UNIVERSITY OF LEEDS

This is a repository copy of Polyunsaturated fatty acids and risk of melanoma: A Mendelian randomisation analysis.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/130828/

Version: Supplemental Material

Article:

Liyanage, UE, Law, MH, Ong, JS et al. (7 more authors) (2018) Polyunsaturated fatty acids and risk of melanoma: A Mendelian randomisation analysis. International Journal of Cancer, 143 (3). pp. 508-514. ISSN 0020-7136

https://doi.org/10.1002/ijc.31334

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Title:

Polyunsaturated fatty acids and risk of melanoma: A Mendelian randomisation analysis

Supplementary information

Authors

Upekha E. Liyanage¹, Matthew H. Law¹, Jue Sheng Ong¹, Anne E. Cust^{2,7}, Graham J. Mann^{3,7}, Sarah V. Ward^{4,6}, Melanoma Meta-analysis Consortium*, Puya Gharahkhani¹, Mark M. Iles⁵, Stuart MacGregor¹

Affiliations

¹Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300, Herston road, Brisbane, QLD 4006 ²Cancer Epidemiology and Services Research, Sydney School of Public Health, The University of Sydney, Sydney, Australia

³Centre for Cancer Research, Westmead Institute for Medical Research, University of

Sydney, Westmead 2145, Australia

⁴Centre for Genetic Origins of Health and Disease, Faculty of Medicine and Health Sciences,

The University of Western Australia, Western Australia, Australia

⁵Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology,

University of Leeds, Leeds, UK

⁶Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA

⁷Melanoma Institute Australia, University of Sydney, North Sydney 2060, Australia

*Full consortium author list can be found in the supplementary document

Acknowledgements

We acknowledge Australian National Health and Medical Research Council funding (1123248). Stuart Macgregor is supported by an Australian Research Council Fellowship.

Contributing studies to melanoma GWAS:

GenoMEL

The GenoMEL study (<u>http://www.genomel.org/</u>) was funded by the European Commission under the 6th Framework Programme (contract no. LSHC-CT-2006-018702), by Cancer Research UK Programme Awards (C588/A4994 and C588/A10589), by a Cancer Research UK Project Grant (C8216/A6129) and by a grant from the US National Institutes of Health (NIH; CA83115). This research was also supported by the intramural Research Program of the NIH, National Cancer Institute (NCI), Division of Cancer Epidemiology and Genetics.

This study makes use of data generated by the Wellcome Trust Case Control Consortium (<u>http://www.wtccc.org.uk/</u>). A full list of the investigators who contributed to the generation of the data is available from their website (see URLs). Funding for the project was provided by the Wellcome Trust under award 076113.

Genotyping for the CIDRUK samples were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268201200008I.

Funding specific to particular centers is given below:

Stockholm: Swedish Cancer Society, Karolinska Institutet Research Funds, Radiumhemmet Research Funds, Stockholm County Council Research Funding (ALF).

Lund: Funding to be acknowledged; Swedish Cancer Society, Gunnar Nilsson Foundation, and European Research Council Advanced Grant (ERC-2011–294576).

Genoa: Italian Ministry of Education, University and Research PRIN 2008, IMI and Mara Naum foundation. Italian association for cancer research (AIRC) IG 2014 (15460) to PG; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, 5% per la ricerca corrente, to PG and GBS.

Leiden: Grant provided by European Biobanking and Biomolecular Resources Research Infrastructure (BBMRI) –Netherlands hub (CO18).

Spain: The research at the Melanoma Unit in Barcelona is or was partially funded by Grants from Fondo de Investigaciones Sanitarias P.I. 09/01393 & 12/00840, Spain; by the CIBER de Enfermedades Raras of the Instituto de Salud Carlos III, Spain; by the AGAUR 2009 SGR 1337 and AGAUR 2014_SGR_603 of the Catalan Government, Spain; by a grant from "Fundació La Marató de TV3, 201331-30", Catalonia, Spain; by the European Commission under the 6th Framework Programme, Contract no: LSHC-CT-2006-018702 (GenoMEL) and by the National Cancer Institute (NCI) of the US National Institute of Health (NIH) (CA83115).

Norway: Grants from the Comprehensive Cancer Center, Oslo University Hospital (SE0728) and the Norwegian Cancer Society (71512-PR-2006-0356).

AMFS

The AMFS was supported by the National Health and Medical Research Council of Australia

(NHMRC) (project grants 566946, 107359, 211172 and program grant number 402761 to GJM and RFK); the Cancer Council New South Wales (project grant 77/00, 06/10), the Cancer Council Victoria and the Cancer Council Queensland (project grant 371); and the US National Institutes of Health (NIH RO1 grant CA-83115-01A2 and 2R01CA083115-11A1 to the international Melanoma Genetics Consortium - GenoMEL). Anne E. Cust is supported by fellowships from the Cancer Institute NSW and the NHMRC. We gratefully acknowledge all of the participants, and the work and dedication of the research coordinators, interviewers, examiners and data management staff.

