.”	In	the	real	ocean,	where	the	lobster	makes	its	living,	real	water	flows	

are	also	chaotic	or,	in	the	language	of	fluid	mechanics,	they	are	turbulent.	

	

Turbulence	 is	 not	 completely	 random but	 consists	 of	 eddies	 and	 vortices	 that	 appear	

and	 disappear	 on	 many	 scales	 and	 that	 interact	 with	 each	 other.	 The	 structure	 of	

turbulent	flow	is	related	to	the	Reynolds	number,	Re,	where:	

		

�� =
∃%&

∋
	.						

	

Here	U	is	the	mean	velocity	of	the	object	relative	to	the	fluid;	l	is	a	characteristic	length	

used	to	specify	spatial	scale;	 ! 	is	the	dynamic	viscosity	of	the	fluid	(it’s	“stickiness”);	and	

" 	is	the	density	of	the	fluid.		

	

The	value	of	Re	gives	an	indication	of	the	expected	degree	of	turbulence.	The	ratio	here	

is	one	of	inertial	forces	(the	numerator)	to	viscous	forces	(the	denominator).	If	the	value	

is	less	than	one,	then	the	viscous	forces	dominate	and	diffusion	determines	the	rate	and	

pattern	of	aroma	transport	from	the	source	to	the	lobster’s	sensor.	If	 it	 is	greater	than	

one,	 however,	 inertial	 forces	 dominate,	 and	 the	 flow	 patterns	 determine	 the	 rate	 and	

pattern	 of	 movement	 of	 aromas	 through	 space.	 The	 higher	 the	 Reynolds	 number	 the	

more	chaotic.	For	each	given	range	of	numbers	(say,	10-100,	100–1000	etc.),	however,	

the	 pattern	 of	 flow,	 and	 therefore	 the	 movement	 of	 aromas	 through	 space,	 is	

“dynamically	 similar”	 regardless	 of	 the	 medium.	 In	 other	 words,	 within	 each	 range,	

characteristic	dispersal	patterns	 emerge	 that	 are	 the	 same	 if	 the	 fluid	 is	 air,	water,	 or	
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liquid	 mercury,	 or	 if	 the	 spatial	 scale	 is	 a	 few	 centimeters	 in	 a	 fish	 tank	 or	 the	

atmosphere	of	the	planet	Jupiter.		A	fuller	discussion	of	turbulence	and	of	experimental	

and	simulation	approaches	to	understanding	turbulence	is	provided	by	Benzi	and	Frish	

(2010).	

	

It	 makes	 sense,	 then,	 that	 animal	 brains	 would	 evolve	 to	 make	 use	 of	 this	 universal	

patterning	 and,	 indeed,	 they	 have	 (see	 Vogel	 (1994)	 for	 a	 fascinating	 comprehensive	

tour	of	the	relationship	between	fluid	flow	and	design	of	biological	systems).	In	the	case	

of	 the	 lobster,	 it	 gets	 better	 at	 tracking	 the	 longer	 it	 is	 engaged	 in	 following	 a	 given	

turbulent	odor	plume;	specifically,	it	moves	faster,	as	if	more	confident,	and	also	reduces	

its	 steering	 error	 relative	 to	 the	 target.	 This	 suggests	 that	 memories	 of	 recent	

encounters	with	whiffs	of	odor	inform	its	later	decisions	(Moore	and	Atema	1991,	Basil	

and	Atema	1994).	Unfortunately,	the	principle	of	“dynamic	similarity”	does	not	allow	us	

to	model	the	exact	time	series	of	aromas	encountered	by	the	animal	using	a	simulation,	

rather,	 it	 merely	 tells	 us	 that	 the	 patterns	 are	 “similar”.	 	 Further,	 the	 more	 powerful	

Navier-Stokes	 equations,	 which	 describe	 all	 of	 turbulent	 flow,	 provide	 statistical	

averages	of	flows	at	points	in	space	and	time	but	not	the	exact	sequence	of	inputs	a	single	

animal	moving	through	a	plume	would	receive.	In	the	case	of	chemical	plume	tracking	in	

turbulent	flows,	then,	standard	modeling	techniques	cannot	provide	us	with	an	accurate	

series	 of	 concentration	 values	 along	 the	 path	 an	 animal	 would	 take,	 only	 a	 series	 of	

independent	 estimates	 of	 the	 averages.	 A	 test	 of	 the	 hypothesis	 that	 the	 lobster	

remembers	 the	aroma	 it	 encounters	during	 tracking,	 if	 conducted	 in	 such	a	 simulator,	

might	miss	out	on	the	key	information	that	the	lobster	uses	and	therefore	be	no	test	at	

all.			

	

On	the	other	hand,	applying	a	suitable	robotic	model	of	 lobster	information	processing	

should	be	an	effective	way	to	adequately	test	the	hypothesis.	Simply	place	the	physical	

model	into	real	plumes	and	let	its	behavior	provide	evidence	for	the	effectiveness	of	the	

proposed	 model	 in	 explaining	 the	 information	 processing	 that	 occurs	 in	 the	 animal	

(Figure	4).	 Indeed,	when	researchers	did	this	 they	 found	a	role	 for	memory	 in	a	robot	

lobster	 (Grasso	and	Atema	2002)	 that	might	not	have	been	obvious	 if	 the	 researchers	

had	studied	a	simulated	plume	with	a	simulated	lobster.		Specifically,	Grasso	and	Atema	

(2002)	compared	three	different	control	schemes,	exploiting	(i)	a	single	chemo-sensor,	

(ii)	a	stereo	sensor	pair,	and	(iii)	a	stereo	pair	with	memory,	as	illustrated	in	Figure	5.		A	

measure	 of	 overall	 tracking	 performance	 compared	 with	 a	 lobster	 showed	 significant	

benefit	of	the	stereo	sensor	pair,	and	of	the	additional	memory	component,	although	the	

best	model	fell	some	way	short	of	lobster	performance,	suggesting	that	there	may	yet	be	

better	 algorithms	 to	 be	 discovered	 (perhaps	 by	 looking	 in	 more	 detail	 at	 the	 neural	

substrates).			
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Figure	4:	Robot	‘lobster’	tracking	a	chemical	plume.	The	problem	of	locating	the	plume	source	in	this	

robot	is	decomposed	into	transforming	a	series	of	chemical	concentration	signals	(visualized	by	dye	in	the	

photo)	into	a	series	of	differential	commands	to	the	wheels	of	the	robot	which	form	a	path	in	space.	This	

robot	demonstrated	that	a	‘memory’	of	recent	concentration	series	lead	the	robot	to	more	efficient	paths	

to	 the	 source;	 revealing	 the	 plausibility	 of	 the	 information	 processing	 method	 and	 memory	 for	 the	

biological	lobster.	From	(Grasso	and	Atema	2002).	

	

In	this	study	the	robot	was	a	relatively	simple	device	with	two	driven	wheels	capable	of	

moving	on	the	bottom	of	a	fume	or	flow	tank,	or	a	relatively	smooth	portion	of	the	ocean	

floor	as	 shown	 in	 figure	4,	with	 sensors	 for	 flow	detection	 that	broadly	 replicated	 the	

sensitivity	 of	 lobster	 antennae	 rather	 than	 seeking	 to	 match	 specific	 chemosensory	

mechanisms.	 	Key	 features	such	as	 the	scale	and	positioning	of	 the	sensors	 relative	 to	

the	 flow	 were	 tuned	 to	 match	 the	 biological	 target.	 The	 results	 do	 not	 rule	 out	

alternative	models	of	lobster	rheotaxis	but,	at	the	same	time,	they	do	provide	proof-of-

principle	of	the	memory-based	method	as	a	plausible	strategy	that	can	work	with	real-

world	flows.		More	generally,	these	results	suggest	that	as	the	physics	of	the	part	of	the	

world	that	is	of	interest	becomes	more	difficult	to	model,	an	effective	approach	is	to	use	

the	 world	 as	 its	 own	 model	 and	 to	 test	 physical	 models	 of	 embodied	 sensorimotor	

processing	against	it.	

	

	
	

Figure	5.	 Illustration	of	 the	plume-tracking	 strategy	used	by	 the	 robot.	 The	 sequence	 of	motion	 is	
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indicated	 by	 the	 progression	 of	 arrows.	 Chemical	 samples	 are	 collected	 at	 each	 successive	 location	 to	

inform	the	next	move.	Upstream	motion	(U),	triggered	by	detection	of	the	plume,	is	in	a	series	of	upstream	

steps.	Failure	to	detect	the	plume	at	one	of	the	sampling	positions	leads	to	an	across	stream	motion	called	

a	 cast.	 The	 choice	 of	 casting	 left	 (Cl)	 or	 right	 (Cr)	 is	 one	 of	 the	 parameters	 that	 is	 under	 algorithmic	

control.		Grasso	and	Atema	(2002)	found	that	a	strategy	using	memory	of	past	patterns	of	stimulation	to	

control	 the	 direction	 of	 cast	 gave	 results	 closest	 to	 those	 found	 with	 living	 animals.	 From	 Grasso	 and	

Atema	(2002).	

	

Modeling	the	neural	circuits	underlying	bilaterian	pattern	generation	

The	example	of	lobster	rheotaxis,	described	above,	illustrates	how	robots	can	be	used	to	

evaluate	 theories	of	animal	behavior	couched	at	an	algorithmic	or	 informational	 level,	

however,	 embodied	 modeling	 can	 also	 be	 used	 to	 directly	 test	 the	 capacity	 of	 model	

neural	circuits	to	generate	adaptive	behavior.		

The	nervous	systems	of	all	bilateral	animals	have	been	characterized	as	having	an	innate	

neuronal	 architecture	 based	 on	 command	 neurons,	 coordinating	 neurons	 and	 central	

pattern	 generators	 (CPGs)	 modulated	 by	 phase	 and	 amplitude	 modulating	 reflexes	

(Kennedy	and	Davis	1977,	Stein	1978,	Stein,	Grillner	et	al.	1997,	Pearson	2005,	Jordan,	

Liu	et	al.	2008).	These	network	components	appear	to	underlie	innate	behaviors	such	as	

the	 control	 of	 posture,	 repetitive	 movement	 and	 inter-segmental	 coordination	 (Ayers	

2002).	In	invertebrates,	these	components	have	been	demonstrated	and	analyzed	at	the	

level	of	identifiable	neurons	and	underlying	molecular	processes	(Selverston	and	Ayers	

2006)	 and	 key	 underlying	 mechanisms	 have	 been	 shown	 to	 be	 conserved	 between	

invertebrates	 and	 vertebrates	 (Grillner,	 Hellgren	 et	 al.	 2005,	 Grillner,	 Markram	 et	 al.	

