
This is a repository copy of Abstraction/Representation Theory and the Natural Science of
Computation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/130850/

Version: Published Version

Book Section:

Horsman, Dominic, Kendon, Viv and Stepney, Susan orcid.org/0000-0003-3146-5401
(2018) Abstraction/Representation Theory and the Natural Science of Computation. In:
Cuffaro, Michael E. and Fletcher, Samuel C., (eds.) Physical Perspectives on
Computation, Computational Perspectives on Physics. Cambridge University Press , pp.
127-149.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

“9781107171190c06” — 2018/1/29 — 15:44 — page 127 — #1

6 Abstraction/Representation Theory and

the Natural Science of Computation

Dominic Horsman, Viv Kendon, and Susan Stepney

6.1. Introduction

Is computation an intrinsic property of physical systems, or is there a distinc-

tion between a computer and other objects in the universe? Computer science

as a theoretical discipline, traditionally dealing only with issues of abstract

computation, has tended to ignore this question. Amongst more philosophi-

cal approaches to computing, the first view, pancomputationalism (Piccinini

2017), has been argued for in various guises. Assertions such as “the universe

is a computer” (Ball 2002) are indeed superficially appealing, given the great

success of modern computing theory and technology. Yet they lose their appar-

ent content as we look at them more closely. If everything computes merely by

virtue of existence, then what more do we say about an object when we call it a

computer? How are novel and unconventional computing devices to be charac-

terized, if computing occurs universally and intrinsically in physical objects?

We present here a more discriminating view, in which the use of a phys-

ical system to carry out an abstract process (a computation) depends on a

number of specific properties that both the physical device (the computer)

and physical process (it computing) must have (Section 6.3). Not all physi-

cal processes constitute computing: A key element in physical computation

is the use of a physical system to manipulate the representation of abstractly

encoded data in specific processes. In presenting our framework, Abstrac-

tion/Representation (AR) theory (Horsman et al. 2014; Horsman 2015), we

show that physically carrying out computation and doing science are closely

related activities (Section 6.2). Both involve representational activity. By look-

ing at how computers are developed from both fundamental science and then

engineering and technology, we show the crucial physical nature of computing.

Key to AR theory is the representation relation between physical objects

and objects in the abstract mathematico-logical domain. AR theory takes as

primary a realist physical domain; we discuss other potentially compatible

views in Section 6.2.1. The representation relation is structured and directed,

from physical to abstract: Scientific modeling is fundamental in AR theory.

We consider representation functionally, in terms of its use and properties

127

“9781107171190c06” — 2018/1/29 — 15:44 — page 128 — #2

128 Dominic Horsman, Viv Kendon, and Susan Stepney

within the physical sciences. We are not primarily concerned with it as seman-

tics or meaning, or, relatedly, as knowledge and information. AR theory’s

construction of computation is not of symbol manipulations, nor are there

notions of representational states (Putnam 1960; Fodor 1975). If science is

to happen in a physical external world, and any part of reality that corresponds

to what is considered as an abstract world (where mathematics, logic, compu-

tations, etc. live), then there must be a map from the physical to that abstract

world: Representation is that map.

AR theory separates out (i) physical systems and processes, (ii) abstract

objects, and (iii) the representation relation that maps between them. Abstract

entities do not mirror physical ones (Putnam 1960; Rorty 1979), but stand in

quasi-functional relations to them. By analyzing the role and specific function-

ality of representation in science and technology, we give the AR framework

for computing in terms of the interrelations of these three elements. In the

specific context of computing, the representation relation allows abstract com-

putations to be instantiated in physical computing systems, and the effects of

physical processes to be represented as abstract computational results. There

are not some physical states that are computational states; rather, there are

computing cycles that require all elements to be present in specific ways before

computing can be said to occur.

AR theory’s analysis of physical computation captures computing in com-

muting-diagrammatic form: Physical computers use representation to act as

predicting devices for the results of abstract computations. This acts as the

converse situation to that of experimental science, where a physical theory

functions as an abstract predictor for the behavior of physical systems. AR

theory shows us the deep structural connections between computing and nat-

ural science. Experimental science and physical computing both require the

interplay of abstract and physical objects. This is mediated via representation

in such a way that the diagrams of AR theory commute: The same result is

gained through either physical or abstract space-time evolution.

The central role of representation leads to the requirement for a repre-

sentational entity. This is the entity that supports the representation relation

between physical and abstract. For the natural sciences, this is the human

experimenter or theorist. Within a computational process this is usually the

programmer, designer, and/or end-user. However, AR theory does not require

the representational entity to be human, or even conscious (Section 6.2.5).

AR theory treats both physical and abstract objects, mediated by represen-

tation, within the same framework. This allows us to discuss the connection

between the scientific description of a system or device (as a theory of physics

or biology, say) and its computational description as two distinct represen-

tations. We can use this distinction in the search for novel systems whose

physical properties allow us to compute in new and interesting ways. Com-

puter science has previously lacked a formal connection between physical

“9781107171190c06” — 2018/1/29 — 15:44 — page 129 — #3

Abstraction/Representation Theory 129

device and abstract theory. AR theory now provides this, distinguishing the

physical system from its abstract scientific and computational representations.

Conflation of this three-way separation lies at the root of much of the confu-

sion that surrounds both the development of unconventional computing and the

relationship between scientific theory and computation (Section 6.4).

Not everything that supports a scientific representation supports a compu-

tational one. In this way, pancomputationalism is taken out of the picture by

AR theory (Section 6.4.1). The connection between the physical system and

an abstract representation is not in general coextensive: The physical system

will have properties not captured in the abstract representation, and the abstract

representation may have properties not realized in the physical system. Failing

to take these differences into account gives rise to problems both of the exis-

tence of “side-channels” (Section 6.4.2) and the more extravagant claims of

hypercomputing abilities (Section 6.4.3).

AR theory allows us to show the fundamental relationship between scientific

and computational models, whilst preserving their necessary distinctiveness.

Without this, a physical theory of computation tends to flounder. AR theory

forms the backbone of a new framework for the foundations of computer sci-

ence, treating this mutual relation between distinct models as fundamental: a

natural science of computing.