WAMHS

The WAMHS gratefully acknowledges all study participants for their time and contributions, and the Western Australian DNA Bank and the Ark at The University of Western Australia for bio specimen and bioinformatics related support. The Western Australian Cancer Registry, the WAMHS study team and the WAMHS Management Committee are also gratefully acknowledged for their assistance, as well as the Scott Kirkbride Melanoma Research Centre for funding received to establish the WAMHS resource and related salaries and PhD stipends. The Cancer Council Western Australia is also acknowledged for current salary support for Sarah Ward (Capacity Building and Collaboration grant).

Genotyping services were provided by the Center for Inherited Disease Research (CIDR).

CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268201200008I'

Q-MEGA cases and QTWINs controls (used in Q-MEGA_610k set)

Acknowledgement/grants: Q-MEGA and QTWIN thanks A. Baxter, M. de Nooyer, I. Gardner, D. Statham, B. Haddon, M.J. Wright, J. Palmer, J. Symmons, B. Castellano, L. Bardsley, S.

Smith, D. Smyth, L. Wallace, M.J. Campbell, A. Caracella, M. Kvaskoff, O. Zheng, B.

Chapman and H. Beeby for their input in project management, sample processing and database development. We are grateful to the many research assistants and interviewers for assistance with the studies contributing to the QMEGA and QTWIN collections The Q-MEGA/QTWIN study was supported by the Melanoma Research Alliance, the NIH NCI (CA88363, CA83115, CA122838, CA87969, CA055075, CA100264, CA133996 and CA49449), the National Health and Medical Research Council of Australia (NHMRC) (200071, 241944, 339462, 380385, 389927,389875, 389891, 389892,389938, 443036, 442915, 442981, 496610, 496675, 496739, 552485, 552498), the Cancer Councils New South Wales, Victoria and Queensland, the Cancer Institute New South Wales, the Cooperative Research Centre for Discovery of Genes for Common Human Diseases (CRC), Cerylid Biosciences (Melbourne), the Australian Cancer Research Foundation, The Wellcome Trust (WT084766/Z/08/Z) and donations from Neville and Shirley Hawkins. Stuart MacGregor acknowledges fellowship support from the Australian National Health and Medical Research Council.

Endometriosis

Contributors to the Endometriosis collection: Anjali K. Henders, S.H. Kennedy, S.

Macgregor, N.G. Martin, S. Missmer, G.W. Montgomery, D.R. Nyholt, J.N. Painter, S.A.

Treloar, L. Wallace, K.T. Zondervan. Acknowledgements: We acknowledge all the participants in the QIMR and endometriosis studies. We thank Anjali Henders, Leanne

Wallace, and Lisa Bardsley for project management, sample processing and database development. We thank Endometriosis Associations for supporting study recruitment and S. Nicolaides and the Queensland Medical Laboratory for assistance with blood collection including pro bono collection and delivery of blood samples. Funding: This work was supported by the Cooperative Research Centre (CRC) for Discovery of Genes for Common Nature Genetics: doi:10.1038/ng.3373Law et al., Supplementary Note Human Diseases, Cerylid Biosciences (Melbourne), The Wellcome Trust and donations from Neville and Shirley Hawkins. Endometriosis sample genotyping was funded by a grant from the Wellcome Trust (WT084766/Z/08/Z) and NHMRC (496610). G.W.M. is supported by the NHMRC Fellowships scheme. D.R.N. was supported by the NHMRC Fellowship (613674) and Australian Research Council (ARC) Future Fellowship (FT0991022) schemes.

Study of Digestive Health

Controls for use with the Q-MEGA_omni dataset were derived from the Study of Digestive Health group (SDH). The SDH was supported by grant number 5 RO1 CA 001833-02 from the National Cancer Institute. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute. We gratefully acknowledge the cooperation of the following institutions: Sullivan and Nicolaides Pathology (Brisbane); Queensland Medical Laboratory (Brisbane); Queensland Health Pathology Services (Brisbane); Institute of Medical and Veterinary Science (Adelaide); SouthPath (Adelaide). We also acknowledge the contribution of the study nurses and research assistants and would like to thank all of the people who participated in the study. DCW was supported by an NHMRC Research Fellowship (APP1058522).

Australian & New Zealand Registry of Advanced Glaucoma (ANZRAG) Support for recruitment of ANZRAG was provided by the Royal Australian and New Zealand College of Ophthalmology (RANZCO) Eye Foundation. Genotyping was funded by the National Health and Medical Research Council of Australia (#535074 and #1023911). This work was also supported by funding from the Bright Focus Foundation and a Ramaciotti Establishment Grant. The authors acknowledge the support of Ms. Bronwyn Usher-Ridge in patient recruitment and data collection, and Dr Patrick Danoy and Dr Johanna Hadler for genotyping.

Inflammatory Bowel Disease (IBD)

The authors express their thanks to Sullivan and Nicolaides Pathology, Queensland Medical Laboratories and the Queensland Health Pathology Service for identifying participants for this study. They are also grateful to Peter Schultz, Lauren Aoude, Loralie Parsonson, Stephen Walsh, Mitchell Stark, John Cardinal and Herlina Handoko for technical support.