2005,	 Pearson	 2005).	 Biological	 cellular	 CPGs	 have	 been	 described	 in	 model	 animals	

where	the	relevant	circuitry	can	be	established	by	pairwise	recordings	between	neurons	

(Selverston,	Russell	et	al.	1976,	Buchanan	and	McPherson	1995).	 	An	important	aspect	

of	 these	 biological	 model	 systems	 is	 that	 they	 accommodate	 complex	 integrative	

phenomena	such	as	neuromodulation	(Hasselmo	1995,	Dickinson	2006,	Harris-Warrick	

2011)	and	that	the	details	of	their	function	can	be	characterized	by	anatomical	(Weeks	

1981)	 and	 cellular	 dissection	 (Selverston	 1980).	 (Note	 that,	 in	 Chapter	 8,	 Fellous,	

Hasselmo	 and	 Canavier	 describe	 a	 number	 of	 rather	 different	 functions	 of	

neuromodulation	in	mammals.)	

Key	to	developing	a	robot	model	that	can	capture	the	functionality	of	these	circuits	is	the	

capability	 to	 compute	 in	 real	 time	 and	 to	 achieve	 realistic	 mechanistic	 models	 of	

phenomena	 such	 as	 neuronal	 integration	 (Ayers,	 Rulkov	 et	 al.	 2010)	 and	

excitation/contraction	coupling	of	artificial	muscle	(Witting,	Ayers	et	al.	2000)	within	a	

physical	plant	that	adequately	approximates	the	biomechanics	of	 the	animal.	 	This	can	

be	 achieved	 by	 using	 phenomenological	 models	 of	 neurons	 and	 their	 synapses,	

incorporated	 into	 a	 CPG	 control	 architecture	 organized	 around	 exteroceptive	 reflexes	

(i.e.	 those	 concerned	with	external	 stimuli),	 and	embedded	within	a	biomimetic	 robot	

body	 plan	 (Ayers	 and	 Rulkov	 2007,	 Ayers	 and	 Witting	 2007,	 Westphal,	 Rulkov	 et	 al.	

2011).	

A	critical	component	of	bilaterian	innate	behavior	is	the	CPG	that	drives	central	motor	

programs	that	mediate	the	behavioral	contributions	of	single	body	segments	(Selverston	

2010).	Although	some	CPGs	produce	relatively	 fixed	action	patterns	(Hume,	Getting	et	

al.	 1982)	 most	 are	 subject	 to	 extensive	 neuromodulation	 that	 allows	 the	 underlying	

networks	to	reconfigure	to	generate	different	behavioral	acts	(Heinzel	1988).	In	others,	
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gating	 synaptic	 input	 can	 switch	 between	 alternative	 patterns	 such	 as	 walking	 in	

different	directions	(Ayers	and	Davis	1977,	Ayers	and	Witting	2007).		

Using	the	lobster,	lamprey,	and	honeybee	as	target	animals,	and	focusing	on	the	neural	

circuitry	underlying	locomotion,	Ayers	and	Rulkov	(2007)	developed	embodied	models	

using	 electronic	Discrete	 Time	Map-based	 (DTM)	 neurons	 whose	 membrane	 dynamics	

evolve	 according	 to	 the	 state-space	 plot	 illustrated	 in	 Figure	 6	 which	 is	 intended	 to	

capture	some	of	 the	dynamics	of	biological	neurons.	 	Here	 the	membrane	voltage	 in	a	

given	 cycle	n+1	 is	 specified	 relative	 to	 its	 value	 in	 cycle	n	 according	 to	 two	difference	

equations	based	on	synaptic	current	input	and	two	control	parameters	a and	s	whose	

values	are	specific	 to	each	neuron	 type,	 shape	 the	 function	of	 the	map,	and	define	 the	

characteristics	 of	 individual	neurons.	A	detailed	 specification	of	 this	model	 is	 given	 in	

Box	 1.	 	 As	 shown	 in	 the	 figure,	 when	 configured	 into	 different	 regions	 of	a/s	 space,	

neurons	are	either	silent,	 tonically	 firing,	bursting,	or,	 in	 the	highlighted	saddle	region	

between	bursting	and	spiking,	exhibit	chaotic	discharge	(Shilnikov	and	Rulkov	2003).		

	

	

To	 create	 synthetic	 neural	 networks	 that	 could	 simulate	 locomotor	 CPGs,	 Ayers	 and	

Rulkov	 configured	networks	of	 electronic	neurons	 in	bursting	mode	 (Figure	6a)	using	

predominantly	inhibitory	model	synapses.	The	difference	between	postsynaptic	voltage	

and	 the	 reversal	 potential	 of	 the	 spiking	 state	 of	 the	 presynaptic	 neuron	 was	 used	 to	

define	 the	model	 synapses,	with	 the	 topology	of	 the	network	maintained	 in	 a	 look-up	

table	 of	 pre	 and	 post-	 synaptic	 neurons.	 Because	 the	 neuron	 model	 is	 based	 on	

difference	 equations	 rather	 than	differential	 equations	 it	 is	 possible	 to	 control	 a	 large	

number	of	 neurons	 and	 synapses	 in	 real	 time	 and	 tune	 their	 properties	 to	 behavioral	

context.	 	 This	 allows	 us	 to	 model	 phenomena	 such	 as	 neuromodulation	 (see	 below)	

using	behaving	robots	(Ayers,	Blustein	et	al.	2012).	Moreover	the	option	to	vary	chaos	

(figure	6b)	allows	us	 to	model	 the	adaptations	underlying	 the	wiggling	and	squirming	

behaviors	observed	in	animals.	

	

	

	

Figure	6.	State	space	 for	Discrete	Time	Map-based	(DTM)	neurons.	The	yellow	region	(b)	 indicates	

where	chaotic	firing	occurs.	a	&	c	 indicate	regions	of	bursting	&	spiking	discharge	Adapted	from	Rulkov	

(2002).	
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Figure	7	illustrates	CPGs	configured	in	this	way	as	either	reciprocal	half-center	(7a)	or	

endogenous	 pacemaker	 inhibitory	 networks	 (7b)	 to	 model	 lamprey-like	 swimming	

(Westphal,	Rulkov	 et	 al.	 2011)	 and	 lobster-like	walking	 respectively	 (Ayers	 and	Davis	

1977).	In	both	types	of	networks,	synergies—pools	of	neurons	operating	together—are	

formed	by	excitatory	synapses	between	elements.	Relative	timing	between	synergies	is	

then	 adjusted	 by	 differentially	 varying	 the	 control	 parameters	 a, s,	 and	 the	 relative	

strength	of	the	inhibitory	synapses	between	synergies.		

The	half-center	model	of	lamprey	swimming,	illustrated	for	a	segment	of	the	spinal	cord	

in	figure	7a,	relies	on	reciprocal	inhibition	between	the	cross	caudal	interneurons	(CCs)	

and	 on	 post	 inhibitory	 rebound	 (that	 is,	 increased	 neuronal	 excitability	 following	 the	

cessation	 of	 inhibition)	 in	 these	 cells	 (Perkel	 and	 Mulloney	 1974,	 Buchanan	 and	

McPherson	 1995,	 Buchanan	 1996).	 This	 mechanism	 is	 sufficient	 to	 generate	

proportional	symmetric	alternating	bursts	driving	bending	of	the	tail	to	the	left	or	right	

(Westphal,	Rulkov	et	al.	2011).			

In	 the	 lobster	walking	model	 	 (7b),	an	endogenous	pacemaker-configured	neuron,	elev	

(elevator),	establishes	an	oscillation	with	an	antigravity	synergy,	dep	(depressor),	and	a	

stance	synergy	that	recovers	later	than	dep	from	elev	inhibition	to	create	the	late	swing	

epoch	 	(figure	7c).	The	stance	 synergy	alternates	with	a	swing	 synergy.	Elev	and	swing	

generate	the	early	phase	while	swing	and	dep	generate	the	late	swing	phase	(Figure	7c;	

see	also	figure	10	for	patterns	of	model	neural	activity).	The	stance	phase	of	stepping	is	

mediated	by	the	stance	and	dep	synergies.	Command	neurons	gate	off	synapses	between	

protractor	and	retractor	bi-functional	synergies	during	forward	and	backward	walking	

to	mediate	forward	and	backward	walking,	and	between	swing	and	stance	and	extensor	

and	flexor	synergies	during	lateral	walking	(Ayers	and	Davis	1977).	

	

	

Figure	 7.	 Central	 pattern	 generators	 for	 lamprey-like	 swimming	 (a)	 and	 lobster-like	

omnidirectional	walking	(b).	In		these	diagrams	the	circles	represent	individual	DTM	neurons.	In	A,	the	

contralateral	 synergies	 alternate	 due	 to	 intrinsic	 bursting	 mechanisms	 and	 reciprocal	 inhibition.	

Abbreviations:	CC,	cross	caudal	interneurons;	LIN,	lateral	inhibitory	neurons;	EIN,	excitatory	interneuron	

(adapted	from	Westphal,	Rulkov	et	al.	(2011)).		In	B,	differential	inhibitory	synaptic	strength	between	the	

elevator	synergy	and	depressor	or	swing	synergy	creates	a	three-phase	rhythm	characteristic	of	walking	

in	the	four	directions.	Descending	walking	commands	gate	connectivity	between	swing	and	stance	phase	

interneurons	 and	 bi-functional	 motor	 neurons,	 at	 a	 pattern-generating	 nexus,	 to	 mediate	 walking	 in	

different	directions.	The	three-phase	pattern	of	walking	is	indicated	in	C.	

	

Ayers	 and	 co-workers	 have	 used	 DTM	 networks	 to	 control	 three	 biomimetic	 robots	

RoboLobster,	RoboLamprey	and	RoboBee	(Ayers,	Blustein	et	al.	2012),	as	shown	in	Figure	
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8.	These	robotic	implementations	have	verified	that	the	command	neuron/coordinating	

neuron/CPG	architecture,	when	instantiated	with	phenomenological	models	of	neurons	

and	 synapses,	 can	 achieve	 adaptive	 behavior	 through	 swimming,	 walking	 and	 flying	

(Ayers,	Blustein	et	al.	2012).	

	

	
Figure	 8.	 Biomimetic	 Robots	 (a).	 RoboLobster.	 (b)	 A	 helicopter	 proxy	 RoboBee.	 (c).	 RoboBee.	 (f).	

RoboLamprey.	See	Ayers,	Blustein	et	al.	(2012)	for	further	details.	