6.2. Introduction to AR Theory

6.2.1 Science and Ontology

Key Role of Representation Natural science can be viewed, at its basic level,

as concerning objects from two distinct domains. Objects, processes, and sys-

tems within the physical world are the subject of scientific theories scrutinized

during experimental observations, and may be manipulated during experimen-

tal tests. Abstract objects are used to model these physical systems within

the domain of mathematics, logic, or any other language of the sciences. The

fundamental operation of science is this modeling of a physical object by an

abstract one: the process of representation (Frigg 2006; van Fraassen 2008).

This conception of science, and the crucial role of representation, is the starting

point for the framework of AR theory.

Figure 6.1 illustrates a physical system represented as an abstract model.

This is a fundamental use of the representation relation RT , which quasi-

functionally relates physical objects to abstract ones; it is not a mathematical

function, as that would require both domain and range to be abstract. In

Figure 6.1, a glass bead is represented using RT as a volume V . In gen-

eral, we can talk about a domain P of physical objects and a domain M of

abstract objects. (We use boldface for physical objects, italics for abstract ones,

“9781107171190c06” — 2018/1/29 — 15:44 — page 130 — #4

130 Dominic Horsman, Viv Kendon, and Susan Stepney

Figure 6.1 A spherical glass bead represented by its volume V . The repre-

sentation relation RT relates the physical object to its abstract model, within

the theory T

and script for representations.) Representation is theory-dependent, which we

denote by the subscript T in RT . In this case, the theory is that of the classi-

cal mechanics of solid objects. If we were instead interested in the refractive

properties of a glass sphere, we would represent it by its refractive index and

surface geometry, and the theory would be classical optics.

There is no unique theory for a given physical system: Multiple theories can

have different forms of validity, depending on the properties of the physical

system in question, the degree to which they need to conform to experiment,

and the domain for which they are required to be applicable.

Representation, Ontology, and Realism The field of study of representation

in philosophy is vast. Since Rorty’s demolition of the notion of representation

as a simple mirroring of abstract and physical (Rorty 1979), the nature and

structure of different types of representation have been extensively explored.

AR theory’s representation is primarily that of scientific representation: The

physical world is fundamental, and representation is structure given abstractly

on top of it. As used here, it does not come pre-loaded with implications of

intentionality or meaning; it is, at its most fundamental, a mapping from phys-

ical to abstract. We almost never talk about “information” or “knowledge” or

“meaning” in using AR theory. AR theory draws strongly on the framework

for scientific representation explored by van Fraassen (2008), and with many

similarities (as a more developed framework) to the basic modeling theory of

Hughes (1997). For a philosophical overview of models in science, see, for

example, Suppes (1960) and Frigg and Hartmann (2016).

Views of computation that regard it as the manipulation of representation

have historically come from a semantic account of computation; see, for exam-

ple Putnam (1960) and Fodor (1975). This comes out of an emphasis on the

similarities between computation and cognition, thought, and language use.

The abstract – thoughts, representation, language – is considered primary. The

set of all objects is the set of abstractions: “The facts in logical space are the

world” (Wittgenstein 1922, prop. 1.13). In such a view, if anything is to be

“9781107171190c06” — 2018/1/29 — 15:44 — page 131 — #5

Abstraction/Representation Theory 131

called into question, then it is the existence of the physical world. At best this

is idealism; at worst, hard-line logical positivism.

This concept of computation, as closely allied with cognition and a philoso-

phy of logic and language, is the opposite of our starting-point for AR theory: a

computation is abstract; a computer is physical. The question is not “what types

of abstract states and processes form computations?” but now “which physical

systems are computing?” We assume the existence of a physical world. This is

the space of all physical objects, P. Idealist-leaning, nominalist, or verification-

alist projects fail ultimately in their inability to abstract out ongoing and neces-

sary interaction with an external world. Carnap’s project for a basic sense-data

language (Carnap 1950a) – which can be viewed in computer science terms as

analogous to a universal concrete semantics– failed in ways that make it clear

it cannot succeed. Following Quine (1971), our epistemology is naturalized:

how abstract content interfaces with physical reality is found by interrogat-

ing our best scientific theories. In AR theory this also includes representation:

Representation is always within the framework of a physical theory.

We do not use a cognitive starting-point for representation and computa-

tion in AR theory, but we do not reject outright the applicability of questions

around intention and mental representation to notions of computing. The rela-

tionship between abstract computation and physical computer is the mind/body

problem du jour, and questions of computation and cognition have a lot to

say to each other. AR theory draws on many aspects of the long tradition

of work around the abstract/physical divide concerning both mind/body and

theory/reality in science, prioritizing the latter pair rather than the former.

Such a notion of “naturalized representation” gives the starting-point for AR

theory: how representation functions within scientific theories. It is through

scientific representation that we come to computing. The physical world and

device are basic, and representation is structure in addition. This inversion of

the usual conception of representation is shown in the direction of its basic

mapping; RT : P → M, rather than an abstract object representing a physical

one, M → P.

AR theory starts from scientific realism, but need not end there. In terms

of realism, the AR framework gives a way to talk about the physical world P

without adding a structural commitment to one “foundational” or “fundamen-

tal” representation. It is not meant to solve all the issues of realist theories, but

to give a structure compatible with a solution. The level of basic physical ontol-

ogy in AR theory is very stripped down. The term “the physical world” can be

viewed as a placeholder for whatever the physical world is, not identical with

a representation of it. The aim here is to give a framework in which ontology

and representation are considered separately, and the threads of multiple rep-

resentations – physical, mathematical, computational, amongst others – can be

teased apart. This avoids identifying fundamental ontology with whatever our

“9781107171190c06” — 2018/1/29 — 15:44 — page 132 — #6

132 Dominic Horsman, Viv Kendon, and Susan Stepney

favorite physical theory says it is this week. It also avoids having to choose one

description as “more” fundamental than another (particles, fields, qubits, mem-

branes, etc.). This removes the question-begging presumption of a relationship

between different representations (“how can a collection of Fock spaces be

a computer?”) where there may be no such relationship. It also removes the

issue in the foundations of computer science where a physical computer is

frequently, and incorrectly, considered as identical with its concrete semantics.