This research was supported by grant number CA 001833-03 from the United States National Cancer Institute. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute. PMW and DCW are Senior Research Fellows of the National Health and Medical Research Council of Australia. NP is supported by a PhD scholarship from the National Health and Medical Research Council of Australia. The funding bodies played no role in the design or conduct of the study, the collection, management, analysis, or interpretation of the data, or the preparation, review or approval of the manuscript.

M.D. Anderson

Funding was provided by NCI grant P50CA093459, as well as by philanthropic contributions to the University of Texas MD Anderson Cancer Center Moon Shots Program, the Miriam and Jim Mulva Melanoma Research Fund and the Marit Peterson Fund for Melanoma Research. The authors thank the John Hopkins University Center for Inherited Disease Research for conducting high-throughput genotyping and University of Washington for the performance of quality control of the high-density SNP data.

MELARISK, Paris, France

Grants from Institut National du Cancer (INCa-PL016 and INCa_5982) to F. Demenais, Ligue Nationale Contre Le Cancer (PRE 09/FD to F. Demenais and doctoral fellowship to M.

Brossard), Fondation pour la Recherche Medicale (FDT20130928343), Programme Hospitalier de Recherche Clinique (AOM-07-195) to M.-F. Avril and F. Demenais. Ministère de l'Enseignement Supérieur et de la Recherche and Institut National du Cancer (INCa) to M. Lathrop. The authors thank the Epidemiological Study on the Genetics and Environment of Asthma (EGEA) cooperative group for giving access to data of the EGEA study (<u>https://egeanet.vjf.inserm.fr</u>). We acknowledge that the biological specimens of the French MELARISK study were obtained from the Institut Gustave Roussy and Fondation Jean Dausset–CEPH Biobanks.

Essen-Heidelberg

The study was supported by a grant from Deutsche Forshungsgemeinschaft (GZ: SCHA

422/11-1)

Harvard

Funding was provided by NIH grant R03CA167741.

Cambridge: SEARCH/MAPLES

We would like to thank Don Conroy, Craig Luccarini and Rebecca Mayes for their technical assistance. Funding: A.M. Dunning received funding from Cancer Research UK (Grant Numbers, C8197/A10123, C8197/A10865) and K.A. Pooley from Cancer Research UK (Grant Number C1287/A9540) and The Isaac Newton Trust.

Supplementary Tables

SNP	EA/NEA	EAF	В	SE	Р	Ν
rs10740118	C/G	0.47	0.010	0.0030	1.1 × 10 ⁻³	253,207
rs174538	A/G	0.33	-0.011	0.0032	7.5 × 10 ⁻⁴	253,167
rs174547	T/C	0.63	0.013	0.0031	4.7 × 10 ⁻⁵	253,196
rs16966952	A/G	0.25	-0.013	0.0033	1.1×10^{-4}	236,235
rs780094	T/C	0.38	-0.021	0.0030	5.7 × 10 ⁻¹²	253,130
rs3734398	T/C	0.56	-0.0012	0.0029	0.68	252,890
rs2236212	C/G	0.43	0.0007	0.0029	0.81	253,040
rs3798713	C/G	0.43	0.0006	0.0029	0.83	253,019

Supplementary Table 1: Association of PUFA MR SNPs with height

EA - Effect allele, NEA - Non effect allele, EAF - Effect allele frequency, SE - Standard error, P - P value, N - Sample size, β - Magnitude of association between the SNP and the trait (unit – 1 standard deviation change). Data extracted on 05/12/2016 from

https://www.broadinstitute.org/collaboration/giant/images/0/01/GIANT_HEIGHT_Wood_et _al_2014_publicrelease_HapMapCeuFreq.txt.gz¹.

SNP	EA/NEA	EAF	β	SE	Р	Ν
rs10740118	G/C	0.53	0.0144	0.0036	6.3 × 10 ⁻⁵	236,158
rs174538	A/G	0.34	0.0009	0.0033	0.79	339,082
rs174547	C/T	0.37	0.0023	0.0032	0.46	339,131
rs16966952	A/G	0.27	-0.0124	0.0041	3× 10 ⁻²	218,552
rs780094	T/C	0.38	-0.0121	0.003	7.0 × 10 ⁻⁵	339,056
rs3734398	T/C	0.57	-0.0009	0.0036	0.80	235,897
rs2236212	G/C	0.57	-0.001	0.0036	0.78	235,982
rs3798713	G/C	0.57	-0.0009	0.0036	0.80	236,012

Supplementary Table 2: Association of PUFA MR SNPs with BMI

EA - Effect allele, NEA - Non effect allele, EAF - Effect allele frequency, SE - Standard error, P - P value, N - Sample size, β - Magnitude of association between the SNP and the trait (unit – kg/m²). Data extracted on 05/12/2016 from

https://www.broadinstitute.org/collaboration/giant/images/f/f0/All_ancestries_SNP_gwas_mc_merge_nogc.tbl.uniq.gz².