	

To	 achieve	 intersegmental	 coordination	 in	 a	 model	 system	 such	 as	 RoboLobster,	

interneurons	 are	 incorporated	 that	 pass	 information	 from	one	 governing	 oscillator	 to	

another	causing	 the	phase	advances	or	delays	 that	mediate	gait	 (Ayers	and	Selverston	

1979).	The	system	is	also	modulated	parametrically	by	inter-segmental	commands	that	

shift	 the	 elements	 into	 a	 bursting	 mode	 and	 control	 average	 frequency	 (Ayers	 and	

Witting	2007).		This	architecture	is	illustrated	in	figure	9a.	

Command	 neurons	 exist	 in	 a	 heterogeneous	 population	 that	 mediates	 a	 variety	 of	

behavioral	acts	(Bowerman	and	Larimer	1974a,	Bowerman	and	Larimer	1974b).	In	the	

lamprey	 some	 commands	 preferentially	 excite	 anterior	 segments	 to	 mediate	 forward	

swimming	while	others	excite	more	posterior	segments	to	mediate	backward	swimming	

(Matsushima	and	Grillner	1992).		

Exteroceptive	 reflexes	 link	 sensors	 to	 taxic	 and	 compensatory	 behavior	 (Figure	 8b-c)	

and	 can	 operate	 in	 parallel	 when	 triggered	 by	 environmental	 contingencies.	 	 For	

example,	 parallel	 exteroceptive	 reflex	 circuits	 for	 collision	 and	 heading	 control	 in	

RoboLamprey	 are	 illustrated	 in	 figure	 8c.	 In	 robot	 implementations,	 small	

microprocessors	are	used	 to	analyze	analog	 sensor	 reports	and	generate	 ‘labeled-line’	

codes	 (Bullock	 1978).	 For	 example,	 to	 guide	 heading	 control,	 a	 heading	 estimate,	

provided	 by	 an	 analog	 compass,	 is	 compared	 with	 a	 desired	 heading;	 a	 current	

proportional	 to	 this	 difference	 is	 then	 used	 to	 activate	 a	 “heading	 deviation”	 neuron.	

Modulatory	 interneurons	 can	 target	 the	 neuronal	 oscillator	 or	 the	 motor	 neurons	

directly	to	modulate	amplitude.		
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Fig.	9.	Inter-segmental	modulatory	systems.	A.	Command	neuron,	coordinating	neuron	central	pattern	

generator	organization	of	RoboLobster.	B.	Pathways	for	command	(CN)	and	MI	modulatory	control	of	the	

RoboLobster	CPGs	by	exteroceptive	sensors.	C.	Layered	exteroceptive	reflex	architecture	of	RoboLamprey	

to	mediate	collision	and	heading	control.	 	A	hierarchy	of	 lamprey	 inter-segmental	and	brain	commands	

project	the	sensor	inputs	for	heading	deviation	and	rapid	deceleration.	

The	 exteroceptive	 reflex	 architecture	 works	 interchangeably	 between	 the	 three	 robot	

platforms	 demonstrating	 its	 adaptability	 to	 different	 physical	 morphologies	 (Ayers	

2002).	 For	 example,	 a	 neuronal	 compass	 based	 on	 heading	 deviation	 neurons	 works	

equally	 well	 during	 walking	 in	 RoboLobster,	 swimming	 in	 RoboLamprey	 or	 flying	 in	

RoboBee	(Ayers,	Blustein	et	al.	2012,	Westphal,	Blustein	et	al.	2013).	Reflexes	have	also	

been	 implemented	 for	 optical	 flow	 (optical	 flow	 sensors),	 hydrodynamic	 flow	

(antennae),	 heading	 (compass),	 collision	 (accelerometer),	 gravity	 (inclinometer),	

odometry	 (optical	 flow	sensors	with	neuronal	 integrators)	and	beacon	 tracking	 (short	

baseline	sonar	array)	and	these	operate	well	in	parallel	(Westphal,	Blustein	et	al.	2013).		

	

By	 approximating	 the	 biomechanics	 of	 the	 animal	 model,	 the	 dynamics	 of	 the	 robot	

vehicle	 behavior	 provides	 a	 good	 match	 to	 that	 of	 the	 living	 animal	 (Ayers	 2004).	

Furthermore,	 in	 underwater	 robots,	 the	 use	 of	 shape	 memory	 alloy	 actuators	 (Mohd	

Jani,	 Leary	 et	 al.	 2014)	 allows	 employment	 of	 heat	 to	 mediate	 excitation/contraction	

coupling	much	as	 living	muscle	uses	 intracellular	 calcium	 (Witting,	Ayers	et	 al.	2000).	

Thus	the	motor	programs	characteristic	of	the	model	neuromuscular	system	perform	in	

an	analogous	fashion	to	that	of	the	animal.		

	

The	processes	that	give	rise	to	the	motor	rhythm	(endogenous	bursting,	postinhibitory	

rebound,	 etc.)	 are	 also	 excellent	 models	 of	 the	 corresponding	 processes	 in	 the	 living	

networks	 (Selverston	 and	Ayers	 2006).	 A	 key	 feature	 of	 these	models	 is	 that	 because	

they	 seek	 to	 capture	 the	 nonlinear	 dynamical	 behavior	 of	 neurons,	 rather	 than	 being	

neuronal	 conductance	 models,	 they	 are	 simpler,	 can	 operate	 in	 real	 time	 and	 are	

therefore	suitable	for	robot	control	applications	(Ayers	and	Rulkov	2007).	As	shown	in	

Figure	10,	 the	use	of	neuronal	network	models,	 instead	of	 finite	 state	 systems,	 allows	

one	 to	 replicate	 in	 great	 detail	 the	 real	 behavior	 of	 the	 neurobiological	 system	 (a	

network)	 and,	 thanks	 to	 spiking	 nature	 of	 the	 models,	 provides	 a	 link	 between	 the	

electronic	 neurons	 and	 experimental	 measurements	 of	 neuronal	 activity	 from	 the	

animal.		
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Figure	 10.	 Motor	 programs	 for	 forward	 and	 backward	 walking	 selected	 from	 an	 electronic	 neuronal	

network	 shown	 in	 Fig.	 7b.	 The	 forward	 command	 gates	 off	 synapses	 linking	 the	 stance	 phase	 and	

protractor	neurons	as	well	as	those	linking	the	swing	phase	and	retractor	neurons.		

	

Chemosensors	 based	 on	 principles	 of	 synthetic	 biology	 are	 currently	 under	

development	 that	 will	 allow	 tests	 of	 circuit-based	 models	 of	 odor-guided	 plume-

following	 building	 on	 the	 more	 algorithmic	 approach	 described	 earlier	 (Grasso	 and	

Atema	2002).	By	merging	the	 information	processing	hypotheses	developed	by	Grasso	

and	co-workers,	with	the	more	mechanistic	understanding	developed	by	Ayers	and	his	

associates	it	should	be	possible,	in	the	future,	to	develop	embodied	models	in	which	we	

have	confidence	that	we	are	matching	the	target	biological	system	at	multiple	levels	of	

description.	 By	 matching	 multiple	 constraints	 in	 this	 way	 we	 can	 achieve	 a	 form	

convergent	 validation	 (Verschure	 1996).	 That	 is,	 we	 not	 only	 obtain	 a	 more	 complete	

understanding,	we	also	 increase	the	 likelihood	that	our	model	captures	how	the	 living	

system	actually	works	rather	than	merely	how	it	‘might’	work.		

            	

4.	 Neurorobotics	of	the	mammalian	vibrissal	system	

The	 above	 embodied	models	 have	 focused	 largely	 on	 invertebrate	 target	 animals,	 but	

can	neurorobotics	also	help	us	to	gain	insight	into	brains	more	similar	to	our	own;	that	

is,	those	of	other	mammals?		

	

One	 of	 the	 most	 popular	 model	 systems	 in	 which	 to	 study	 processing	 in	 mammalian	

brains	 is	 the	 whisker,	 or	 vibrissal,	 sensorimotor	 system	 owing	 to	 its	 discrete	

organization	from	the	sensory	apparatus	(the	whisker	shaft)	all	the	way	to	the	sensory	

cortex	(see	Figure	11	and	Diamond,	von	Heimendahl	et	al.	 (2008)),	 its	relative	ease	of	

manipulation	 (for	a	 living	biological	 system),	 and,	not	 least,	 its	presence	 in	 laboratory	

rats	 and	 mice.	 	 Whisker	 signals	 are	 processed	 at	 multiple	 brain	 sites,	 crossing	 a	

minimum	of	 two	 synapses,	 in	 the	 brainstem	and	 in	 the	 thalamus,	 before	 reaching	 the	

sensory	 cortex.	 	 The	 whisker	 cortex,	 which	 is	 know	 as	 the	 barrel	 cortex	 due	 to	 the	
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presence	of	cellular	aggregates	that	have	a	one-to-one	mapping	with	the	facial	vibrissae,	

is	 itself	a	target	 for	huge	research	effort	(see,	e.g.	Petersen	(2007)).	 	This	 is	due	to	the	

ability	to	be	able	to	tweak	a	whisker	at	the	periphery,	in	a	known	and	quantifiable	way,	

and	 then	 record	 in	 a	 precise	 area	 of	 cortex	 to	 determine	 the	 effect	 of	 that	 stimulus.	

Barrel	 cortex	 is	 therefore	 widely	 viewed	 as	 a	 preparation	 in	 which	 neuroscientific	

research	 could	 unlock	 the	 secret	 of	 the	 ‘cortical	 microcircuit’.	 That	 is,	 if	 we	 can	

understand	 the	 processing	 going	 on	 in	 the	 barrel	 field,	 then	 we	 may	 understand	

something	about	the	generic	processing	capacities	of	mammalian	six-layered	cortex	that	

is	 replicated,	 with	 some	 variation,	 across	 both	 of	 the	 cerebral	 hemispheres	 and	 in	 all	

mammalian	 species.	 It	 is	 no	 surprise	 then,	 that	 new	 data	 on	 the	 barrel	 cortex,	 is	

published	on	a	weekly,	if	not	daily,	basis.	

	

	

Figure	11.	The	rodent	vibrissal	system.	The	vibrissal	system	(left)	of	rats	and	mice	is	a	major	target	of	

studies	 aimed	 at	 understanding	 mammalian	 brain	 architecture,	 partly	 due	 to	 the	 one-to-one	

correspondence	 (right)	 between	 single	 vibrissae	 on	 the	 snout	 and	 cellular	 aggregates	 in	 the	 vibrissal	

“barrel”	cortex.	Right	figure	adapted	from	Diamond,	von	Heimendahl	et	al.	(2008).	