By stripping the physical world of its representational structure, we are left

with what might be termed the “fundamental problem of representation.” P

is supposed to be the set of physical objects without representational struc-

ture, yet to write down “P” is to violate this by giving it a representation. One

response is to accept this necessary use of representation to perform commu-

nication as a Wittgensteinian ladder that is cheerfully kicked away after use.

A less glib response is to take the notion of a naturalized representation and

apply it to the whole system here: ontology is given by our best scientific the-

ories, not just in what it is represented as, but in what is considered to exist

physically.

This identification of that which is being represented as basic ontology nec-

essarily opens us up to criticism by pathological case. For example, empty

space is not presented in many physical theories, but becomes a thing-in-itself

in quantum field theories. A frequent response to these issues of realism is

scientific empiricism: what is being represented are events of observation. It

may well be that AR theory is compatible with such a view. In this case then

the domain P changes depending on context: It is, as it were, representational

turtles all the way down. This is the empiricist way van Fraassen (2008) views

scientific representation. It is also worth noting the fit between the commuting-

diagrammatic structure of AR theory, below, and Quinean notions of the “field

of force” at the edges of scientific theories where they make contact with

empirical reality (Quine 1951); the reader is invited there to view “the physical

world” as a convenient shorthand for empirical observations, if this better fits

their basic metaphysics. Otherwise, we note that any sane realist theory con-

tains a physical domain, and we continue to consider in AR theory how this

interfaces with the abstract representations that we use for it.

6.2.2 Prediction in Science

With the context established, let us see where such a framework can take

us. First, let us consider a physics experiment on a system p represented by

abstract model mp. The system evolves under some dynamics H as H(p) to

become p′. We have a theory of this process H; call it CT . Applying CT to

mp we obtain m′
p. We would like to test our theory by finding out whether m′

p

corresponds to the result of the experiment, p′. We cannot compare m′
p to p′

“9781107171190c06” — 2018/1/29 — 15:44 — page 133 — #7

Abstraction/Representation Theory 133

directly; we first have to use the representation relation RT on p′ to obtain mp′ .

This includes the process of measuring the outcome of the experiment. We can

then ask, does m′
p = mp′ , and if not, what is the difference between them?

We do not need equality for CT to be a good theory of the dynamics of

p. No theory is perfect, and we have limited precision for our experimental

measurements. For CT to be a good theory, we just need “close enough,” say

|m′
p−m| < ε for some suitable measure |.| and suitably small ε. This process is

illustrated in Figure 6.2, an example of an ε-commuting diagram, where theory

and experiment agree to within some parameter ε.

Of course, this is a vastly simplified picture of the scientific process, in

which many such diagrams interlock and underpin each other to build con-

fidence in theories through many different and repeated experiments. We are

most emphatically not claiming to have solved the philosophical questions of

how science is done, only that something like this must be part of the story.

All we need for our purposes here is that a “good theory,” however estab-

lished, can be described by a diagram like Figure 6.2. There are similarities

between AR diagrams and others used for describing physical computation,

especially those given by Ladyman et al. (2007), Maroney (private communi-

cation), and, in computer science, abstract interpretation (Cousot and Cousot

1977). However, AR representation (i) goes between physical and abstract,

not functionally from abstract to abstract, (ii) is directed, and (iii) includes

ε-closeness conditions.

Once we have a sufficiently good theory, we can use it to predict the behav-

ior of physical systems. Figure 6.3(a) shows an ε-commuting diagram with

both the physical system and the abstract model of its time evolution provid-

ing their outcome of the process. Figure 6.3(b) shows the use of the theory to

predict the behavior of the physical system, without actually carrying out the

physical process. From this, we can see that not only do experiments guide

Figure 6.2 A simple experiment in which a physical system p evolves under

some dynamics H to p′. The corresponding abstract representations mp and

mp′ are obtained using RT . The theory corresponding to the experiment CT

is used to calculate the expected outcome m′
p, which is then compared with

mp′ , with resulting difference ε

“9781107171190c06” — 2018/1/29 — 15:44 — page 134 — #8

134 Dominic Horsman, Viv Kendon, and Susan Stepney

Figure 6.3 (a) A “good theory” has m′
p ≈ mp′ ; (b) this allows the outcome

of a physical process to be predicted, without having to check by running the

experiment

Figure 6.4 (a) The engineering process: making a q from a p using process

H with theory CT ; (b) the instantiation relation R̃T is a shorthand for the

engineering process

the development of theories to explain their results, but theories can predict

the outcome of experiments that have not yet been carried out, suggesting

directions for new experiments. Both of these are observed as part of scientific

practice. Moreover, good theories are not only used to guide further scientific

research, they are also used to underpin new technology.

6.2.3 Technology and Engineering

Instantiation: Engineering an Artifact A good theory as illustrated in

Figure 6.3 tells our the outcome of H(p) without our having to do the

experiment. Furthermore, it tells us that we can reliably make a system p′

from a p using a process H(p) that we understand well through the the-

ory CT . This is engineering; again, we are not claiming to have solved the

philosophical questions around engineering. Our ability to make things from

detailed designs is unquestionable, evidenced by the multitude of high-tech

gadgets available for purchase in their millions. What is most relevant to the

development of our framework is that engineering effectively reverses the rep-

resentation arrow RT , allowing us to instantiate theoretical objects in certain

well-defined circumstances. This is illustrated in Figure 6.4(a), in which a

product q is made from raw material p. The theory provides the method for

“9781107171190c06” — 2018/1/29 — 15:44 — page 135 — #9

Abstraction/Representation Theory 135

the engineering process H(p), and the abstract comparison m′
p ≃ mq verifies

that the finished product q is sufficiently close to the theoretical specifica-

tion. We can abbreviate this by the instantiation relation R̃T , Figure 6.4(b),

in which the abstract model mq is instantiated as a physical object q. It is

important to note that representation and instantiation are not symmetric pro-

cesses: making models that represent physical systems is easier than making

physical objects that instantiate abstract models. In particular, it is possible to

devise unphysical abstract models that have no possible real-world physical

instantiation.

