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Abstract

Memetic algorithms are popular hybrid search heuristics that inte-
grate local search into the search process of an evolutionary algorithm
in order to combine the advantages of rapid exploitation and global
optimisation. However, these algorithms are not well understood and
the field is lacking a solid theoretical foundation that explains when
and why memetic algorithms are effective.

We provide a rigorous runtime analysis of a simple memetic algo-
rithm, the (1+1) MA, on the Hurdle problem class, a landscape class
of tuneable difficulty that shows a “big valley structure”, a character-
istic feature of many hard problems from combinatorial optimisation.
The only parameter of this class is the hurdle width w, which de-
scribes the length of fitness valleys that have to be overcome. We show
that the (1+1) EA requires Θ(nw) expected function evaluations to
find the optimum, whereas the (1+1) MA with best-improvement and
first-improvement local search can find the optimum in Θ(n2+n3/w2)
and Θ(n3/w2) function evaluations, respectively. Surprisingly, while
increasing the hurdle width makes the problem harder for evolution-
ary algorithms, the problem becomes easier for memetic algorithms.
We discuss how these findings can explain and illustrate the success of
memetic algorithms for problems with big valley structures.

Index terms— Evolutionary algorithms, hybridisation, iterated local search,
local search, memetic algorithms, running time analysis, theory

∗Preliminary version of this work will appear in the Proceedings of the 2018 Genetic
and Evolutionary Computation Conference (GECCO 2018)
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1 Introduction

1.1 Motivation

Memetic Algorithms (MAs), also known as evolutionary/genetic local search
or global-local search hybrids, are hybrid stochastic search methods that in-
corporate one or more intensifying local search algorithms into an evolution-
ary framework. The motivation behind this hybridisation is to create a new
algorithm that combines the exploration capabilities of an evolutionary algo-
rithm with the efficiency and exploitation capabilities of local search. There
are many examples where this strategy has proven effective; see e. g. [11, 10].

In [21], three advantages for memetic algorithms are pointed out:

1. Local search can quickly find solutions of high quality due to its rapid
exploitation.

2. Selection is only performed after local search has had a chance to improve
on new offspring; this is beneficial for low-fitness offspring located in the
basin of attraction of a high-fitness local optimum, as in a conventional
evolutionary algorithm such low-fitness offspring would be removed by
selection. This effect is particularly visible for constrained problems,
where penalties are used for violated constraints, and local search can
act as a repair mechanism [21].

3. Local search can include problem-specific knowledge; this is often possible
since local search strategies are typically easy to design, even when it is
hard to design a global problem-specific strategy [21].

A challenge when dealing with memetic algorithms and hybrid algo-
rithms, in general, is that the search dynamics can be very hard to under-
stand, in particular due to the interplay of different operators. It is not well
understood when and why memetic algorithms perform well, when they do
not, and how to design memetic algorithms most effectively for a problem
in hand. Most work in this area is empirical and the theory of memetic
algorithms is still in its infancy.

There are many different variants of memetic algorithms, from algo-
rithms that only rarely apply local search, with a fixed local search frequency
to iterated local search algorithms where local search is applied in every gen-
eration [7]. In the latter scenario, local search turns all search points into
local optima, and evolution acts on the sub-space of local optima. The hope
is that mutation can lead a memetic algorithm to leave its current local
optimum, and to reach the basin of attraction of a better one.

We demonstrate that this strategy works very effectively on a class of
problems introduced by Prügel-Bennett [14] as example problems where ge-
netic algorithms using crossover perform better than hill climbers. The
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Hurdle problem class (formally defined in Section 3) is a function of unita-
tion1 with an underlying gradient leading towards the global optimum and
a number of “hurdles” that have to be overcome. These hurdles consist of
a local optimum and a fitness valley that has to be overcome to reach the
next local optimum. The distance between local optima is a parameter w
called the hurdle width, and it can be used to parameterise the width of
the fitness valleys. For simple evolutionary algorithms like the (1+1) EA,
a larger hurdle width makes the problem harder. This effect was analysed
in [14] with non-rigorous arguments based on simplifying assumptions, that
led to approximations of the expected time for finding the global optimum.

Here we provide a rigorous analysis for the expected optimisation time
of the (1+1) EA: we give a tight bound of Θ(nw) for the expected optimi-
sation time2, confirming that the performance degrades very rapidly with
increasing hurdle width. For hurdle widths growing with n, w = ω(1), this
expected time is superpolynomial and hence intractable.