	

But	what	of	the	stimuli	with	which	neuroscientists	are	probing	the	rat	brain	in	order	to	

understand	 what	 the	 barrel	 cortex	 is	 doing?	 	 Perhaps	 unsurprisingly,	 many	 of	 the	

studies	of	barrel	cortical	 function	have	been	performed	 in	anaesthetized	animals	or	 in	

brain	 slices.	 	 Less	 frequent	 historically,	 but	 now	 increasing	 in	 number,	 are	 studies	 in	

immobilized	animals	(head-fixed)	that	are	awake	and	able	to	move	their	whiskers.		Due	

to	 the	difficulty	of	 stably	 recording	 from	electrodes	 implanted	 in	 free	moving	animals	

(where	 the	 recording	 device	 is	 usually	 connected	 via	 a	 springy	 umbilical	 cable)	 the	

number	 of	 studies	 that	 have	 looked	 at	 barrel	 cortex	 processing	 in	 more	 natural	

circumstances	 remains	 comparatively	 small.	 	 Moreover,	 the	 practical	 difficulties	

associated	with	 recording	 in	moving	 animals	mean	 that	 such	 studies	 generally	 record	

extra-cellular	activity—i.e.	 they	use	electrodes	 that	pick-up	activity	 in	multiple	nearby	

cells;	 the	 capacity	 to	 distinguish	 what	 is	 happening	 in	 single	 neurons	 is	 therefore	

limited.	 	 Overall	 then,	 the	 picture	 is	much	 as	we	have	 described	 it	 in	 table	 1—as	 you	

move	 from	 the	 freely	moving	 rat	 to	more	 tractable	 experimental	models—head-fixed,	

anaesthetized,	 or	 slice—the	 ability	 to	 interrogate	 the	processing	 system	 improves	but	

the	 capacity	 of	 those	 signals	 to	 tell	 you	 about	 the	 nature	 of	 processing	 in	 awake	

naturally	 behaving	 animals	 falls	 away.	 	 This	 situation	 indicates	 there	 could	 scope	 for	

robotic	 models	 that	 can	 capture	 some	 of	 the	 physics	 of	 how	 whiskers	 interact	 with	

surfaces	 in	 exploring	 animals,	 and	 thus	 perhaps	 shed	 light	 on	 the	 nature	 of	 the	

processing	occurring	in	this	part	of	the	mammalian	sensorimotor	system.	
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The	closed	loop	of	active	vibrissal	touch	

There	 are	 two	 other	 strong	 motivations	 for	 investigating	 physical	 models	 of	 rodent	

vibrissal	processing.		First,	as	we	have	already	encountered	with	lobster	plume	tracking,	

simulation	 of	 real	 sensory	 transduction	 can	 be	 difficult.	 	 In	 the	 case	 of	 whiskers,	 you	

have	a	tapered	flexible	shaft	one	end	of	which	is	embedded	in	a	soft	deformable	body—

the	whisker	follicle—packed	with	mechanoreceptors.		Tactile	sensing	involves	contact	of	

the	(usually)	moving	whisker	with	surfaces	that	often	have	complex	microgeometry	(e.g.	

texture),	 which	 may	 also	 be	 moving.	 Various	 simulation	 approaches	 have	 been	

developed	 including	 a	 recent	 dynamic	model	 that	 includes	 effects	 of	 damping,	 inertia,	

and	 collisions	 (Quist,	 Seghete	 et	 al.	 2014),	 however,	 accurate	 simulation	 of	 the	

encounters	of	whiskers	with	interesting	surface	geometry	remains	an	unsolved	problem	

that	may	be	more	easily	addressed	by	building	a	physical	model.	

	

The	second	motivation	concerns	the	nature	of	vibrissal	sensing	itself.		Like	many	natural	

sensing	 systems,	 vibrissae	 are	 not	 deployed	 passively	 to	 detect	 the	 consequences	 of	

objects	 brushing	 against	 them.	 	 Rather,	 many	 whiskered	 animals,	 and	 particularly	

rodents,	actively	move	their	whiskers	against	objects	and	surfaces	of	interest	(see	figure	

12).		Indeed,	rats	and	mice	move	their	whiskers	back	and	forth	many	times	per	second	

(a	 rate	 of	 about	 8hz	 in	 rats),	 in	 a	 behavior	 known	 as	 “whisking”,	 generating	 multiple	

touches	 of	 the	 whiskers	 against	 salient	 objects.	 The	 control	 of	 whiskers	 happens	

alongside	 orienting	 movements	 of	 the	 head	 and	 body	 (Grant,	 Mitchinson	 et	 al.	 2009,	

Grant,	Sperber	et	al.	2012),	thus	we	can	think	of	whisking	as	one	component	of	an	active	

sensing	 system	 that	 uses	 the	 musculoskeletal	 system	 to	 help	 isolate	 and	 enhance	 the	

stimulus	features	of	the	environment	that	are	of	particular	interest	(Prescott,	Diamond	

et	al.	2011).	We	can	immediately	begin	to	see	a	major	compromise	that	studies	of	brain	

slices	and	anaesthetized	animals	have	to	make	when	they	study	barrel	cortex.		Electrical	

stimulation	of	a	brain	slice,	or	passive	deflection	of	the	whisker	of	a	sleeping	mouse	or	

rat,	 are	 both	 poor	 substitutes	 for	 the	 kinds	 of	 signals	 that	 are	 ascending	 from	 the	

brainstem	of	an	awake	and	active	animal.		Even	in	the	head-restrained	case,	the	animal	

is	 detecting	with	 its	whiskers	what	 the	 researcher	 has	 chosen	 to	 expose	 it	 too	 rather	

than	 deciding	 for	 itself,	 through	 head	 and	 body	 movements,	 where	 to	 deploy	 its	

whiskers	 (Mitchinson	and	Prescott	2013).	 	 Indeed,	 it	 is	well-known	 that	 in	head-fixed	

animals	the	normal	whisking	behavior	is	not	generally	expressed	and	when	it	is	evoked	

(e.g.	 by	 stimulation	 of	 the	 olfactory	 system)	 may	 have	 somewhat	 different	

characteristics	from	the	whisking	of	the	free-moving	animal.			
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Figure	 12.	Active	 vibrissal	 touch	 is	 supported	 by	 a	 nested-loop	brain	 architecture.	 Many	 animals	

generate	rhythmic	whisking	movements,	shown	here	is	a	bout	of	rat	whisking	at	two	temporal	scales	as	

measured	optoelectronicaly	in	a	head	fixed	animal	(Gao,	Bermejo	et	al.	2001).		The	upper	trace	shows	the	

average	left	and	right	whisker	movement	over	the	course	of	an	8.5s	bout.		The	lower	trace	shows	that	the	

movement	of	the	left	and	right	whisker	fields	are	usually	strongly	coupled.	Vibrissal	signals	are	processed	

in	multiple	nested	sensorimotor	loops	that	show	a	tight	coupling	between	sensing	and	actuation	(whisker	

movement)	(adapted	from	Kleinfeld,	Ahissar	et	al.	(2006)).	

	

How	important	 is	this	for	understanding	the	signals	that	are	being	processed	in	barrel	

cortex?	 	 This	 only	 becomes	 clear	 when	 we	 carefully	 study	 the	 nature	 of	 the	 whisker	

movements	 expressed	 by	 animals,	 and	 the	 architecture	 of	 the	 neural	 circuits	 that	

process	vibrissal	 signals.	 In	 the	case	of	 the	 latter,	 it	 is	now	well	known	(e.g.	Kleinfeld,	

Ahissar	 et	 al.	 (2006))	 that	 the	 barrel	 cortex	 does	 not	 simply	 sit	 atop	 a	 feed-forward	

circuit	 relaying	 whisker	 deflection	 systems	 up	 from	 the	 periphery	 as	 somewhat	

misleadingly	 implied	 in	 figure	11	above.	 	Rather,	as	 indicated	 in	 figure	12	 (right),	 it	 is	

embedded	within	a	complex	architecture	of	nested	sensorimotor	loops	at	the	brainstem,	

midbrain,	 and	 cortical	 levels,	 each	 of	 which	 implements	 a	 relatively	 short-latency	

coupling	between	sensory	input	and	motor	output.	Thus	both	the	behavior	of	the	animal	

(movement	 of	 the	 whiskers)	 and	 the	 neural	 circuits	 themselves,	 suggest	 that	 barrel	

cortical	 activity	 cannot	 be	 properly	 understood	 in	 isolation	 from	 the	 sensorimotor	

activity—exploratory	whisking—that	 generates	 it.	 	 We	 return	 to	 consideration	 of	 this	

larger	architecture	after	first	homing	in	on	the	whiskers	and	their	role	in	generating	the	

sensory	signals	we	find	in	the	brain.		

Towards	a	robot	model—how	engineers	sometimes	ask	the	right	questions	

What	can	we	find	out	about	the	vibrissal	system	and	processing	in	key	brain	areas	such	

as	the	barrel	cortex	by	building	a	robot	model	of	the	rat	vibrissae?		First	off	we	have	to	

build	 such	 a	 model.	 	 How	 then	 should	 the	 robot	 move	 its	 whiskers?	 	 Back-and-forth	

certainly,	and	at	some	speed,	but	when	the	whiskers	touch	an	object	should	they	keep	

moving	 forward	 regardless	 or	 should	 they	 change	 their	 behavior?	 Surprisingly,	 when	

researchers	began	 to	develop	robot	vibrissae	 the	answer	 to	 this	key	question	was	not	

available	 in	 the	 scientific	 literature	 despite	 almost	 a	 century	 of	 effort	 to	 try	 to	

understand	 rat	 vibrissal	 sensing.	 Therefore,	 urged	 on	 by	 the	 robot	 engineers,	

Mitchinson,	Martin	et	al.	(2007)	carefully	recorded	free-moving	rats	interacting	with	an	

object	using	their	whiskers	and	studied	the	trajectories	and	timing	of	whisker	motion,	
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before	and	after	object	contacts,	 in	high-speed	digital	video	recordings.	 	These	studies,	

and	subsequent	ones	(Voigts,	Sakmann	et	al.	2008,	Grant,	Mitchinson	et	al.	2009),	have	

clearly	 demonstrated	 that	 rats	 modulate	 the	 movement	 of	 their	 whiskers	 on	 a	

millisecond	basis	depending	on	the	nature	of	the	contacts	they	are	making	with	objects	

and	 surfaces.	 That	 is,	 the	 neural	 circuits	 really	 are	 implementing	 some	 tight	 feedback	

control	 of	 the	 sensor	 apparatus.	 	 This	 stands	 as	 an	 example	 of	 a	 question	 that	 was	

important	to	ask,	but	for	which	an	important	impetus	came	from	an	attempt	to	build	a	

physical	model.	A	more	general	lesson,	that	was	also	recognised	Braitenberg	(1986),	is	

that	 when	 we	 approach	 a	 complex	 biological	 system	 with	 the	 aim	 of	 synthesizing	 an	

artifact	that	operates	in	a	similar	way,	we	are	prompted	to	ask	different	questions	than	if	

we	simply	look	at	the	target	system	and	try	to	analyse	its	function.		