Using an Engineered Physical Artifact Given a “good theory,” we can use it

to engineer systems, in concert with instantiation as described above, and then

put them to use. For example, we probably want to test that our artifact does

in fact conform to the engineering specification for its intended use. Figure 6.5

illustrates this process.

Figure 6.5(a) shows the ε-commuting diagram with both use and theory

providing their outcomes of the process, allowing its suitability for the task

to be checked. Figure 6.5(b) shows the artifact used to predict the outcome

of the theory without actually carrying out the abstract calculations. This is

what normal use of an engineered artifact corresponds to: Our confidence in

the theory behind the engineering allows us to use the artifact without having

to check it will do what we want it to do.

While the full diagram for engineering in Figure 6.5(a) looks superficially

similar to the full diagram for science in Figure 6.3(a), there are fundamental

distinctions. The first difference is the starting point of the process: note the

instantiation arrow in Figure 6.5(a). For science, the starting point is a physi-

cal system to be modeled (represented) and understood. For engineering, the

starting point is a problem encoded into an abstract model (engineering specifi-

cation), to be engineered (instantiated) as the desired physical artifact. Science

starts with the physical systems, engineering starts with the abstract models.

The second difference is in the desired endpoint, or goal, of the scientific or

Figure 6.5 (a) A well-engineered system has m′
p ≈ mp′ ; (b) this allows the

outcome of an abstract calculation (of the designed behavior of the physical

system) to be predicted without having to check by doing the abstract design

calculation

“9781107171190c06” — 2018/1/29 — 15:44 — page 136 — #10

136 Dominic Horsman, Viv Kendon, and Susan Stepney

engineering process. For science, the goal is a theory that describes reality suf-

ficiently well. For engineering, the goal is a physical artifact that meets the

specified design. Scientific goals are abstract, engineering goals are physical.

As a consequence of these different goals, the response to an insufficiently

small ε is different in science and engineering (once the possibility of a faulty

experiment or incorrect specification has been eliminated). In science, when

ε is too large, it means that the theory fails to adequately describe physical

reality, and so the theory needs to be improved. In engineering, when ε is

too large, it means that the engineered product fails to meet the theoretical

specification, and so the physical object needs to be improved.

6.2.4 Computing Technology

Abstract Prediction Computers are one type of physical system among the

many and varied things that we engineer. However, they differ in one funda-

mental way from the engineered artifacts described above. For computing, the

goal is to carry out an abstract computation that is (in general) unrelated to the

details of the physical computer. We can now use our framework to address our

original question about when a physical system computes. Figure 6.6 shows a

physical system p carrying out an abstract computation CT . Note that we are

not here addressing what explicitly characterizes this abstract computation (for

which see, for example, Piccinini [2015, 2017] on semantic accounts of phys-

ical computation); rather, we are addressing the question of when we can say

that a physical system is computing an abstract computation.

In Figure 6.6, mp is the encoding of our problem into a suitable abstract

computational model; we discuss the encoding stage in more detail shortly.

Given this abstractly encoded problem mp, we instantiate it in the physical

computer p and let it run. If successful, the result p′ can be inspected to obtain

the abstract answer.

While the full diagram for using an engineered artifact in Figure 6.5(a) is

identical to the full diagram for computation in Figure 6.6(a), there is again a

Figure 6.6 (a) A well-engineered instantiated computer has m′
p ≈ mp′ for

computations it is capable of performing; (b) this allows the outcome of an

abstract computation (the desired goal of computation) to be predicted

“9781107171190c06” — 2018/1/29 — 15:44 — page 137 — #11

Abstraction/Representation Theory 137

Table 6.1 The essential differences between science, engineering, and

computation: start: whether the starting point is a physical system p, or

an abstract specification mp; goal: whether the desired goal is a physical

system p, or an abstract result mp; ε too large: what part must be

changed to make ε sufficiently small

start goal ε too large

science: physical abstract change mp

engineering: abstract physical change p

computation: abstract abstract change p

fundamental difference, and again this is in what is considered the goal of the

process. For engineering, the goal is a physical object that meets the specified

design. For computing, the goal is an abstract result of a computation. Engi-

neering results are physical, while computational results are abstract. These

differences are summarized in Table 6.1.

Performing a computation is a form of engineering where the desired result

is an abstract representation rather than the physical system itself.

Encoding and Decoding Our initial discussion of physical computation above

skips over some important details. Unlike the science and engineering dia-

grams so far, where the physical system p has been directly represented by the

model mp, we now have an abstract calculation that is initially unrelated to the

physical computer or our model of the computer. The calculation problem may

be the reason that the computer has been engineered in the first place (as with

the earliest computers, or with modern specific-use devices), or it may be a

new problem that the user has reason to believe is amenable to being solved

on existing hardware. In either case, there is though no a priori connection

between the abstract specification of the problem, c, and the abstract speci-

fication of the computer, mp. This connection is to be found in the process of

encoding. Figure 6.7 shows a physical computer p being used to do calculation

c. Since c is in general unrelated to the computer we want to use, the first step is

to map the calculation onto the model of the computer mp. This encoding step

includes checking that the computer is capable of representing the calculation

(i.e., has enough memory and a suitable set of operations).

A modern programmable computer has a lot of existing programs (software,

apps) to assist with the process of encoding a new problem, each of them

running their own computations, resulting in many nested computational pro-

cesses. It is easier to see how the basic encoding process works on a simpler

computer, such as a pocket calculator. Suppose we have a restaurant bill for

£93.47 that we need to divide equally between seven guests (thereby ignoring

“9781107171190c06” — 2018/1/29 — 15:44 — page 138 — #12

138 Dominic Horsman, Viv Kendon, and Susan Stepney

Figure 6.7 Using physical system p to carry out the abstract computation c

complications of who had the rice). The sequence of button presses 9 3 . 4

7 ÷ 7 = will, on most calculators, result in it displaying the answer. That

is an almost trivial encoding where the calculation can be entered straight into

the calculator.

In general the result will need to be decoded from the abstract representation

mp′ of the final computer state p′. In the case of the restaurant bill, the decoding

is again straightforward. Reading the display you announce that each person

owes £13.36. The decoding you do is to interpret the array of seven segment

displays as a number, then add the “£” to that number to interpret it as an

amount of money. And you also rounded the amount up to a full penny, because

amounts of money smaller than this are not useful for settling a restaurant bill.