SNP	EA/NEA	EAF	β	SE	Р	Ν
rs10740118	C/G	0.48	1.043	0.01	1.21 × 10 ⁻⁵	293,723
rs174538	A/G	0.32	1.005	0.01	0.64	293,723
rs174547	T/C	0.63	0.993	0.01	0.51	293,723
rs16966952	A/G	0.26	1.011	0.011	0.33	293,723
rs780094	T/C	0.39	0.988	0.01	0.23	293,723
rs3734398	T/C	0.54	0.997	0.01	0.77	293,723
rs2236212	C/G	0.45	1.003	0.01	0.74	293,723
rs3798713	C/G	0.45	1.004	0.01	0.68	293,723

Supplementary Table 3: Association of PUFA MR SNPs with educational attainment

EA - Effect allele, NEA - Non effect allele, EAF - Effect allele frequency, SE - Standard error, P - P value, N - Sample size, β - Magnitude of association between the SNP and the trait (unit - individual's years of schooling according to International Standard Classification of Education (ISCED 1997). Data extracted on 05/12/2016 from https://www.thessgac.org/data ³.

SNP	EA/NEA	EAF	β	SE	Р	N
rs10740118	G/C	0.53	0.012	4.3 × 10 ⁻³	7×10 ⁻⁰²	153,935
rs174538	A/G	0.34	0.0028	3.6 × 10 ⁻³	0.44	244,354
rs174547	C/T	0.37	0.0024	3.5 × 10 ⁻³	0.49	244,381
rs16966952	A/G	0.27	-0.019	0.0048	6.9×10 ⁻⁰⁵	140,000
rs780094	T/C	0.38	-0.0086	3.4 × 10 ⁻³	0.011	244,317
rs3734398	T/C	0.57	0.0021	4.3 × 10 ⁻³	0.63	153,779
rs2236212	G/C	0.57	0.0027	4.3 × 10 ⁻³	0.53	153,863
rs3798713	G/C	0.57	0.0029	4.3 × 10 ⁻³	0.5	153,885

Supplementary Table 4: Association of PUFA MR SNPs with waist circumference

EA - Effect allele, NEA - Non effect allele, EAF - Effect allele frequency, SE - Standard error, P - P value, N - Sample size, β - Magnitude of association between the SNP and the trait (unit – 1 standard deviation change). Data extracted on 05/12/2016 from http://portals.broadinstitute.org/collaboration/giant/images/e/ea/GIANT_2015_WC_COMB INED_AllAncestries.txt.gz⁴.

SNP	EA/NEA	MAF	β	SE	Р	N
rs10740118	C/G	0.42	-0.0041	0.0037	0.27	46186
rs174538	A/G	0.32	-0.18	0.0039	4.7×10 ⁻⁰⁶	46186
rs174547	T/C	0.34	0.021	0.038	1.7×10 ⁻⁰⁸	46186
rs16966952	A/G	0.28	-0.001	0.004	0.80	46186
rs780094	T/C	0.39	-0.026	0.037	2.5×10 ⁻¹²	46186
rs3734398	T/C	0.45	-0.0005	0.037	0.90	46186
rs2236212	C/G	0.45	0.0006	0.037	0.87	46186
rs3798713	C/G	0.43	0.0005	0.037	0.89	46186

Supplementary Table 5: Association of PUFA MR SNPs with fasting blood sugar

EA - Effect allele, NEA - Non effect allele, EAF - Effect allele frequency, SE - Standard error, P

- P value, N - Sample size, β - Magnitude of association between the SNP and the trait (unit -

mmol/l) . Data extracted on 05/12/2016 from

https://www.magicinvestigators.org/downloads/

ftp://ftp.sanger.ac.uk/pub/magic/MAGIC_FastingGlucose.txt⁵

	SNP	EA /NEA	EAF	P- value	β	S.E.	%VE per allele	% VE per IV	F - statistic per IV
	Linoleic acid (I	LA,18:2n6)							
10	rs10740118	C/G	0.56	8.1 × 10 ⁻⁹	-0.248	0.043	0.2–0.7		
11	rs174547	C/T	0.32	5.0×10^{-274}	1.474	0.042	7.6–18.1	8.3–21.3	1104–3533
16	rs16966952	A/G	0.31	1.2 × 10 ⁻¹⁵	0.351	0.044	0.5–2.5		
	Arachidonic a	cid (AA, 20:4r	16)						
11	rs174547	C/T	0.68	3×10^{-971}	-1.691	0.025	32.63	33.07	11302
16	rs16966952	A/G	0.31	2.4×10^{-10}	-0.199	0.031	0.44	55.07	11302
	α-Linolenic ac	id (ALA, 18:3r	າ3)						
11	rs174547	C/T	0.33	3.5 × 10 ⁻⁶⁴	0.016	0.001	1.03	1.03	476
	Eicosapentaer	noic acid (EPA	, 20:5n3)						
6	rs3798713	C/G	0.43	1.9 × 10 ⁻¹²	0.035	0.005	0.36	2.05	479
11	rs174538	G/A	0.72	5.4 × 10 ⁻⁵⁸	0.083	0.005	1.69	2.05	475
	Docosapentae	enoic acid (DP	A, 20:5n3)					
2	rs780094	T/C	0.41	9.0 × 10 ⁻⁰⁹	0.017	0.003	0.46		
6	rs3734398	C/T	0.43	9.6 × 10 ⁻⁴⁴	0.040	0.003	2.74	11.58	1997
11	rs174547	T/C	0.67	3.8 × 10 ⁻¹⁵⁴	0.075	0.003	8.38		
	Docosahexaer	noic acid (DHA	A, 22:6n3)						
6	rs2236212	G/C	0.57	1.3 × 10 ⁻¹⁵	0.113	0.014	0.65	0.65	299