	

Advancing	neurobiological	knowledge	by	doing	experiments	that	would	be	impossible	in	

the	animal	

Knowing	how	the	whiskers	should	move,	the	next	step	was	to	build	an	approximation	to	

the	whisker	processing	apparatus	found	in	the	animal.		We	cannot	exactly	replicate	the	

mechanics	 of	 rat	 whiskers,	 or	 of	 their	 embedding	 in	 the	 follicle,	 or	 the	 complex	

responses	 of	 the	 mechanoreceptors	 to	 whisker	 deflection,	 or	 the	 responses	 of	 the	

primary	 afferent	 cells	 in	 the	 brainstem	 that	 process	 the	 signals	 from	 these	 receptors	

(hundreds	at	a	time).	However,	perhaps	we	could	get	close	enough	to	learn	something	

interesting.	 Mitchinson,	 Gurney	 et	 al.	 (2004)	 implemented,	 in	 simulation,	 an	

electromechanical	 model	 of	 the	 whisker	 follicle	 (see	 figure	 13)	 and	 fed	 it	 with	 inputs	

from	 an	 artificial	 whisker	 (a	 tapered,	 flexible	 plastic	 shaft)	 instrumented	 with	 strain	

gauge	transducers.		By	suitable	tuning	of	the	parameters	of	this	model	they	showed	that	

they	 could	 reproduce,	 using	 deflections	 of	 the	 artificial	 whisker,	 patterns	 of	 firing	 in	

model	primary	afferent	cells	that	were	qualitatively	similar	to	those	recorded	when	the	

whiskers	 of	 anaesthetized	 animals	 are	 deflected	 (Mitchinson,	 Gurney	 et	 al.	 2004,	

Mitchinson,	Arabzadeh	et	al.	2008).		

	

Figure	 13.	 Using	 strain	 signals	 from	 an	 artificial	 whisker	 to	 model	 the	 response	 properties	 of	

vibrissal	 primary	 afferent	 neurons.	 	 The	 input	 (mechanical	 strain,	 u)	 is	 transformed,	 in	 turn,	 by	

processing	units	 representing	directional	 response,	 nonlinearity,	 saturation,	 adaptation	 to	 stimulus	 and	

stimulus	memory;	the	resulting	signal	(z)	drives	a	conventional	integrate-and-fire	membrane	model.		See	

Mitchinson,	Gurney		et	al.	(2004)	for	further	details.	
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Now	 it	becomes	possible	 to	perform	an	experiment	 that	cannot	be	done	 in	 the	animal	

(recall	 that	 a	key	 criteria	 for	a	good	model	 is	 that	 it	 should	allow	us	 to	do	 interesting	

experiments	with	relative	ease).			

	

In	order	 to	understand	 the	signals	 that	are	ascending	 from	the	vibrissae	 (as	shown	 in	

Figure	11)	for	processing	in	the	barrel	cortex	of	awake	behaving	animals	it	is	clear	that	

we	need	to	know	what	effect	the	feedback	control	that	animal’s	exert	on	their	whiskers	

is	having	on	the	ascending	signals.		The	video	studies	showed	that	rats	were	modifying	

their	 whisker	 movements	 when	 they	 contacted	 objects.	 More	 precisely,	 the	 whiskers	

stop	 protracting	 (moving	 forward)	 and	 start	 retracting	 (moving	 backwards)	 earlier	

when	 they	 contact	 surfaces	 than	 when	 whisking	 in	 free	 air	 (see	 figure	 14).	 	 The	

consequence	 is	 that	whiskers	bend	 less	against	 surfaces	 then	 they	would	otherwise—

you	could	say	that	the	rat	explores	surfaces	using	a	“light	touch”	(Mitchinson,	Martin	et	

al.	2007).		The	neural	circuits	that	implement	this	feedback	circuit	in	the	animal	are	not	

well	understood.	Indeed,	even	if	we	knew	where	they	were,	experimentally	interfering	

with	them	(e.g.	attempting	to	block	the	feedback),	would	have	unknown	effects	on	the	

animal.		Would	an	animal	continue	exploring	objects	as	normal,	or	express	anything	like	

its	natural	behavior,	if	 it	were	unable	to	regulate	whisker	movement	in	the	usual	way?		

However,	 the	 roboticists	 could	perform	 the	equivalent	 experiment	 in	 their	model	 in	 a	

very	simple	way.			

	

	

Figure	14.	 Effect	 of	whisker-object	 contact	 on	whisker	motion.	 	 High-speed	 video	 recordings	 show	

that	 the	 protraction	 of	 the	 whisker	 often	 stops	 rapidly	 (12-14ms)	 after	 contact	 with	 a	 surface.	 	 In	 this	

sequence	of	frames	the	right	whisker	field	touches	an	object	in	frame	2		(this	is	indicated	by	the	white	dot	

on	 the	 object	 just	 below	 the	 contact	 point),	 frames	3	 and	4	 show	 that	 the	whiskers	 on	 that	 side	 of	 the	

snout	then	begin	to	retract	whilst	those	on	the	opposite	side	are	still	moving	forward.		The	overall	effect	is	

that	whiskers	make	relatively	light	contacts	with	surfaces.	[Figure	adapted	from	Mitchinson,	Martin	et	al.	

(2007)	which	should	be	consulted	for	more	details	of	how	this	sequence	was	recorded].	

	

A	 whisker	 pattern	 generation	 model	 was	 implemented	 that	 generated	 a	 sinusoidal	

whisking	motion	similar	to	that	seen	in	the	animal,	and	modulation	was	imposed	on	this	

to	 suppress	 further	 protraction,	 and	 initiate	 earlier	 retraction,	 following	 contact	

(Pearson,	Pipe	et	al.	2007).		Now	this	feedback	mechanism	could	be	easily	turned	on	or	

off	 by	 toggling	 a	 variable	 in	 the	 control	 program.	 	 Figure	 15	 shows	 the	 effect	 of	 the	

presence	 or	 absence	 of	 feedback	 control	 on	 an	 important	 classes	 of	 model	 primary	

afferent	 neurons—so-called	 ‘rapidly	 adapting’	 (RA)	 cells,	 as	 simulated	 with	 the	

Mitchinson,	Gurney	 et	 al.	 (2004)	 electromechanical	model.	 	 The	 figure	 shows	 that	 the	

effect	of	the	feedback	is	to	significantly	alter	the	nature	of	the	signals	generated	by	these	

model	cells	 (presented	here	as	simulated	spike	rasters).	 	 Specifically,	 the	responses	of	

the	cells	were	both	briefer	and	less	noisy	when	the	feedback	control	was	in	place	than	

when	it	was	switched	off.	This	outcome	occurred,	naturally	enough,	because	the	effect	of	

the	 feedback	 was	 to	 produce	 a	 much	 smoother	 deflection	 pattern	 than	 when	 the	

feedback	 was	 deactivated.	 	 Of	 course,	 turning	 off	 protraction	 early	 should	 produce	 a	

smaller	 deflection,	 but	 what	 was	 interesting	 here	 was	 that	 despite	 having	 a	 smooth	
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sinusoidal	drive	and	touch	against	a	smooth	surface,	in	the	no	feedback	condition,	there	

was	 a	 highly	 variable	 deflection	 pattern	 for	 the	 duration	 of	 the	 contact	 resulting	 in	

rather	noisy	model	primary	afferent	responses.		

	

	

Figure	15.	 	 Top.	Whisker	 deflection	pattern	 (left)	 and	 activity	 in	model	 rapidly	 adapting	 (RA)	 primary	

afferent	neurons	 in	the	condition	where	 feedback	control	of	sensor	movement	 is	switched	for	the	robot	

Whiskerbot	 (pictured	bottom	 left).	For	 further	details	 see	Pearson,	Pipe	et	al.	 (2007).	Bottom	right.	The	

whiskered	robot	Shrewbot	has	recently	been	deployed	to	perform	further	neurorobotic	investigations	of	

vibrissal	touch	(Pearson,	Mitchinson	et	al.	2011)	including	tactile	simultaneous	localization	and	mapping	

(Pearson,	 Fox	 et	 al.	 2013)	 and	modeling	 of	whisker-based	 predator-prey	 pursuit	 (Mitchinson,	

Pearson	et	al.	2014).	

	

Based	on	these	results,	and	their	experimental	studies	in	animals,	Pearson	et	al.	(2011)	

have	 proposed,	 and	 further	 demonstrated	 experimentally,	 in	 a	 new	 whiskered	 robot	

Shrewbot	(figure	15,	bottom	right),	that	the	effect	of	feedback	in	this	system	could	be	to	

provide	 more	 uniform	 signals,	 within	 a	 constrained	 dynamic	 range,	 for	 relay	 up	 to	

cortical	 areas.	 	 This	 could	 be	 very	 useful	 information	 for	 experimentalists	 trying	 to	

design	neuroethologically–valid	deflection	patterns	or	neural	stimulus	trains	with	which	

to	investigate	their	animal	models,	and	for	theoreticians	trying	to	understand	the	nature	

of	vibrissal	processing	in	the	barrel	cortex	microcircuit.			

	

Further	 work	 has	 developed	 models	 of	 other	 neural	 structures—superior	 colliculus,	

cerebellum,	 barrel	 cortex,	 hippocampus—and	 evaluated	 their	 performance	 in	 the	

context	 of	 sensory	 inputs	 derived	 from	 active	 artificial	 vibrissal	 sensors	 (Prescott,	

Pearson	 et	 al.	 2009,	 Anderson,	 Pearson	 et	 al.	 2010,	 Pearson,	 Mitchinson	 et	 al.	 2010,	

Mitchinson,	 Pearson	 et	 al.	 2011).	 A	 review	 of	 this	 broader	 work	 which	 is	 seeking	 to	

render	 an	 embodied	 model	 of	 the	 full	 sensorimotor	 loop	 architecture	 of	 the	 rodent	

vibrissal	system	shown	in	figure	13	is	available	in	Prescott,	Mitchinson	et	al.	(In	press).	
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5.	 Scaling	up	to	the	whole	brain	

We	have	argued	throughout	this	chapter	that	an	effective	strategy	for	understanding	the	

relationship	between	brain	and	behavior	 is	 through	abstraction	to	a	physical	model	of	

reduced	 but	 appropriate	 complexity.	 In	 this	 final	 section	 we	 argue	 that,	 at	 an	

appropriate	 level	 of	 abstraction,	 the	 strategy	 of	 neurorobotics	 can	 also	 scale	 up	 to	

understanding	the	whole	brain.		