Encoding and decoding are important steps in physical computation. Indeed,

one of the characteristics of the associated representational processes is that

there is an element of choice about the encoding. The possibility of differ-

ent choices implies both that the same abstract computation can be carried

out on different physical computers, and that the same physical computer

can in general carry out different computations. What is important is that the

computational semantics of the operations is given by the information that is

processed by them, and that there are different choices of the physical process

by which that happens. The possibility of different choices is one of the ways

by which we can see that computation is indeed happening.

6.2.5 Representational Entities for Computation

AR theory enables us to specify the elements of representation and the inter-

play of physical and abstract that happen during the use of computers by human

beings. It is not, however, restricted to this. A common, if unsatisfactory,

counter to pancomputationalism is to restrict the definition of a computing sys-

tem to one used by conscious users via a definition of information (processing)

“9781107171190c06” — 2018/1/29 — 15:44 — page 139 — #13

Abstraction/Representation Theory 139

that is strongly semantic and intentional; see, for example, Bar-Hillel and

Carnap (1953) and Mackay (1969).

AR theory does not do this. Within AR theory, the requirement is not for a

human being, or even an entity that can think or communicate; the requirement

is for representation. We thus do not need to take a position in the ongoing dis-

cussions of whether representation requires a thinking or human entity, and

we refer to the compute cycle requirement as a representational entity. As we

discuss in Section 6.2.1, we take a realist view: Whatever the ultimate ontol-

ogy of “abstract” objects is, there is only ever access to represented objects

through physical systems capable of supporting representation. The paradigm

example is the human brain: We use representation to model physical objects

in the world around us (including ourselves) as abstract notions. This repre-

sentation happens, though, in the physical brain, for example, when a human

uses a laptop computer. In such a case, we are the physical entities using the

representation relation: We are the representational entities.

Thus, we have two conceptually distinct, but not necessarily physically dis-

tinct, physical entities. First, there is the physical object p, as labeled in the

diagrams in Section 6.2, that participates in representational activity (be it

science, engineering, computing). Second, there is the representational entity

e (denoted with bold font as, ex hypothesi, the representational entity must

be physical) that supports the representation relation RT it is using for p.

We say that the system comprising p, e, and RT forms a closed representa-

tional system. If the cycle is a compute cycle, then this system forms a closed

computational system: the system is computing.

In AR theory, the locatedness of the representational entity is important for

determining the type of representational activity happening in a system. If the

system comprising p and RT does not include the physical representational

entity e, that is, if p and e are physically as well as conceptually distinct, then

we say that the system is open under representation. In all the examples of

human-designed computer use given above, the steps that go across the divide

between physical and abstract (the representational and instantiational steps)

all rely on a human representational entity. This entity is separate from the sys-

tem that is the computer. So in human-designed computing, the computer alone

(laptop, Difference Engine, slime mold, etc.) does not form a closed represen-

tational system: The representational entity is separate from the computing

device, and not even necessarily co-located with it. Human-designed comput-

ers are open under representation, and require a human representational entity

to close them.

Identifying the steps in a computation (or other representational activity)

will identify the representational entity. Horsman et al. (in press) argue that it

is possible to have a closed computational system without a human represen-

tational entity, analyzing the example of a bacterium performing chemotaxis,

“9781107171190c06” — 2018/1/29 — 15:44 — page 140 — #14

140 Dominic Horsman, Viv Kendon, and Susan Stepney

that is, changing its direction of motion towards a source of food. In such a

closed computational system there are additional challenges to identifying the

computational steps: a non-human representational entity cannot communicate

to us that it is using representation. It therefore falls to us to determine if the

system under consideration is itself using representation. That is, can we rep-

resent it as a closed representational system? We do not assign ourselves as the

representational entities here: Rather, we determine whether we can describe

the entire system as using the representational aspect of parts of itself in certain

processes. A physical system that becomes representational only when an RT

is given by a human observer is not a closed representational system.

Thus the AR framework is able to discriminate between computing behav-

ior and non-computing processes even in the absence of intelligent users or

designers. The representation relation is always used by some entity, though,

and it is that entity which is using the interfacing between abstract and physical

that is a key part of physical computation.

6.3. Identifying Computing with the AR Framework

With the AR framework on board, we can use it to generate criteria that distin-

guish “computers” from other elements of physical reality. One of our original

motivations for developing the theory is to provide a critical evaluation of pro-

posed unconventional computational devices. Here we apply it to slime mold

computation, which has received significant attention in the past decade. First,

we show how the framework describes our familiar digital computers, and also

one of the earliest computers, the Babbage Difference Engine. By identifying

the components that make up processes that are known to be computing, we

can then extend this into the territory of novel and unconventional computing.

Figure 6.7 shows the six essential components to an AR framework descrip-

tion of a computation: theory, encoding, instantiation, physical process,

representation, and decoding. For each example, we first list what each of

those components consist of, then discuss any issues that arise in identifying

the components.

6.3.1 Classical Digital Computing

By classical digital computing, we mean the technology that underpins the

computers we use on our desks, as laptops, in our smartphones, running the

internet, and in many other types of technology, such as modern cars. We take

this to be computing, uncontroversially. By showing how the components fit

together to produce a compute cycle in this technology that is nowadays the

paradigm example of computing, we pave the way for demonstrating it in non-

standard devices.

“9781107171190c06” — 2018/1/29 — 15:44 — page 141 — #15

Abstraction/Representation Theory 141

Theory: The theory of classical computing covers the hardware (including

how the transistors implement Boolean logic, and how the architecture imple-

ments the von Neumann model) and the software (including programming

language semantics, refinement, compilers, testing, and debugging).

Encode: The problem is encoded as a computational problem by making

design decisions and casting it in an appropriate formal representation.

Instantiate: Instantiation covers the hardware (building the physical com-

puter) and the software (downloading the program and instantiating it with

input data).

Run: The program executes on the physical hardware: The laws of physics

describe how the transistors, exquisitely arranged as processing units and

memory, and instantiated into a particular initial state, act to produce the sys-

tem’s final state when execution halts.