In contrast, we show that memetic algorithms perform very effectively
on this problem class due to their combination of evolutionary operators
and local search. We study a simple iterated local search algorithm called
(1+1) MA with two different local searches, First-Improvement Local Search
(FILS) and Best-Improvement Local Search (BILS) [3], and show that the
(1+1) MA with BILS takes expected time Θ(n2+n3/w2) and the (1+1) MA
with FILS takes expected time Θ(n3/w2) to find the optimum. These times
are polynomial for all choices of the hurdle width.

Note that the term n3/w2 decreases with the hurdle width, hence the
surprising conclusion is that larger hurdle widths make the problem much
harder for evolutionary algorithms, while making the problem easier for
memetic algorithms.

The Hurdle problem, albeit having been defined for a very different
purpose [14], turns out to be an ideal example for showcasing the power of
memetic algorithms and iterated local search. This finding is particularly
significant in the light of “big valley” structures, an important characteris-
tic of many hard problems from combinatorial optimisation [12, 15], where
“many local optima may exist, but they are easy to escape and the gradient,
when viewed at a coarse level, leads to the global optimum” [5]. TheHurdle

problem is a perfect and very illustrative example of a big valley landscape.
By explaining how the (1+1) MA easily solves the Hurdle problem class,
we hope to gain insight into how memetic algorithms perform on big valley
structures, which may help to explain why state-of-the-art memetic algo-
rithms perform well on problems with big valley structures [8, 16].

1A function of unitation is a function that only depends on the number of ones.
2See [2, Chapter 3] for a definition of asymptotic notation and symbols Θ, O, o,Ω, ω.
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1.2 Related Work

There are other examples of functions where memetic algorithms were the-
oretically proven to perform well (see Sudholt [21] for a more extensive
survey). In [18] examples of constructed functions were given where the
(1+1) EA, the (1+1) MA, and Randomised Local Search (RLS) can mutu-
ally outperform each other. The paper [19] investigates the impact of the
local search depth, which is often used to limit the number of iterations local
search is run for. The author gives a class of example functions where only
specific choices for the local search depth are effective, and other param-
eter settings, including plain evolutionary algorithms without local search,
fail badly. Similar results were obtained for the choice of the local search
frequency, that is, how often local search is run [17].

Sudholt [20] showed for instances of classical problems from combina-
torial optimisation that memetic algorithms with a different kind of local
search, variable-depth local search, can efficiently cross huge fitness valleys
that are nearly impossible to cross with evolutionary algorithms. Witt [25]
further analysed the performance of a memetic algorithm, iterated local
search, for the Vertex Cover problem. Sudholt and Zarges [22] investi-
gated the use of memetic algorithms for the graph colouring problem. Fi-
nally, Wei and Dineen analysed memetic algorithms for solving the Clique

problem, investigating the choice of the fitness function [23] as well as the
choice of the local search operator [24].

Gießen [4] presented another example function class based on a discre-
tised version of the well-known Rastrigin function. He designed a memetic
algorithm using a new local search method called opportunistic local search,
where the search direction switches between minimisation and maximisa-
tion whenever a local optimum is reached. This function also resembles a
“big valley” structure in two dimensions as the bit string is mapped onto a
two-dimensional space.

Another line of research is work on hyperheuristics that combine differ-
ent operators. Alanazi and Lehre [1] demonstrated the usefulness of hyper-
heuristics for artificial functions, and Lissovoi, Oliveto, and Warwicker [6]
presented novel, provably efficient hyperheuristic algorithms. The difference
to memetic algorithms is that while hyperheuristics typically apply one op-
erator, while learning which operator performs best, memetic algorithms
apply different operators, variation and local search, in sequence. The in-
terplay of variation and local search is a major challenge when analysing
memetic algorithms.

1.3 Outline

The paper is structured as follows. Section 2 introduces the (1+1) EA,
(1+1) MA as well as the two local searches. The class of Hurdle problems
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are then formally defined in Section 3, which also includes detailed descrip-
tion about their properties. Section 4 points out the inefficiency of the
(1+1) EA and two local search algorithms by investigating their expected
optimisation times on the Hurdle problems. Next, tight bounds on the
expected optimisation time of the (1+1) MA are derived in Section 5, which
reveals the outperformance of the (1+1) MA to the alternative stochastic
search methods. Finally, concluding remarks are given in Section 6.