	

An	 elaborate	 robot-based	 theory	 that	 seeks	 to	 extend	 embodied	 modeling	 to	

encapsulate	the	control	architecture	of	 the	vertebrate	brain	 is	 the	Distributed	Adaptive	

Control	 (DAC)	series	of	models	proposed	by	Verschure	and	colleagues	 (see	Verschure,	

Krose	 et	 al.	 (1992),	 Verschure	 (2012)	 for	 a	 review).	 	 DAC	 addresses	 the	 fundamental	

question	that	the	theoretician	and	modeler	faces:	what	level	of	abstraction	is	sufficient	

to	 allow	 a	 parsimonious	 description	 while	 in	 the	 meantime	 being	 sufficiently	

constrained	 by	 data	 to	 be	meaningful?	 	DAC	 solves	 this	 dilemma	by	 advancing	 a	 dual	

agenda:	an	 integrated	systems-level	architecture	 to	 identify	 the	overall	behavioral	and	

functional	 constraints	 as	 described	 above,	 paired	 with	 anatomically	 and	 physiological	

constrained	models	to	test	specific	assumptions	and	predictions.		

	

We	 earlier	 saw	 the	notion	of	 nested-loop	 architecture	 applied	 to	 the	 vibrissal	 system.	

The	DAC	 theory	 aims	 at	 conceptualizing	 a	wider	 organizational	 scheme	 for	 the	whole	

brain	from	which	we	can	extract	general	principles	to	be	mapped	both	to	behavior	and	

to	 its	 underlying	 neuronal	 substrate.	 The	 DAC	 theory	 starts	 from	 the	 fundamental	

question	of	what	the	function	of	the	brain	could	be	and	proposes	that	the	it	can	be	seen	

as	 optimizing	 four	 fundamental	 objective	 functions	 to	 generate	 action	 in	 the	 physical	

world	or	the	‘How’	of	survival:		

	

1.! Why:	the	motivation	for	action	in	terms	of	needs,	drives	and	goals.	

2.! What:	the	objects	in	the	world	that	actions	pertain	to.	

3.! Where:	the	location	of	objects	in	the	world	and	the	self.	

4.! When:	the	timing	of	action	relative	to	the	dynamics	of	the	world.	

We	can	call	this	the	H4W	problem	for	short	and	each	of	the	Ws	designates	a	large	set	of	

sub-objectives	of	varying	complexity.	Answering	H4W	requires	the	tight	coordination	of	

a	 number	 of	 processes	 ranging	 from	 control	 and	 sensing	 of	 the	 body	 through	 to	 the	

cognitive	and	 integrative	processes	 that	underlie	 self-awareness.	One	can	argue	 that	a	

similar	taxonomy	could	hold	for	any	brain.	This	might	be	the	case,	and	indeed	the	DAC	

theory	 has	 also	 been	 mapped	 to	 invertebrate	 systems	 such	 as	 ants	 and	 moths	 (Pyk,	

Bermudez	et	al.	2006,	Mathews,	Lechón	M	et	al.	2009,	Mathews,	Verschure	et	al.	2010).	

However,	vertebrate	brains	provide	systems	that	explicitly	process	all	aspects	of	H4W	as	

opposed	to	invertebrates.		

	

The	 DAC	 theory	 proposes	 that	 the	 brain	 solves	 H4W	 as	 an	 integrated	 control	 system	

comprising	four	layers	called:	Soma,	Reactive,	Adaptive	and	Contextual.	Three	functional	

columns	intersect	these	layers	delineating	subsystems	dealing	with:	exosensing	states	of	

the	world,	endosensing	states	of	 the	self	and	the	 interfacing	of	world	and	self	 in	action	

(Figure	16).	DAC	proposes	that	we	can	think	of	the	brain,	and	its	organization	along	the	

neuroaxis,	as	a	matrix.	Further,	DAC	proposes	that	as	we	move	from	the	reactive	to	the	

contextual	 layer	we	advance	 from	evolutionary	ancient	and	predefined	systems	of	 the	



Chapter	17	 Embodied	Models	&	Neurorobotics	 26	

brainstem	towards	the	memory-dependent	decision	making	circuits	of	the	frontal	lobes	

of	the	neo-cortex.	

	

	

	 	
Figure	 16.	 Conceptual	 scheme	 of	 the	 DAC	 architecture.	 DAC	 comprises	 four	 tightly	 coupled	 layers:	

Soma,	Reactive,	Adaptive	and	Contextual.	Across	 these	 layers	we	distinguish	 three	 functional	columns	of	

organization:	 exosensing	 defined	 as	 the	 sensation,	 perception	 and	 retaining	 states	 of	 the	world	 (left),	

endosensing	which	is	detecting,	signaling	and	retaining	states	of	the	physically	instantiated	self	(centre),	

and	the	 interface	to	the	world	through	action	(right).	The	arrows	show	the	primary	flow	of	 information	

mapping	 exo-	 and	 endosensing	 into	 action.	 See	 text	 for	 further	 explanation.	 Figure	 from	 Verschure,	

Pennartz	et	al.	(2014).		
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An	 attentive	 reader	 might	 object	 that	 Figure	 16	 is	 incomplete,	 or	 even	 incorrect,	 by	

raising	 concerns	 such	 as:	Why	does	 one	 go	 through	 episodic	memory	 to	 get	 to	 short-

term	memory.	Why	does	working	memory	depend	on	LTM	but	episodic	memory	does	

not?	Where	is	procedural	memory?	Why	is	value	lower	than	goals?	However,	obviously	

a	two-dimensional	that	must	fit	on	one	page	cannot	express	all	of	the	relevant	aspects	of	

structural	and	functional	brain	organization.	Rather,	as	the	theory	it	reflects,	it	seeks	to	

provide	a	suitable	abstraction	(Verschure,	Pennartz	et	al.	2014).	Nevertheless,	the	DAC	

theory	has	generated	some	very	precise	predictions	concerning	the	organization	of	the	

neuronal	 substrate	 underlying	 adaptive	 behavior	 that	 demonstrate	 its	 utility.	 We	 will	

describe	a	few	of	these	after	reviewing	the	basic	organization	of	the	theory.	For	a	more	

detailed	analysis	of	 the	mapping	of	 the	DAC	 theory	 to	 the	brain	 structures	underlying	

goal-oriented	see	Verschure,	Pennartz	et	al.	(2014).	

	

Within	 the	 DAC	 architecture,	 the	 somatic	 layer	 designates	 the	 body	 itself	 and	 defines	

three	 fundamental	 sources	 of	 information:	 sensation	 driven	 by	 external	 and	 internal	

sources	 of	 stimulation	 (or	 exo-	 and	 endosensing	 respectively),	 needs	 defined	 by	 the	

essential	variables	 that	assure	survival	(e.g.	oxygen,	glucose,	carbohydrates,	sleep,	sex,	

etc.)	and	the	skeletal-muscle	system	for	actuation	and	the	proprioception	it	provides.	To	

keep	 the	 soma	 intact	 is	 the	 primary	 objective	 of	 the	 brain.	 This	 ability	 for	 self-

maintenance	was	recognized	by	the	19th	century	physiologists	Claude	Bernard	and	Ivan	

Pavlov	 under	 the	 notion	 of	homeostasis	 (see	 Verschure,	 Pennartz	 et	 al.	 (2014)).	 Later	

variations	include	the	idea	of	autopoiesis,	where	the	overall	ability	to	maintain	oneself	is	

in	 turn	 a	 homeostatic	 variable	 (Varela,	 Maturana	 et	 al.	 1974).	 From	 a	 robotics	

perspective	 we	 can	 operationalize	 these	 essential	 variables	 as	 the	 need	 to	 optimize	

energy	and	minimize	damage.	However,	we	do	need	to	keep	in	mind	that	the	robots	we	

consider	 are	 not	 literal	 animals	 but	 rather	 operational	 approximations	 that	 allow	 our	

models	to	generate	behavior	in	the	real	world.	The	DAC	theory	is	of	interest	because	it	

suggests	 how	 self-regulation	 can	 be	 realized	 in	 the	 embodied	 brain	 considered	 as	 an	

integrated	system.	

	

The	 reactive	 layer	 (Verschure,	 Krose	 et	 al.	 1993)	 comprises	 fast	 predefined	

sensorimotor	loops	that	support	direct	behaviors	underlying	basic	functionality	such	as	

exploration,	 feeding,	 grooming,	 defense,	 orienting,	 mobility,	 sex,	 etc.	 Each	 of	 these	

reflexive	behavior	systems	is	triggered	by	low	complexity	signals,	sensing,	and	directly	

coupled	 to	 specific	 need	 dependent	 internal	 states	 of	 the	 agent	 or	 drives.	 Hence,	 the	

primitive	 organizational	 elements	 of	 the	 reactive	 layer	 are	 sense-affect-act	 triads	 that	

are	 regulated	 following	 homeostatic	 principles	 (Sanchez-Fibla,	 Bernardet	 et	 al.	 2010).	

This	 layer	 can	be	 seen	as	 a	more	advanced	version	of	 the	 reflex-driven	 robot	 tortoise	

built	 by	 Grey	 Walter,	 the	 “vehicles”	 proposed	 by	 Valentino	 Braitenberg	 or	 Brooks’	

subsumption	 architecture	 (see	 section	 1	 above).	 The	 key	 difference	 is	 that	 the	 DAC	

reactive	 layer	 is	 modeled	 after	 the	 primitive	 brainstem	 structures	 that	 govern	 these	

behavior	systems	in	the	vertebrate	brain	(Panksepp	and	Biven	2012).		

	

In	the	reactive	layer	every	behavior	system	is	conceived	as	a	homeostatic	control	system	

that	 in	 turn	 is	 regulated	 by	 an	 integrative	 allostatic	 process.	 Whereas	 homeostasis	

considers	a	dynamic	process	as	seeking	stability,	allostasis	considers	self-regulation,	in	

general,	 as	 a	 continuous	 dynamic	 process—seeking	 stability	 through	 change	 (Sterling	

and	 Eyer	 1988).	 In	 our	 case	 this	 means	 that	 each	 individual	 behavioral	 homeostatic	

system,	 such	 as	 the	 need	 for	 fight	 or	 flight,	 is	 regulated	 in	 real-time	 relative	 to	 the	
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pertinent	 needs	 of	 the	 behaving	 system.	 The	 control	 model	 proposed	 here	 is	 that	

behavior	systems	are	individually	tuned	to	specific	properties	of	the	environment,	such	

as	the	home	base	for	security	or	the	open	field	for	exploration,	while	being	continuously	

tuned	 with	 respect	 to	 the	 overall	 behavioral	 needs	 of	 the	 agent.	 Robotic	 experiments	

show	 that	 these	 drive-reducing	 reactive	 control	 systems	 can	 give	 rise	 to	 complex	

patterns	 of	 environment	 exploration	 (Sanchez-Fibla,	 Bernardet	 et	 al.	 2010)	 similar	 to	

those	measured	 in	 animals	 (see	 figure	17).	Recent	 research	has	 applied	 this	model	 to	

provide	 allostatic	 control	 of	 a	 humanoid	 robot	 engaged	 in	 human-robot	 social	

interaction	(Vouloutsi,	Lallée	et	al.	2013).		