Represent: The final state of the physical system is represented as the abstract

result, for example, as the relevant numbers or characters.

Decode: The represented computational result is decoded into the problem’s

answer.

Despite the complexity of today’s computers, the underlying theory is highly

developed and well-understood, the result of years of development and testing

as each advance in functionality is introduced.

6.3.2 Babbage’s Difference Engine

There is ongoing debate about the first “true” human-designed computer

(with Stonehenge and the Antikythera mechanism, amongst others, vying

for the title). The Babbage Difference Engine is one of the first recogniz-

ably modern computing devices. In particular, it was the forerunner of the

Analytical Engine, the first proposed programmable machine with associated

programming, given by Lovelace (1843) as she laid the foundations of modern

computer science. The Difference Engine was, unlike the Analytical Engine,

actually built. It computes tables of logarithmic functions by approximating

them as sums of polynomials. It therefore needs to find the value of a func-

tion, e.g., f (x) = x − 1
2
x2, for a whole set of values x = 1, 2, 3, . . . It uses the

“method of differences” to change the problem into one of addition and sub-

traction, finding first the difference between subsequent function values (the

“first difference”), and then the difference between subsequent values of the

first difference (the “second difference”), and so on, a degree-n polynomial

having n differences. Essentially it mechanizes a difficult calculation (a loga-

rithm) by turning it into a relatively straightforward one (first into polynomials

and then into addition). The addition is performed physically by combining

the rotations from different cogs in the device, each of which is set to the

required input.

“9781107171190c06” — 2018/1/29 — 15:44 — page 142 — #16

142 Dominic Horsman, Viv Kendon, and Susan Stepney

Theory: The theory of the Difference Engine as a device comprises the theory

of how a set of interacting gears can generate an addition function. Crudely,

this can be thought of as combining the rotation of separate cogs (the inputs)

onto other cogs (the output). The Difference Engine theory also includes how

the addition operations for each difference combine to form the correct addi-

tion function to generate the next value of f (x).

Encode: The problem (calculate a logarithm) is encoded as an approximation

of sums of polynomial functions, which are in turn reduced to addition func-

tions.

Instantiate: The computation is instantiated firstly in the engineering of the

device itself: the hardware is not programmable. The input is then given by

turning the input dials to the settings that correspond to the first n values (usu-

ally around four) of the function f (x) to be determined.

Run: The Engine runs (powered by turning a crank handle). As the gears inter-

act, differences are calculated and then added.

Represent: The final position of the output gears is coupled to a “printer,”

whose written numerical output depends on the position of the cogs.

Decode: The value of the f (x) for the specific x computed by the Engine is

used to calculate the required logarithm (by hand).

The Difference Engine demonstrates how computation can occur without

full programmability. The Engine can perform only specific addition tasks,

given by its construction. Addition is “hard-coded” into the design of the phys-

ical device. The Engine performs a range of calculations by virtue of the fact

that it can take different inputs. This is one way we can see that the device

is processing information through its physical operation. The theory of the

device was originally developed to design clockwork. However, small differ-

ences between the physical system and the model originally made the operation

faulty, as errors cascaded through the system. While these are resolvable with

modern precision-engineering (for example, the Difference Engine in the Lon-

don Science Museum works with negligible errors), the much more sensitive

Analytic Engine has still not been constructed with a physical gearing that

matches the necessary precision of its theory.

6.3.3 Slime Mold Maze Solver

Adamatzky (2010) documents a range of computational uses for the slime

mold Physarum polycephalum. Nakagaki et al. (2000) describe the observa-

tion of the slime mold finding the shortest path through a maze. That work is

described in experimental terms: testing a theory of slime mold behavior in the

presence of food.

“9781107171190c06” — 2018/1/29 — 15:44 — page 143 — #17

Abstraction/Representation Theory 143

The maze to be solved is implemented as a small physical structure, a few

centimeters across, suitable for a slime mold to inhabit (Figure 6.8). The tested

maze has multiple possible routes and several dead ends. Initially, the slime

mold is grown to fill the whole of the maze. Then blocks of slime mold food,

oat flakes in agar, are placed at the entrance and exit of the maze. The behavior

of the slime mold is then observed over the next few hours. Having discovered

the food, it withdraws from the dead ends of the maze and concentrates along

the shortest path(s) between the two food blocks. After four hours, the slime

mold has withdrawn from all the maze dead ends, but still exists along parallel

alternative paths. After eight hours, the slime mold has withdrawn from the

longer parallel routes, and has found the shortest path.

Now having evidence for that theory, we can exploit the same process to

compute the shortest path.

Theory: Slime mold forms a minimum-length body between food sources, as

a consequence of the way its contraction frequency changes in the presence of

food (for which see references cited in Nakagaki et al. [2000]).

Encode: If the abstract problem is to compute the shortest path through the

maze, or simply any path through the maze, the encoding is essentially trivial:

c = mp. If the maze abstraction is a more indirect analog of some other prob-

lem, the encoding would be more complex. Analogs tend to be fairly direct

encodings, exploiting a clear analogy.

Figure 6.8 The slime mold Physarum polycephalum physically computing a

path through a maze: diagram after Nakagaki et al. (2000). The dark areas

are the maze walls; the pale regions are the maze. The gray squares indicate

the position of the oat-flake-containing agar food blocks at the entrance and

exit of the maze. (a) Multiple paths: on the left (“α routes”) the solid path

fragment is 20 percent shorter than the dashed path; on the right (“β routes”),

the solid path is 2 percent shorter than the dashed path. At the initial state

of the physical system p, the maze is filled with slime mold; (b) half way

through execution, after four hours: the slime mold (marked as a line) has

shrunk and moved out of all the maze dead ends; (c) the final state of the

system p′: after eight hours, the slime mold has found the shortest path

“9781107171190c06” — 2018/1/29 — 15:44 — page 144 — #18

144 Dominic Horsman, Viv Kendon, and Susan Stepney

Instantiate: This has three main parts: build a physical maze that instantiates

the abstract maze problem from materials supporting slime mold reconfigura-

tion; place food sources (oat flakes) at the entry and exit positions; cover the

maze with pieces of slime mold.