2 Preliminaries

2.1 (1+1) Evolutionary Algorithm

In order to focus on the main differences between evolutionary algorithms
and memetic algorithms, and to facilitate a rigorous theoretical analysis, we
consider simple bare-bones algorithms from these two paradigms.

The (1+1) EA is the simplest evolutionary algorithm, operating with
a population of size one and using only mutation. The mutation operator
flips each bit independently with mutation probability pm, with the default
choice being pm = 1/n, where n is the length of the bitstring. The fitness
function is defined as f : X → R, where X = {0, 1}n is the binary search
space, and has to be maximised. Algorithm 1 gives a full description of the
(1+1) EA. Here Mutate(x) returns a new bitstring resulting from flipping
bits in x independently with probability pm.

Algorithm 1: (1+1) EA

x ∼ Unif{X}
repeat

y ←Mutate(x, pm)
if f(y) ≥ f(x) then

x← y

until some stopping condition is fulfilled.

Practical implementations of Evolutionary Algorithms in particular and
other search metaheuristics in general require to specify some stopping con-
dition. The simplest is to stop when a fixed number of generations has
been exceeded. The theoretical results presented in this paper address the
limiting case when the algorithm runs until a global optimum is found. In
this case, we are interested in the expected optimisation time of the algo-
rithm, defined as the mean of the number of fitness (or function) evaluations
performed by the algorithm until a global optimum is found.
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2.2 (1+1) Memetic Algorithm

Algorithm 2 [24] outlines the typical procedure of the (1+1) MA, the sim-
plest memetic algorithm. The algorithm consists of a population of one
individual and produces an offspring in each generation by independently
flipping each bit in the current search point with mutation probability
pm = 1/n. The newly generated offspring is then refined further using a
LocalSearch. Any local search algorithms can fit into the scenario. Al-
though the (1+1) MA looks quite simple, it still captures the same working
principle as the general MAs. Analysing it can reveal insights into how the
general MAs operate and when they can be employed to solve problems.

Algorithm 2: (1+1) MA

x ∼ Unif{X}
repeat

y ←Mutate(x, 1/n)
z ← LocalSearch(y)
if f(z) ≥ f(x) then

x← z

until some stopping condition is fulfilled.

2.3 Local Searches

We consider the following two local searches in the context of the (1+1) MA.
Both local searches are common practice and have also been analysed in [3].

Algorithm 3: FILS

input: a bitstring x = (x1, . . . , xn) ∈ {0, 1}
n

for δ iterations do
create a random permutation Per of set {1, 2, . . . , n}
BetterFound← false
for i = 1 to n do

y ← Flip (x,Per[i])
if f(y) > f(x) then

x← y
BetterFound← true

if BetterFound = false then
return x

return x
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2.3.1 First Improvement Local Search

(FILS), shown in Algorithm 3, adapted from Wei and Dinneen [3], takes
advantage of the first improvement it finds while searching the neighbour-
hood. The algorithm runs for δ iterations. Bits are flipped according to a
random permutation Per of length n (to avoid any search bias due to the
choice of bit positions), and newly generated individuals are then scored by
the fitness function. Here Flip(x, i) returns a new bitstring resulting from
flipping the i-th bit in x. The current search point is replaced by the first
neighbour found with a better fitness value. The algorithm stops either after
δ iterations of the outer for loop have been performed or after visiting all n
neighbours of the current search point without any improvement.

2.3.2 Best Improvement Local Search

(BILS), shown in Algorithm 4, adapted from Wei and Dinneen [3], searches
the whole neighbourhood and then picks a search point giving the best
improvement.

The algorithm runs for δ iterations, and in each iteration a neighbour
with the largest improvement in the fitness among all n neighbours of the
current search point is picked to be the next search point. In order to
keep track of the progress so far, it stores the best neighbour(s) and best
fitness into CurBestInds and CurBestFit, respectively. This means that
whenever a neighbour with better fitness compared to CurBestFit has
been found, the algorithm performs update on the two variables. At the
end of an iteration, if there are more than one neighbours with the same
fitness value that is better than f(x), then the next search point is chosen
uniformly at random from the set CurBestInds.