	

!

Figure	17.	Behavior	generated	by	the	reactive	layer	of	DAC	controlling	a	robot	in	the	real	

world	while	exploring	 a	 familiar	 environment	 (left)	 or	 a	novel	 environment	 (right).	 The	

familiar	environment	triggers	exploration	behavior	that	brings	the	robot	out	of	the	home	base	at	

the	 lower-right	 corner,	 while	 the	 novel	 environment	 induces	 security	 seeking	 so	 that	 robot	

moves	primarily	within	the	home-base	region.		Insets	show	example	trajectories	from	rats	under	

similar	conditions.	Adapted	from	Sanchez-Fibla,	Bernardet	et	al.	(2010).	

	

The	adaptive	 layer	 of	DAC	 is	 interfaced	 to	 the	 full	 sensorium	of	 the	 agent,	 its	 internal	

needs	and	effector	systems	(Verschure	and	Coolen	1991,	Verschure,	Krose	et	al.	1992,	

Duff	and	Verschure	2010),	extending	the	sensorimotor	loops	of	the	reactive	layer	with	

acquired	 sensor	 and	 action	 states.	 Through	 learning,	 a	 state	 space	 of	 sensation	 and	

action	helps	 the	agent	deal	with	 the	 fundamental	unpredictability	of	both	 the	 internal	

and	the	external	environment.		This	is	signified	in	figure	16	by	“Perception”	and	“Action”	

which	 are	 both	 dependent	 on	 plasticity	 and	memory.	 Moreover,	 the	 adaptive	 layer	 of	

DAC	provides	a	solution	to	the	fundamental	symbol-grounding	problem	 that	real-world	

systems	face	(Searle	1980,	Harnad	1990,	Verschure,	Krose	et	al.	1992,	Verschure	1998).	

The	core	 issue	 is	 that	a	system	that	needs	to	 learn	to	act	has	to	associate	actions	with	

states	of	 the	world.	These	states	must	be	picked	up	with	 its	 sensors	and	 the	 resulting	

internal	 representations	 grounded	 in	 the	 experience	of	 the	 agent	 itself,	 as	 opposed	 to	

being	predefined	by	an	external	entity	such	as	the	system	programmer.		

	

Learning	 in	 the	 adaptive	 layer	 occurs	 in	 a	 restricted	 temporal	 window	 of	 relatively	

immediate	interaction.	In	order	to	go	beyond	“the	now”,	other	learning	systems	must	be	

engaged	 that	 can	 expand	 this	 time	 window.	 The	 adaptive	 layer	 and	 the	 state-space	 it	

acquires	 thus	 provide	 a	 foundation	 for	 the	 more	 advanced	 learning	 and	 memory	
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systems	of	the	contextual	layer.	More	specifically,	the	contextual	layer	of	DAC	develops	

behavioral	 plans	 or	 policies	 (Voegtlin	 and	 Verschure	 1998,	 Verschure	 and	 Voegtlin	

1999)	 the	 atomic	 elements	 of	 which	 are	 formed	 by	 the	 state	 space	 of	 exo-	 and	

endosensing	 built	 by	 the	 adaptive	 layer,	 and	 by	 its	 sensorimotor	 contingencies.	 	 The	

contextual	 layer	 forms	sequential	 short-	and	 long-term	memory	representations	 (STM	

and	LTM)	that	reflect	states	of	the	environment	and	actions	generated	by	the	agent	or	its	

acquired	sensory-motor	contingencies.	The	acquisition	and	retention	of	these	sequences	

is	conditional	on	the	goal	achievement	of	the	agent.	The	behavioral	plans	can	be	recalled	

through	 sensory	 matching	 and	 internal	 chaining	 among	 the	 elements	 of	 the	 retained	

memory	sequences.	The	dynamic	states	 that	 this	process	entails	can	be	 interpreted	as	

DAC´s	working	memory	system.		

	

The	 development	 of	 the	DAC	 architecture	 has	 taken	 place	 through	 a	 close	 interaction	

between	theoretical	 investigations	of	the	neurobiology	and	psychology	of	 living	things,	

and	 a	 wide	 variety	 of	 robotics	 models	 of	 different	 kinds,	 and	 at	 different	 levels	 of	

abstraction	compared	to	the	biological	target.		An	example	that	shows	the	importance	of	

embodied	modeling,	in	the	development	of	the	DAC	framework,	is	research	that	lead	to	

the	understanding	of	the	phenomenon	of	behavioral	 feedback	in	the	coupling	between	

perceptual	 and	 behavioral	 learning	 (Verschure,	 Voegtlin	 et	 al.	 2003).	 Behavioral	

feedback	 describes	 a	 process	 through	 which	 learning	 leads	 to	 the	 development	 of	

behavioral	habits	that,	in	turn,	lead	to	the	creation	of	an	effective	interaction	space	that	

is	 of	 lower	 complexity	 than	 the	 overall	 environment.	 This	 reduction	 in	 complexity	

means	that	the	environment	is	sub-sampled	and	the	perceptual	learning	systems	further	

adjust	to	this	reduced	set	of	interactions.		Behavioral	feedback	therefore	directly	couples	

behavioral	 and	 perceptual	 learning	 through	 behavior	 itself	 (Verschure,	 Voegtlin	 et	 al.	

2003)	(see	also	“closing	the	loop”	in	section	1	above).	This	direct	impact	of	situatedness	

on	perception	was	first	analyzed	through	embodied	learning	using	a	robotic	model.	

	

Answering	the	“where”	question	

We	conclude	this	section	by	looking	at	the	practical	impact	of	the	DAC	research	strategy	

and	 by	 analyzing	 a	 specific	 problem—how	 to	 build	 a	 map	 of	 the	 world	 and	 localize	

oneself	in	it,	or	the	problem	of	“where”	of	the	H4W	taxonomy.		

	

Earlier	 we	 noted	 some	 of	 the	 remarkable	 feats	 of	 navigation	 and	 spatial	 knowledge	

shown	 by	 some	 species	 of	 birds	 and	 fish.	 	 For	 many	 animals,	 an	 essential	 aspect	 of	

survival	 is	 to	 build	 up	 appropriate	 knowledge	 of	 the	 environment	 and	 to	 know	 the	

position	within	 it	 of	 the	 self	 and	of	 other	 significant	 locations	 and	objects.	 In	 robotics	

this	is	widely	referred	to	as	the	Simultaneous	Localization	and	Mapping	problem	(SLAM)	

(Leonard	 and	 Durrant-Whyte	 1991,	 Thrun,	 Burgard	 et	 al.	 2005).	 SLAM	 aims	 at	

simultaneously	 estimating	 locations	 of	 novel	 landmarks,	 and	 of	 the	 robot	 itself,	 while	

incrementally	building	a	map	of	the	environment.	Solving	the	SLAM	problem	is	seen	as	

the	 technological	 breakthrough	 required	 for	 robots	 to	 perform	 autonomous	 tasks	

requiring	 mobility	 (Thrun	 2010).	 The	 most	 popular	 methods	 for	 SLAM	 are	 based	 on	

estimation-based	approaches	(Dissanayake,	Newman	et	al.	2001),	grounded	in	adaptive	

filter	techniques	starting	with	the	Kalman	filter	(Kalman	1960)	(the	workhorse	of	many	

control	 engineering	 applications).	 However,	 solutions	 to	 SLAM	 face	 challenges	 due	 to	

various	 sources	 of	 uncertainty	 such	 as	 errors	 in	 path	 integration,	 sensor	 noise,	 and,	

above	all,	the	dynamics	of	the	world	itself.	Biological	systems	display	robust	solutions	to	

SLAM,	it	 is	thus	no	surprise	that	attention	has	been	paid	to	the	ways	in	which	animals	
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solve	 spatial	 tasks	 (Milford	 and	 Wyeth	 2010,	 Sünderhauf	 and	 Protzel	 2010).		

Understanding	how	animals	solve	the	SLAM	problem	could	thus	serve	a	dual	purpose,	

both	 to	 provide	 good	 theories	 of	 animal	 spatial	 cognition	 and	 to	 provide	 a	 useful	

biomimetic	advance	in	mobile	robotics.	

	

In	mammals,	spatial	cognition	is	associated	with	the	hippocampus	and	adjacent	areas	in	

the	medial	temporal	lobe.	Within	this	area	of	the	brain	a	number	of	cell	types	have	been	

described	that	relate	to	the	position	in	space	of	the	animal	such	as	place	cells	(O'Keefe	

and	Dostrovsky	1971,	O'Keefe	and	Conway	1978),	head-direction	cells	(Taube,	Muller	et	

al.	 1990),	 and	 grid	 cells	 (Hafting,	 Fyhn	 et	 al.	 2005).	 Place	 cells	 show	 a	 response	 to	 a	

specific	 location	 in	 space,	 head-direction	 cells	 indicate	 the	 heading	 direction	 of	 the	

animal,	 while	 grid	 cells	 show	 a	 response	 field	 that	 includes	 a	 grid	 of	 precisely-tuned	

location-specific	 responses.	 A	 common	 brain-based	 approach	 towards	 solving	 simple	

navigation	 tasks	 is	 to	 combine	 model	 place	 cells	 with	 reinforcement	 learning	 to	

associate	actions	to	locations	in	space	(e.g.	Burgess,	Donnet	et	al.	(1997),	Foster,	Morris	

et	 al.	 (2000),	 Arleo	 and	 Gerstner	 (2001)).	 Recent	 studies	 have	 claimed	 that	 such	

hippocampus-inspired	 models	 are	 capable	 of	 competing	 with	 state-of-the-art	 SLAM	

algorithms	in	large-scale	benchmarks	(Milford	and	Wyeth	2010).	However,	a	limitation	

of	these	models	is	that	they	make	the	strong	assumption	that	perception	itself	does	not	

depend	on	behavior,	 for	example,	 they	often	rely	on	a	predefined	discretized	model	of	

space,	 and	 do	 not	 always	 take	 into	 account	 critical	 physiological	 and	 anatomical	

properties	of	the	relevant	brain	structures.		