Run: Allow the slime mold pieces to coalesce into a single organism, and

then wait for it to contract to the shortest path through the maze. The reported

system took approximately eight hours to run, on a maze of approximately

4 × 4 cm.

Represent: Read off the final position of the slime mold in the maze, which

requires the use of image processing to detect, and represent this as the posi-

tion in the abstract maze.

Decode: Decode the abstract slime mold position into a route through the

maze.

In this example of unconventional computation, we can see how the AR

framework allows us to analyze the claims of computation.

There is first an issue at the level of the theory: The minimization is approx-

imate. Nakagaki et al. (2000) report results from 19 experiments. In two cases

no path formed. In three cases the slime mold did not fully contract, occupying

all branches. When it did contract to a single route, for the β routes differing

by only 2 percent, it chose the shorter route five times and the longer route six

times. When it contracted to a single α route, which differ by 20 percent, it

always chose the shorter route. So the theory would be better stated that the

slime mold contracts to approximately the shortest path, most of the time, for

mazes of this size. Hence, to use this system as a computer, we have to be

willing to accept a quite large ε, and run the computation several times. Addi-

tionally, there is no evidence that the approach can be scaled to large mazes. It

requires further scientific experiments to determine the domain of applicability

and the degree of approximation. Note also the potentially considerable com-

putation required in the form of image processing during the representation

stage for detecting the position of the slime mold within the maze. Such addi-

tional computation needs to be considered when calculating the computational

power of a physical device.

In this slime mold example, there is no clear distinction between computer

(hardware), program (software) and input data (configured run of software).

Moreover, the construction and programming effort can no longer be amortized

over a potentially unbounded number of runs. Zauner and Conrad (1996) argue

that one-shot “instance machines,” which can solve only a single instance of

a problem, have their advantages for certain substrates. Such machines avoid

the need for resetting to some initial configuration, and so the compute step

can irreversibly alter the state of the physical system, which is often a neces-

sity when using a complex biological substrate. However, the cost of each

“9781107171190c06” — 2018/1/29 — 15:44 — page 145 — #19

Abstraction/Representation Theory 145

instantiation needs to be low for this to be a viable strategy, significantly lower

than the cost of a reusable computer for the same problem.

6.4. Distinguishing Representation(s) and Reality

We have seen in Section 6.3 how AR theory allows us to analyze specific

systems for their computational activities. Separating out physical system,

physical theory, and computational representations enables us to identify when

all these elements, and the necessary connections between them, are present.

This separation, and AR theory in general, can also be used to help design

unconventional computer architectures, and to address some issues and claims

about computation.

Both the abstract model mp and the physical system p are essential com-

ponents of AR theory, as are the instantiation and representation relations

between them. Failing to properly distinguish which claims are about the

abstract model and which are about the physical system can cause confusion.

Confusion also arises by failing to differentiate claims about different abstract

representations.

6.4.1 Pancomputational Rocks Aren’t

Pancomputationalism is the view that everything – rocks, hurricanes, planetary

systems, galaxies – are computing systems (Piccinini 2017).

The weak form of pancomputationalism holds that every system is com-

puting (at least) itself. Consider the claim of a rock computing “itself” in the

framework of AR theory, Figure 6.6. The rock is the physical system p. But in

this context there is, importantly, no representational entity e and hence no rep-

resentation relation RT . So there is no encoding of a computational problem,

no relevant abstract model mp representing p, no instantiation of that model as

the rock, no representation of the rock’s final state back to an abstract result,

and no decoding of that abstract result into the solution of the problem. There

is only the physical rock p, which does not form a closed computational system

(Section 6.2.5).

One might try to argue that the rock is its own representational entity, that

p = e. As we argue elsewhere (Horsman et al. in press), in AR theory such

a claim requires us to demonstrate representational activity occurring. As we

show in that paper, this is a highly non-trivial process requiring the active and

explicit use of representation intrinsic to a system’s processes. Even for organ-

isms such as bacteria it is controversial to claim representational activity. It

is highly implausible that the criteria can be established for rocks. In the AR

theory definition, systems do not compute themselves for themselves, because

they do not represent themselves.

“9781107171190c06” — 2018/1/29 — 15:44 — page 146 — #20

146 Dominic Horsman, Viv Kendon, and Susan Stepney

The strong form of pancomputationalism holds that every physical sys-

tem performs a combinatorially vast number of computations, of every finite

automaton that its microstate can encode through some tabular representation

(Putnam 1988). Again, consider the claim of a rock computing one of these

automata in the framework of AR theory, Figure 6.6. Again, the rock is the

physical system p. Now there is a representational entity e: a person pointing at

the rock, allegedly encoding their problem, and decoding the result, by using a

representation of the rock’s relevant microstate, establishing the relevant table

defining the automaton.

Despite the existence of all the components in the theory in this case, there

is nevertheless an issue. All the “computation” of establishing the mapping

from rock states to table entries is being done in the representation stage: the

rock itself has computed none of this. The representational entity could equally

well have pointed to any rock; a different representational mapping would be

needed, and would need to be computed in its entirety without the aid of the

indicated rock. One might equally say that a broken clock is measuring the

time: we observe the final state of the broken clock, but then we must use

another clock to establish the correct representation of its broken state: All the

measurement of the amount of time that has passed is being done in the repre-

sentation (using a second clock); the broken clock has measured none of this.

Again, the identified components p, e, and RT do not form a closed compu-

tational system: A further computer is needed, and performs the totality of the

purported computation. This contrasts with the case of a clock that is known

to be, say, five minutes slow. Its physical state can be represented abstractly

by e as one that is five minutes later in time than the standard representation

would suggest. Alternatively, e could use the standard representation, and then

decode the resulting abstract state by adding the five minutes. Here e is respon-

sible for only a small, and well-determined, amount of computation to perform

the representation and decoding.

So according to AR theory, there is no pancomputationalism, either weak or

strong. For computation to occur at all, we require a representational entity,

instantiation, and representation, in addition to the physical processes. For

these identified representational entity, physical system, and representation

relation to be sufficient to be performing the purported computation, they must

additionally form a closed computational system. Rocks don’t.