3 Class of Hurdle Problems

TheHurdle function class was introduced back in 2004 by Prügel-Bennett [14]
as an example class where genetic algorithms with crossover outperform hill
climbers. Here we give a formal definition and discuss basic properties of
the function that will be used in the subsequent analyses.

The objective is to find a bitstring that maximises the fitness function
f : X → R. The value of the fitness function at a given bitstring x ∈ X is
[14]

f(x) = −

⌈

z(x)

w

⌉

−
rem(z(x), w)

w
.

In this function, z(x) is the number of zeros in the bitstring x. w ∈
{2, 3, . . . , n} is called the hurdle width and is the only parameter of the
Hurdle problems. Note that w = w(n) may be a function of n. Finally,
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Algorithm 4: BILS

input: a bitstring x = (x1, . . . , xn) ∈ {0, 1}
n

for δ iterations do
CurBestInds← ∅
CurBestFit← f(x)
for i = 1 to n do

y ← Flip(x, i)
if f(y) > CurBestFit then

CurBestInds← {y}
CurBestFit← f(y)

else if f(y) = CurBestFit then
CurBestInds← CurBestInds ∪ {y}

if CurBestInds = ∅ then
return x

else
x ∼ Unif{CurBestInds}

return x

rem(z(x), w) is the remainder of z(x) divided by w, while ⌈·⌉ is the ceiling
function.

Lemma 1. The global optimum for the Hurdle problem is 1n.

Proof. For every x ∈ {0, 1}n, f(x) ≤ 0 since both z(x) and rem(z(x), w)
cannot be negative. The equality happens if and only if both z(x) and
rem(z(x), w) equal zero, or equivalently x = 1n.

Note in particular that z(x) can also be viewed as the Hamming distance
H(x, 1n) between the current solution x and the global optimum 1n. The

Figure 1: Fitness landscapes of Hurdle with w = 3.
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fitness landscapes close to the global optimum are shown in Fig. 1 [14]. It
can be clearly seen that the global optimum 1n coincides with the origin
where both z(1n) = 0 and f(1n) = 0. In the following lemma, the term
nearest refers to the scale of z(x), i. e. the most similar number of zeros.
Note that this relates to Hamming distances as follows: any search point
with z(x) zeros has Hamming distance at least |i− z(x)| to any search point
with i zeros. A sufficient condition for a mutation of x having i zeros is
flipping i− z(x) zeros and no other bits if i ≥ z(x) or flipping z(x)− i ones
if i ≤ z(x).

Lemma 2. Given a Hurdle problem with hurdle width w and a local
optimum x 6= 1n as the current search point, the nearest search points
with fitness larger than f(x) are all search points with z(x) − w zeros:
{x′ | z(x′) = z(x)− w}.

Figure 2: Fitness landscape of Hurdle problem with arbitrary w.

Proof. The current local optimum x 6= 1ncontains z(x) = kw zeros where
k ∈ N \ {0} (see Fig. 2). Let us consider a search point xi which is the
nearest search point with f(xi) ≥ f(x) and z(xi) = kw −m < z(x) where
0 < m ≤ w. Here, we exclude the case m > w as the next local optimum
corresponds to m = w, and its fitness value is already known to be better
than f(x).

Now we need to calculate the fitness values for two search points, x and
xi. Note that z(x)/w = kw/w = k, and rem(z(x), w) = rem(kw,w) = 0,
then

f(x) = −

⌈

z(x)

w

⌉

−
rem(z(x), w)

w
= −⌈k⌉ −

0

w
= −k.

On the other hand, z(xi)/w = (kw−m)/w = k−m/w, and rem(z(xi), w) =
rem(kw −m,w) = w −m as we can rewrite z(xi) = kw −m = (k − 1)w +
(w −m), then

f(xi) = −
⌈

k −
m

w

⌉

−
w −m

w
= −

⌈

k −
m

w

⌉

− 1 +
m

w
.

Now we consider two different cases as follows. If m = w, then m/w = 1
and f(xi) = −(k − 1) − 1 + 1 = −k + 1 > f(x); otherwise, m/w < 1, and
1− m

w
> 0, then f(xi) = −k −

(

1− m
w

)

< f(x).
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For all 0 < m ≤ w, we only have f(xi) > f(x) if and only if m = w, and
then z(xi) = (k − 1)w where k ∈ N \ {0}. This result implies that xi must
be a local optimum. This proof also shows that the difference in the fitness
values of two consecutive local optima is exactly one.