	

We	turn	to	a	specific	model	developed	within	the	DAC	framework	(Verschure,	Krose	et	

al.	 1992,	 Verschure	 2012)	 that	 illustrates	 how	 predictions	 formed	 at	 the	 level	 of	 the	

overall	 neuronal	 architecture	 can	 be	 mapped	 to	 the	 neuronal	 substrate.	 As	 described	

earlier,	 DAC	 postulates	 a	 contextual	 layer	 that	 operates	 on	 highly	 integrated,	 multi-

modal	representations	of	sensorimotor	couplets	that	comprise	both	sensing	and	action.	

This	 assumption	 constitutes	 a	 testable	 hypothesis	 and	 the	 question	 thus	 becomes	

whether	the	brain	operates	on	such	integrated	sensorimotor	representations.		

	

The	hippocampus	interfaces	with	the	neocortex	via	the	entorhinal	cortex	(EC),	receiving	

sensory	information	via	the	lateral	EC,	and	spatial	information	from	the	grid	cells	of	the	

medial	EC.	Given	these	 inputs,	Lisman	(2005,	2007)	has	hypothesized	that	 the	dentate	

gyrus	(DG),	which	is	the	first	processing	stage	of	the	hippocampus,	may	form	the	sense-

act	 couplets	 predicted	 by	 the	 DAC	 architecture	 (Lisman	 2007).	 Using	 an	 anatomically	

and	 physiologically	 constrained	 model,	 Rennó-Costa,	 Lisman	 et	 al.	 (2010,	 2014)	 have	

shown	 that	 representations	 in	 the	 lateral	 and	 medial	 EC	 may	 be	 multiplexed	 in	 the	

responses	of	the	neurons	in	the	DG	(Figure	18).	The	model	proposes	that	the	first	step	in	

the	construction	of	sense-act	couples	predicted	by	DAC	occurs	is	in	the	fixed	divergent	

mapping	of	 the	EC	onto	 the	DG.	 	This	model	also	explains	 the	specific	phenomenon	of	

“rate	 remapping”	 of	 the	 population	 response	 in	 DG	 when	 visual	 cues	 are	 smoothly	

varying	due	to	the	“morphing”	of	 the	environment	(e.g.	when	a	square	environment	 is	

gradually	modified	to	become	circular).	 	Rate	remapping	describes	the	finding	that	the	

correlation	 of	 the	 population	 response	 of	 the	 DG	 in	 morphed	 environments	 smoothly	

degrades	 (remaps)	 as	 environments	 become	 more	 dissimilar	 (Leutgeb,	 Leutgeb	 et	 al.	

2007).	The	DAC	model	of	the	DG	can	account	for	this	effect	but,	more	importantly,	also	

shows	that	the	neurons	in	the	DG	provide	an	integrated	encoding	of	action	and	sensory	

states,	as	is	assumed	for	the	DAC	contextual	layer,	which	drives	place	cell	activity	in	the	
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hippocampal	 CA3	 region.	 Rennó-Costa	 Rennó-Costa,	 Luvizotto	 et	 al.	 (2011)	 have	 also	

shown	that	this	detailed	neuronal	model	of	mammalian	spatial	cognition	can	provide	for	

robust	SLAM	in	a	mobile	robot,	providing	additional	evidence	of	 the	sufficiency	of	 this	

account	as	a	theory	of	animal	navigation	behavior.	

	

	

	
	
*Figure	 18.	 A	 computational	 model	 of	 the	 mammalian	 temporal	 lobe	 as	 a	 test	 of	 the	

sensorimotor	 multiplexing	 hypothesis	 of	 DAC	 and	 its	 impact	 on	 spatial	 memory.	 (A)	

Excitatory	 granule	 cells	 of	 DG	 receive	 convergent	 input	 from	 entorhinal	 cortex	 (EC)	

(convergence	ratio	of	2700:1)	with	delayed	inhibitory	feedback	(delay:	3.3±0.4	msec)	from	local	
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interneurons.	Excitatory	cells	in	hippocampal	CA3	receive	convergent	input	from	both	EC	(ratio	

2900:1)	 and	 from	 dentate	 gyrus	 (DG)	 (ratio	 50:1)	 together	 with	 delayed	 feedback	 inhibition	

from	 local	 interneurons	 (delay:	 3.3±0.4	msec)	 and	 recurrent	 excitatory	 input	 (delay:	 1	msec).	

(B)	 Delayed	 feedback	 inhibition	 defines	 a	 winner-take-all	 competition	 that	 selects	 which	 cell	

fires	in	a	given	cycle.	The	diagram	provides	a	trace	of	three	sample	cells	with	different	strength	

of	 excitatory	 feed-forward	 input.	 Time	 is	 represented	 by	 the	 horizontal	 axis,	 the	 gray	 area	

designates	 the	window	between	 the	 first	 spike	 and	 the	 onset	 of	 global	 inhibition.	 Cell	 voltage	

and	input	currents	are	shown	on	the	ordinate.	(C)	Rate	maps	of	sample	EC	grid	cells	exposed	to	

two	 shapes	 of	 an	 environment.	 (D)	 Action	 potentials	 (red	 dots)	 with	 overlaid	 trajectory	 of	 a	

simulated	agent	(gray	line)	and	equivalent	rate	maps	of	sample	DG	and	CA3	cells	showing	a	well-

defined	place	cell	response	in	CA3.	

	

Conclusion—advancing	brain	theory	through	neurorobotics	

The	approach	of	embodied	modeling	has	a	broad	range	of	benefits	and	contributions	to	

bring	to	brain	science.	Neurorobotics	adds	to	the	computational	neuroscience	approach	

the	capacity	 to	directly	 test	models	 in	 the	real	world,	avoiding	the	need	to	simulate	 in	

detail	 the	 physics	 of	 organism-environment	 interaction,	 and	 providing	 validation	 that	

our	 theoretical	models	 can	generate	 integrated	and	appropriate	behavior	 in	 real-time.		

Perhaps	as	importantly,	the	challenge	to	create	neurorobotic	models,	demands	that	we	

also	 close	 the	 loop	 between	 perception	 and	 action,	 and	 this	 serves	 to	 remind	 us	 that	

there	is	a	tight	coupling	between	brains,	bodies,	and	the	environment,	and	that	behavior,	

and	therefore	any	explanation	of	behavior,	must	take	into	account	all	three.	
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Box	1.	Discrete-time	Map	based	(DTM)	Neurons	

	
The	DTM	architecture	is	a	map-based	model	that	captures	the	dynamics	of	spiking	and	bursting	

neurons	 and	 their	 synaptic	 interactions	 (Rulkov	2002).	 	 It	 allows	 the	 construction	of	 complex	

sensorimotor	networks	 that	operate	 in	 real	 time	on	 small	digital	 signal	processors	 (Westphal,	

Rulkov	 et	 al.	 2011,	 Ayers,	 Blustein	 et	 al.	 2012).	 It	 also	 allows	 dynamic	 tuning	 of	 synaptic	

strengths,	time	constants	(Ayers,	Rulkov	et	al.	2010).	Our	goal	with	this	model	is	to	program	the	

motor	programs	with	neurons	 and	 synapses,	 hence,	 there	 are	no	 algorithms	 in	 the	 controller.	

Each	 neuron	 and	 synapse	 is	 represented	 as	 an	 object	 in	 a	 look-up	 table.	 In	 a	 run-loop,	 the	

membrane	voltage	of	a	model	cell	in	cycle	n+1	is	determined	as	a	function	of	its	value	in	cycle	n	

according	 to	 two	 difference	 equations	 based	 on	 synaptic	 current	 input	 and	 two	 control	

parameters	σ 	(equation	1)	and	α 	(equation	2)	and,	whose	values	specify	the	neuron	type:

		

	

(1)	

where	 xn	 is	 the	 fast	 and	 yn	 is	 the	 slow	 (due	 to	 0<µ<<1)	 dynamical	 variables	 The	 nonlinear	

function	is	written	in	the	following	form	

	

  (2) 

where	the	third	argument	u	=	yn	or	a	combination	of	input	variables	that	depend	on	the	model	

type.		

The	parameters	α	and	σ	 	(figure	6)	shape	the	function	of	the	map	and	define	characteristics	of	

individual	neurons.	 Input	variables	bn	 and	sn	 incorporate	 the	action	of	synaptic	 inputs	 Isyn	 and	

can	be	written	 as	βn = βEIsyn, σn = σE(Isyn) where	bE	 	 and	sE	 are	 constants	 that	 control	 how	

quickly	neurons	 respond	 to	 the	 input	and	support	dynamical	mechanisms	 for	 spike	 frequency	

adaptation	to	DC	pulses	of	current	(Rulkov	2002).	If	y	is	omitted,	the	1-D	model	generates	tonic	

spiking	activity.	

The	simplest	map-based	model	for	a	synaptic	current	can	be	written	as:	 

	

(3)	

where	gsyn	 is	 the	 strength	of	 synaptic	 coupling,	 indexes	pre	 and	post	 stand	 for	 the	presynaptic	

and	postsynaptic	variables,	respectively.	Here	g	controls	the	relaxation	rate	of	the	synapse	(0	<	g	

<	 1)	 and	 xrp	 defines	 the	 reversal	 potential	 and,	 therefore,	 the	 type	 of	 synapse:	 excitatory	 or	

inhibitory.		The synaptic current from equation 3 is summed with equation 2 resulting in equation 1. 	

	

Synapse	 objects	 are	 used	 to	 connect	 neurons.	 The	 synapse	 equations	 evaluate	 the	 difference	

between	 postsynaptic	 voltage	 and	 reversal	 potential	 and	 the	 spiking	 state	 of	 the	 presynaptic	

neuron	(equation	3).	The	topology	of	the	network	is	defined	in	the	look-up	table	of	pre	and	post	

synaptic	 neurons	 for	 each	 synapse.	 Every	 neuron	 can	project	 to	 a	 variety	 of	 neurons	 and	 can	

receive	inputs	from	multiple	neurons.	

	

The	model	 can	 be	 executed	 on	 a	 variety	 of	 processors	 including	 the	 Lego	Mindstorms™	Brick	

(Westphal,	Rulkov	et	al.	2011,	Blustein,	Rosenthal	et	al.	2013,	Westphal,	Blustein	et	al.	2013)	and	

can	be	implemented	in	LabView™	or	procedural	C.	In	procedural	C,	an	initiation	function	sets	the	

parameters	for	each	neuron	and	synapse	while	a	run-time	loop	updates	all	objects	at	a	discrete	

time	interval.	The	neurons	and	synapses	otherwise	proceed	asynchronously.		
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