Supplementary Table 6: Effect estimates of PUFA for genome wide significant genetic variants reported by the CHARGE consortium^{6, 7}

MR of PUFA and melanoma risk: Supplementary

Chr - Chromosome, SNP - Single nucleotide polymorphism, EA - Effect Allele, NEA - Non effect allele, EAF - Effect allele frequency, β - Magnitude of association between SNP and PUFA, S.E. - standard error of the magnitude of association between SNP and PUFA, % VE per allele - Variation explained per allele, IV - Instrumental variable

MR of PUFA and melanoma risk: Supplementary

	Gene/GRC		E A /								
SNP	h19 position	CHR	EA/ NEA	R ²	β LA	σLA	β melanoma	σ melanoma	EAF	βIVW	σIVW
rs10740118	65101207	10	C/G	0.2-0.7%	-0.248	0.043	-0.0104	0.017	0.56	0.042	0.071
rs174547	FADS1	11	C/T	7.6-18.1%	1.474	0.042	-0.0271	0.018	0.32	-0.018	0.012
rs16966952	15135943	16	A/G	0.5-2.5%	0.351	0.044	-0.0030	0.018	0.31	- 0.009	0.053
Combined				8.3-21.3%						-0.016	0.011

Supplementary Table 7: Mendelian randomisation results: LA concentration and melanoma

Supplementary Table 8: Mendelian randomisation results: AA concentration and melanoma

SNP	Gene/GRC h19 position	CH R	EA/NEA	R ²	βΑΑ	σ ΑΑ	β melanoma	σ melanoma	EAF	βIVW	σIVW
rs174547	FADS1	11	C/T	32.63%	-1.691	0.025	-0.0271	0.018	0.68	0.016	0.011
rs16966952	15135943	16	A/G	0.44%	-0.199	0.031	-0.0030	0.019	0.31	0.015	0.095
Combined				33.07%						0.016	0.011

SNP	Gene	CHR	EA/NEA	R ²	βALA	σALA	β melanoma	σ melanoma	EAF	βIVW	σIVW
rs174547	FADS1	11	C/T	1.03%	0.016	0.001	-0.0271	0.018	0.33	-1.69	1.13

Supplementary Table 9: Mendelian randomisation results: ALA concentration and melanoma

Supplementary Table 10: Mendelian randomisation results: EPA concentration and melanoma

	Gene/GRC										
SNP	h19 position	CHR	EA/N EA	R ²	β Ε ΡΑ	σ ΕΡΑ	β melanoma	σ melanoma	EAF	β IVW	σIVW
Rs3798713	11008622	6	C/G	0.36%	0.035	0.005	-0.0150	0.017	0.43	-0.43	0.49
Rs174538	61560081	11	A/G	1.69%	-0.083	0.005	-0.0341	0.019	0.72	0.41	0.23
Combined				2.05%						-0.27	0.21

SNP	Gene	CHR	EA/NEA	R ²	β DPA	σ DPA	β melanoma	σ melanoma	EAF	βIVW	σIVW	
rs174547	FADS1	11	T/C	8.4%	0.075	0.0028	0.027	0.018	0.67	0.36	0.24	
rs3734398	ELOVL2	6	C/T	2.8%	0.040	0.0029	-0.017	0.017	0.43	-0.42	0.43	
Combined				11.2%						0.17	0.21	

Supplementary Table 11: Mendelian randomisation results: DPA concent	ation and melanoma
--	--------------------

Supplementary Table 12: Mendelian randomisation results: DHA concentration and melanoma

SNP	Gene/GRC h19 position	CH R	EA/NEA	R ²	β DHA	σDHA	β melanoma	σ melanoma	EAF	βIVW	σIVW
Rs2236212	10995015	6	C/G	0.65%	0.113	0.014	-0.0188	0.017	0.57	-0.17	0.15

Supplementary Table 13: Effect estimates of melanoma for genetic variants used as IVs in the analysis reported by the Melanoma consortium

Chr	SNP	EA/NEA	EAF	P-value	β	S.E.
Lino	leic acid (LA,1	8:2n6)				
10	rs10740118	C/G	0.58	0.5541	-0.0104	0.0175
11	rs174547	C/T	0.34	0.1399	-0.0271	0.0183
16	rs16966952	A/G	0.31	0.8708	-0.0030	0.0185
Arac	hidonic acid (/	4A, 20:4n6)				
11	rs174547	C/T	0.66	0.1399	-0.0271	0.0183
16	rs16966952	A/G	0.31	0.8708	-0.0030	0.0185
α-Li	nolenic acid (A	ALA, 18:3n3)				
11	rs174547	C/T	0.34	0.1399	-0.0271	0.0183
Eico	sapentaenoic	acid (EPA, 20:5n3)				
6	rs3798713	C/G	0.43	0.3901	-0.0150	0.0174
11	rs174538	A/G	0.69	7.016× 10 ⁻²	-0.0341	0.0188
Docosapentaenoic acid (DPA, 20:5n3)						
2	rs780094	C/T	0.41	1.323 × 10 ⁻²	-0.0435	0.0175
6	rs3734398	C/T	0.43	0.3351	-0.0168	0.0174
11	rs174547	T/C	0.66	0.1399	0.0271	0.0183
Docosahexaenoic acid (DHA, 22:6n3)						
6	rs2236212	C/G	0.58	0.283	-0.0188	0.0174