4 Why Is Hybridisation Necessary?

4.1 Local Searches

In this section, we show that local search algorithms in general are unable
to optimise the Hurdle problems, unless the initial search point is chosen
from a specific regions in the fitness landscape.

Let z denote the number of zeros in the initial search point. It is obvious
that if z ≥ w, then the local search algorithm cannot locate the global opti-
mum as it gets stuck at a local one forever. Otherwise, the global optimum
can be found with some probability. However, if the local search is allowed
to run only once, then for w ≪ n/2 the chance that it can optimise the
Hurdle problems is close to zero since the number of search points with at
most w − 1 zeros is significantly smaller compared to the size of the search
space, i.e. 2n. One way to overcome this problem is to employ a restart
mechanism, which restarts the local search algorithm once a local optimum
has been found.

Theorem 1. The expected optimisation time of local search algorithms
BILS and FILS with δ ≥ w, restarting after δ iterations of the local search,
on Hurdle problems with hurdle width w ≤ cn for some constant c < 1/2
is 2Ω(n).

We focus on w ≤ cn for some constant c < 1/2 as, otherwise, the majority
of search points would lie in the basin of attraction of the global optimum,
resembling the function OneMax3.

Proof of Theorem 1. The local search algorithm flips one bit and only ac-
cepts new search points with strictly better fitness value compared to the
current one in each iteration; therefore, the initial search point decides
whether the global optimum can be reached. It is clear that this search
point needs to have at most cn − 1 zeros in order for the algorithm to be
able to optimise the problem (see Fig. 1). By Chernoff bounds [9], this event
happens with probability at most 2−Ω(n). The expected number of restarts
until this event happens is at least 2Ω(n). Since every restart clearly leads
to at least one function evaluation, the expected optimisation time of local
search algorithms on Hurdle problems is 2Ω(n).

3The ones-counting problem, i.e. OneMax(x) :=
∑

i
xi.
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4.2 (1+1) Evolutionary Algorithm

In this section, we prove a tight bound Θ(nw) on the expected optimisation
time of the (1+1) EA on the Hurdle problems with an arbitrary hurdle
width 2 ≤ w ≤ n/2. This result implies that the (1+1) EA is not efficient on
Hurdle. Our rigorous analysis complements the non-rigorous arguments
given in [14]. Note in particular that starting from an initial search point
with at least w zeros, the first generation will end in a local optimum after
at most w iterations of the local search with δ ≥ w. Since this has a small
additive contribution to the overall runtime, we can assume that a local
optimum is the current search point.

Theorem 2. The expected optimisation time of the (1+1) EA on the Hurdle

problem with hurdle width w is O(nw).

Proof. Assume that a local optimum x be the current search point with
z zeros. Lemma 2 yields that the nearest search points with a better fit-
ness than f(x) are all local optima with z − w zeros. For such a mutation
we just need to flip at least w zeros simultaneously, and keep n − w re-
maining bits unchanged. The probability of flipping w bits is given by
(1/n)w, and keeping n− w bits unchanged is (1− 1/n)n−w. Therefore, the
probability of obtaining a better solution is bounded from below by pz ≥
(

z
w

) (

1
n

)w (

1− 1
n

)n−w
≥ 1

enw

(

z
w

)w
since

(

1− 1
n

)n−1
≥ 1/e and

(

z
w

)

≥ (z/w)w

[2, Appendix C]. The expected number of generations until the global opti-
mum found is now bounded from above by

E [T ] ≤
n
∑

z=w

1

pz
≤ enwww

n
∑

z=w

1

zw
. (1)

Now we need to calculate the sum
∑n

z=w
1
zw

. Let us consider the function
g(z) = z−w, ∀z ∈ [w, n]. Since ∇zg = −w/zw+1 < 0, g is a monotonically
decreasing function in [w, n]. So we can approximate the upper bound of
this sum using a method called approximation by integrals, i.e.

∑b
x=a g(x) ≤

∫ b

a−1 g(x)dx [2, Appendix A]. Applying this method yields

n
∑

z=w

1

zw
= w−w +

n
∑

z=w+1

1

zw

≤ w−w +

∫ n

w

1

zw
dz

≤ w−w +

∫ ∞

w

1

zw
dz = w−w + w−w ·

w

w − 1
≤ 3w−w.

Substituting this into (1), we get E [T ] ≤ 3enw.