6.4.2 The Representation is Less than Physical Reality: Side Channels

The abstract model is just that: a model. It necessarily omits details about the

physical system it is modeling, and may make simplifying assumptions. Other

models, and their corresponding representations, are possible. Mathematical

proofs are performed at the level of the model, and so concern only things in the

“9781107171190c06” — 2018/1/29 — 15:44 — page 147 — #21

Abstraction/Representation Theory 147

model. If the physical system is richer, it can exhibit behavior not represented

by the model, or the proofs. In particular, if a different model is used for a

given physical system, with its own representation, different properties may

hold than in the original model.

For example, a particular system, such as a crypto system, may be proved

secure. Such a proof is performed at the abstract level, and may depend on

assumptions about the physical system, particularly assumptions about what

can be observed (and so represented) about the physical system. Different

models support different observations; hence these may break the assumptions

underlying the mathematical proofs.

Such alternative observations in the case of security systems, for exam-

ple timing observations (Kocher 1996), are called side channels, and many

kinds exist (Clark et al. 2005). The original analysis of kinds of side-channel

in Clark et al. (2005) was performed purely in the context of abstract-level

refinement concepts, although physical issues were considered. AR theory can

augment such analyses by exploiting its clear distinction between physical-to-

abstract representation relations and abstract-to-abstract mathematical refine-

ment relations, helping to expose where properties can be subverted and

attacked.

6.4.3 The Representation is More Than Physical Reality:

Hypercomputation

The AR theory diagram only “ε-commutes”; there may be small differences

between the desired computational result and the physically computed result.

Digital systems are designed to commute exactly: Because a physical gap is

engineered between the instantiation of abstract 0 and 1, small errors in the

physical system either do not lead to errors in the representation and decoding,

or can be identified and corrected. In contrast, continuous analog systems are

not exact and have no such gap, hence errors can propagate.

When deducing properties of a computational system, it is important to real-

ize that the abstract model can have different properties from the physical

system. In particular, abstract models of “continuous” systems often model

state variables using real numbers. This does not mean that the physical sys-

tem somehow “implements” such real numbers. That this is so can be readily

seen in some cases. For example, Lotka-Volterra-style predator-prey models

(Wangersky 1978) use a real-valued variable to model the population size using

a continuum approximation. The population size is in reality a discrete quan-

tity, and such models break down when the continuum approximation is no

longer valid. For another example, the Banach-Tarski paradox (Wagon 1985;

Wapner 2005) is a theorem that states that it is possible to take a sphere, par-

tition it into a finite number of pieces, and reassemble those pieces into two

“9781107171190c06” — 2018/1/29 — 15:44 — page 148 — #22

148 Dominic Horsman, Viv Kendon, and Susan Stepney

spheres each the same size as the original; the proof relies on properties of the

reals that cannot be exploited to double a physical ball of material made of

discrete atoms.

An (abstract) real number potentially has infinite information content.

Claims of hypercomputing (systems that can compute some non-Turing com-

putable functions) and super-Turing computing (systems that can compute

some Turing-computable functions with exponential speedup over Turing

Machines) that rely on this infinite information content being physically acces-

sible appear to be confusing the mathematical real number power of the

abstract model with the physical capabilities of the modeled physical system

(Broersma et al. in press). If that abstract content could be exploited physically,

it would lead to these claimed forms of hypercomputing and super-Turing

computing. However, there is no evidence that physical systems can do this:

infinite-precision real-valued variables cannot be instantiated in a physical

material system. Physical variables such as position and momentum are clas-

sically modeled using real values, yet according to our current best physical

theories, in particular quantum theory, the physical world is ultimately dis-

crete, and so the set of values these variables can take is ultimately countable,

and do not form a continuum. The real numbers used in the abstract model are

just that: a model.

AR theory, with its careful distinction between the physical system and its

abstract model, helps us to analyze the claimed computational power of vari-

ous systems, determining whether the power is part of the abstract model, the

physical device, or the representation relation.

6.5. Summary

Landauer (1996) famously claimed that “information is physical.” The physical

nature of computing has been acknowledged by the unconventional com-

puting community, but computer science in general has hitherto viewed its

subject matter to be one of mathematics and logic, relegating the physical

details of computing devices to engineering. As various forms of non-standard

computing come to prominence, in particular quantum and Internet-based tech-

nologies, this division has become increasingly untenable. Various fields from

physics to biology to the social sciences have begun to import the language

of information processing to describe their model systems in ways that are at

odds with the usual foundations of computer science. AR theory allows us to

bridge this divide, and to put the physical nature of computing devices back

into the core of computer science, while also preserving its specific domain

of applicability. Demonstrating the foundational part physical devices play in

computing is not to extend the definition of “computer” to encompass every

“9781107171190c06” — 2018/1/29 — 15:44 — page 149 — #23

Abstraction/Representation Theory 149

physical object. Computing is physical, but not everything that is physical

computes.

The natural scientific description of a physical system and its computational

description share many important properties. Both are model representations

of the underlying physical system. They can relate to each other, and to the

system being modeled, in a number of different ways. Carefully distinguish-

ing these allow us to find when a physical system can support a computational

representation, and when it is, in fact, being used as a computer. This is a

complex process: A number of important criteria must be met, with, fundamen-

tally, representation occurring and being used in specific ways in the physical

system. Differences between physical system, physics-based models, and com-

putational representations gives rise to many of the problematic behaviors of

computing systems: side-channel attacks, over-ambitious claims of computing

power, and lack of clarity about what in a computer is computing and when.

AR theory gives a framework in which all these claims can be defined and then

analyzed. This opens the field for a formal computer science of unconventional

devices, and for a new foundational understanding of the relationship between

computation and the physical sciences.

Acknowledgments

DH and VK are supported by EPSRC under Grant EP/L022303/1. SS acknowl-

edges partial funding by the EU FP7 FET Coordination Activity TRUCE

(Training and Research in Unconventional Computation in Europe), project

reference number 318235. We thank the various referees for their detailed

comments, which have helped improve this chapter.

“9781107171190c06” — 2018/1/29 — 15:44 — page 150 — #24