Chr - Chromosome, SNP - Single nucleotide polymorphism, EA - Effect Allele, NEA - Non effect allele, EAF - Effect allele frequency, β - Magnitude of association between SNP and melanoma, S.E. – Standard error of magnitude of association between SNP and melanoma

Supplementary Figures 1: Scatter plots illustrating correlation between PUFAs and potential confounding trait (height) and vice-versa

Height data source - https://www.ncbi.nlm.nih.gov/pubmed/25282103 - Wood et.al,¹

DPA, EPA, ALA, DHA data source - http://www.chargeconsortium.com - Lemaitre et. al,⁶

LA, AA data source - http://www.chargeconsortium.com – Guan et.al,⁷

r² - coefficient of determination (strength of the linear relationship between traits)
P- P value
Trend line - regression line

Figure 01- Scatter plot showing the correlation between DPA and height using genomewide significant DPA SNPs

X axis - effect size on DPA Y axis - effect size on height

Figure 02- Scatter plot showing the correlation between height and DPA using genomewide significant height SNPs

X axis - effect size on height Y axis - effect size on DPA

Figure 03- Scatter plot showing the correlation between EPA and height using genomewide significant EPA SNPs

X axis - effect size on EPA Y axis - effect size on height

Figure 04- Scatter plot showing the correlation between height and EPA using genomewide significant height SNPs

X axis - effect size on height Y axis - effect size on EPA

Figure 05- Scatter plot showing the correlation between ALA and height using genomewide significant ALA SNPs

X axis - effect size on ALA Y axis - effect size on height

Figure 06- Scatter plot showing the correlation between height and ALA using genomewide significant height SNPs

X axis - effect size on height

Y axis - effect size on ALA

Figure 07- Scatter plot showing the correlation between DHA and height using genomewide significant DHA SNPs

X axis - effect size on DHA Y axis - effect size on height

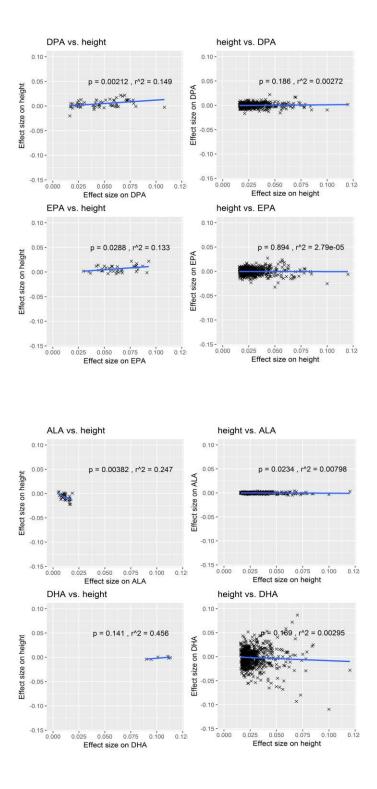
Figure 08- Scatter plot showing the correlation between height and DHA using genomewide significant height SNPs X axis - effect size on height Y axis - effect size on DHA

Figure 09- Scatter plot showing the correlation between LA and height using genome-wide significant LA SNPs

X axis - effect size on LA Y axis - effect size on height

Figure 10- Scatter plot showing the correlation between height and LA using genome-wide significant height SNPs

X axis - effect size on height Y axis - effect size on LA


Figure 11- Scatter plot showing the correlation between AA and height using genomewide significant AA SNPs

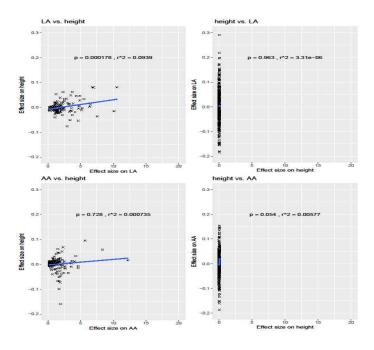

X axis - effect size on AA Y axis - effect size on height

Figure 12- Scatter plot showing the correlation between height and AA using genomewide significant height SNPs

X axis - effect size on height Y axis - effect size on AA

(These plots are uploaded as separate tiff files)

Supplementary Figure 13 - Two sample MR report for Fasting blood sugar versus Melanoma

Two sample MR analysis performed for Fasting blood sugar mmol/L (Scott RA *et.al*,)⁸ against Melanoma (Law *et. al*,)⁹ using MR-Base ¹⁰.

nsnp - number of SNPs = 9, β - beta (effect estimates of causality of melanoma from FBS analysed using different MR methods), se - standard error, *P*-value – Significance of the causality of melanoma from FBS using different MR methods

MR Egger - A more reliable method than IVW method of MR to detect causality when using invalid instruments $^{\rm 11}$

Weighted median - A robust method when some of the IVs are invalid (50%)¹²

Method	β	se	P-value
Fixed effects meta-analysis (simple SE)	0.204	0.158	0.196
Fixed effects meta-analysis (delta method)	0.200	0.160	0.210

Random effects meta-analysis (delta method) 0.260 0.262 0.320

MR of PUFA and melanoma risk: Supplementary

Method	β	se	P-value
Maximum likelihood	0.210	0.160	0.190
MR Egger	-0.042	0.594	0.946
Weighted median	0.122	0.210	0.558
Inverse variance weighted	0.204	0.237	0.388

Supplementary Figure 14 - Two sample MR report for BMI versus Melanoma

Two sample MR report, performed for Body mass index (kg/m²) (Locke AE *et.al*,)² against Melanoma (Law *et.al*,)⁹ using MR-Base ¹⁰.

nsnp - number of SNPs = 86, β - beta (effect estimates of causality of melanoma from FBS analysed using different MR methods), se - standard error, *P*-value – Significance of the causality of melanoma from FBS using different MR methods

MR Egger - A more reliable method than IVW method of MR to detect causality when using invalid instruments $^{\rm 11}$

Weighted median - A robust method when some of the IVs are invalid (50%)¹²

Method	β	se	P-value
Fixed effects meta-analysis (simple SE)	0.032	0.078	0.687
Fixed effects meta-analysis (delta method)	0.032	0.079	0.679
Random effects meta-analysis (delta method)	0.033	0.079	0.679
Maximum likelihood	0.032	0.079	0.682
MR Egger	0.229	0.194	0.242
Weighted median	0.023	0.125	0.856
Inverse variance weighted	0.032	0.080	0.693

Supplementary Figure 15 - Two sample MR report for height versus Melanoma

Two sample MR analysis performed for height (m) (Liu F *et.al*,) ¹³ against Melanoma (Law *et.al*,) ⁹ using MR-Base ¹⁰

nsnp - number of SNPs = 534, β - beta (effect estimates of causality of melanoma from FBS analysed using different MR methods), se - standard error, *P*-value - Significance of the causality of melanoma from FBS using different MR methods

MR Egger - A more reliable method than IVW method of MR to detect causality when using invalid instruments $^{\rm 11}$

Method	β	se	<i>P</i> -value
Fixed effects meta-analysis (simple SE)	0.078	0.032	0.013
Fixed effects meta-analysis (delta method)	0.075	0.032	0.018
Random effects meta-analysis (delta method)	0.079	0.034	0.019
Maximum likelihood	0.079	0.032	0.014
MR Egger	0.028	0.091	0.761
Weighted median	0.115	0.053	0.031
Inverse variance weighted	0.079	0.034	0.020

Weighted median - A robust method when some of the IVs are invalid (50%)¹²

Supplementary Notes

Members of Melanoma Meta-analysis Consortium

Law MH^{1*}, Bishop DT^{2*}, Lee JE^{3#}, Brossard M^{4,5#}, Martin NG⁶, Moses EK⁷, Song F⁸, Barrett JH², Kumar R⁹, Easton DF¹⁰, Pharoah PD¹¹, Swerdlow AJ^{12,13}, Kypreou KP¹⁴, Taylor JC², Harland M², Randerson-Moor J², Akslen LA^{15,16}, Andresen PA¹⁷, Avril MF¹⁸, Azizi E^{19,20}, Scarrà GB^{21,22}, Brown KM²³, Dębniak T²⁴, Duffy DL⁶, Elder DE²⁵, Fang S³, Friedman E²⁰, Galan P²⁶, Ghiorzo P^{21,22}, Gillanders EM²⁷, Goldstein AM²³, Gruis NA²⁸, Hansson J²⁹, Helsing P³⁰, Hočevar M³¹, Höiom V²⁹, Ingvar C³², Kanetsky PA³³, Chen WV³⁴; GenoMEL Consortium; Essen-Heidelberg Investigators; SDH Study Group; Q-MEGA and QTWIN Investigators; AMFS Investigators; ATHENS Melanoma Study Group, Landi MT²³, Lang J³⁵, Lathrop GM³⁶, Lubiński J²⁴, Mackie RM^{35,37}, Mann GJ³⁸, Molven A^{16,39}, Montgomery GW⁴⁰, Novaković S⁴¹, Olsson H^{42,43}, Puig S^{44,45}, Puig-Butille JA^{44,45}, Wu W^{46,47}, , Qureshi AA⁴⁸, Radford-Smith GL^{49,50,51}, van der Stoep N⁵², van Doorn R²⁸, Whiteman DC⁵³, Craig JE⁵⁴, Schadendorf D^{55,56}, Simms LA⁴⁷, Burdon KP⁵⁷, Nyholt DR^{40,58}, Pooley KA¹⁰, Orr N⁵⁹, Stratigos AJ¹⁴, Cust AE⁶⁰, Ward SV⁷, Hayward NK⁶¹, Han J^{46,47}, Schulze HJ⁶², Dunning AM¹¹, Bishop JA², Demenais F^{4,5#}, Amos Cl^{63#}, MacGregor S^{1*}, Iles MM^{2*}.

³Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. ⁴INSERM, UMR 946, Genetic Variation and Human Diseases Unit, Paris, France.

⁵Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.

⁶Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

⁷Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia, Perth, Western Australia, Australia.

⁸Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

⁹Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.

¹⁰Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

¹¹Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.

¹²Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.

¹³Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.

¹⁴Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece.

¹⁵Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, Bergen, Norway.

¹⁶Department of Pathology, Haukeland University Hospital, Bergen, Norway.

¹⁷Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.

¹⁸Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France.

¹⁹Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel.

²⁰Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

²¹Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.

²²Laboratory of Genetics of Rare Cancers, Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria (IRCCS AOU) San Martino l'Istituto Scientifico Tumori Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.

²³Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.

²⁴International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.

²⁵Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

¹Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. ²Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.

²⁶Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, INSERM U1153, Institut National de la Recherche Agronomique (INRA) U1125, Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, Bobigny, France.
²⁷Inherited Disease Research Branch, National Human Genome Research Institute, US National Institutes of Health, Baltimore, Maryland, USA.

²⁸Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands.

²⁹Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
 ³⁰Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.

³¹Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.

³²Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden.

³³Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.

³⁴Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

³⁵Department of Medical Genetics, University of Glasgow, Glasgow, UK.

³⁶McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada.

³⁷Department of Public Health, University of Glasgow, Glasgow, UK.

³⁸Centre for Cancer Research, University of Sydney at Westmead, Millennium Institute for Medical Research and Melanoma Institute Australia, Sydney, New South Wales, Australia.

³⁹Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.

⁴⁰Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

⁴¹Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia.

⁴²Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund, Sweden.

⁴³Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden.

⁴⁴Melanoma Unit, Departments of Dermatology, Biochemistry and Molecular Genetics, Hospital Clinic, Institut d'Investigacions Biomèdica August Pi Suñe, Universitat de Barcelona, Barcelona, Spain.

⁴⁵Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain.

⁴⁶Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA.

⁴⁷Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA.

⁴⁸Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.

⁴⁹Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

⁵⁰Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.

⁵¹University of Queensland School of Medicine, Herston Campus, Brisbane, Queensland, Australia.

⁵²Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.

⁵³Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

⁵⁴Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia.

⁵⁵Department of Dermatology, University Hospital Essen, Essen, Germany.

⁵⁶German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.

⁵⁷Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.

⁵⁸Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.

⁵⁹Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.

⁶⁰Cancer Epidemiology and Services Research, Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia.

⁶¹Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

⁶²Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin at the University of Münster, Münster, Germany.

⁶³Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA.

Supplemental References -

1. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Luan Ja, Kutalik Z, Amin N, Buchkovich ML, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. *Nature genetics* 2014;**46**: 1173-86.

2. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, et al. Genetic studies of body mass index yield new insights for obesity biology. *Nature* 2015;**518**: 197-206.

3. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, Westra HJ, Shakhbazov K, Abdellaoui A, Agrawal A, Albrecht E, Alizadeh BZ, et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. *Science* 2013;**340**: 1467-71.

4. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Magi R, Strawbridge RJ, Pers TH, Fischer K, Justice AE, Workalemahu T, Wu JM, et al. New genetic loci link adipose and insulin biology to body fat distribution. *Nature* 2015;**518**: 187-96.

5. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, Lindgren CM, Magi R, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. *Nature genetics* 2010;**42**: 105-16.

6. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, Nettleton JA, King IB, Weng LC, Bhattacharya S, Bandinelli S, Bis JC, et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. *PLoS Genet* 2011;**7**: e1002193.

7. Guan W, Steffen BT, Lemaitre RN, Wu JH, Tanaka T, Manichaikul A, Foy M, Rich SS, Wang L, Nettleton JA, Tang W, Gu X, et al. Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium. *Circulation Cardiovascular genetics* 2014;**7**: 321-31.

8. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, Magi R, Strawbridge RJ, Rehnberg E, Gustafsson S, Kanoni S, Rasmussen-Torvik LJ, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. *Nature genetics* 2012;**44**: 991-1005.

9. Law MH, Bishop DT, Lee JE, Brossard M, Martin NG, Moses EK, Song F, Barrett JH, Kumar R, Easton DF, Pharoah PD, Swerdlow AJ, et al. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. *Nature genetics* 2015;**47**: 987-95.

10. Hemani G, Zheng J, Wade KH, Laurin C, Elsworth B, Burgess S, Bowden J, Langdon R, Tan V, Yarmolinsky J, Shihab HA, Timpson N, et al. MR-Base: a platform for systematic causal inference across the phenome using billions of genetic associations. *bioRxiv* 2016.

11. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. *International journal of epidemiology* 2015;**44**: 512-25.

12. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. *Genetic epidemiology* 2016;**40**: 304-14.

13. Liu F, Hendriks AE, Ralf A, Boot AM, Benyi E, Savendahl L, Oostra BA, van Duijn C, Hofman A, Rivadeneira F, Uitterlinden AG, Drop SL, et al. Common DNA variants predict tall stature in Europeans. *Human genetics* 2014;**133**: 587-97.