To derive the lower bound, we again focus on w ≤ n/2 for the same line
of arguments as in Theorem 1.
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Theorem 3. The expected optimisation time of the (1+1) EA on Hurdle

problems with hurdle width 2 ≤ w ≤ n/2 is Ω(nw).

Proof. We first show that a search point with w zeros is reached with proba-
bility Ω(1). The initial number of zeros follows a binomial distribution with
parameters n and 1/2. As w ≤ n/2, the probability that the initial search
point will have at least w zeros is at least 1/2 (by symmetry of the binomial
distribution). It may be possible to “jump over” search points with w zeros,
i.e. to make a transition from i > w zeros to j < w zeros, so long as the
Hurdle value with i zeros is less or equal to that of j zeros. However,
Lemma 9 in [13] states that the conditional probability of standard bit mu-
tation reaching a search point with w zeros, given that a search point with
at most w zeros is reached, is at least 1/2.

Once the (1+1) EA has reached such a search point with w zeros, the
expected remaining optimisation time is nw(1− 1/n)−n+w = Ω(nw) as the
optimum is the only search point with a higher fitness (see Lemma 2) and
the probability of jumping to the optimum from any such search point is
n−w(1−1/n)n−w. By the law of total expectation, the expected optimisation
time is at least Ω(1) · Ω(nw) = Ω(nw).

We remark that the (1+1) EA can be slightly sped up by increasing the
mutation rate. As the above analysis has shown, the expected optimisation
time is dominated by the time to locate the global optimum from a search
point with Hamming distance w to it. From this starting point, a mutation
rate of w/n maximises the probability of flipping exactly w bits. In fact, this
choice was already used in [14] for the (1+1) EA. However, even choosing an
optimal mutation rate does not help much as, even if a mutation does flip
exactly w bits, the mutation needs to select the right bits to flip, and the
chance of choosing exactly the w bits that differ from the optimum is 1/

(

n
w

)

,
leading to an expected time of at least

(

n
w

)

≥ nw/ww [2] from such a local
optimum (and Ω(

(

n
w

)

) ≥ Ω(nw/ww) from random initialisation). This still
results in a superpolynomial expected time if w = ω(1), that is, w grows
with n.

5 Memetic Algorithms Are Efficient

We now show that, in contrast to local search on its own, and evolutionary
algorithms, the (1+1) MA can find the global optimum efficiently, for both
BILS and FILS. The main result of this section is as follows. Note in
particular we consider BILS and FILS with local search depth δ ≥ w as
this is sufficient to run into local optima from anywhere in the search space.

Theorem 4. The expected number of function evaluations of the (1+1) MA
on Hurdle with any hurdle width 2 ≤ w ≤ n/2 is Θ(n2+n3/w2) for BILS

and Θ(n3/w2) for FILS, both using δ ≥ w.
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1

2

Figure 3: (1+1) MA on Hurdle problems

In order to prove Theorem 4, we first prove upper bounds of O(n2 +
n3/w2) and O(n3/w2), respectively, and then we prove lower bounds of
Ω(n2 + n3/w2) and Ω(n3/w2), respectively, showing that the upper bounds
are asymptotically tight.

To prove the upper bounds, we first provide an upper bound on the
expected number of generations needed. This does not include the function
evaluations made during local search, which will be bounded separately.

Theorem 5. The expected number of generations of the (1+1) MA using
BILS or FILS with δ ≥ w on Hurdle with any hurdle width 2 ≤ w ≤ n is
O(n2/w2).

Proof. Assume a local optimum x is the current search point with z zeros
in the bitstring. The fitness landscape around x is illustrated in Fig. 3.
Lemma 2 yields that the nearest search points with a better fitness than
f(x) are the local optima with exactly z − w zeros. Let us consider the
situation when the (1+1) MA flips at least two zeros to move from x to x2
(say event A), and then any local search will locate the next local optimum
xw by performing a sequence of one-step jumping: x2 to x3,. . . , xw−1 to xw
(say event B). Clearly, event A happens with probability

p(A) =

(

z

2

)(

1

n

)2(

1−
1

n

)n−2

≥
z(z − 1)

2en(n− 1)
.

Given event A, event B occurs with unity probability, i. e. p(B | A) = 1, as
the local search always locates the next local optimum. Hence, the probabil-
ity of reaching xw from x is bounded from below by p(A), and the expected
number of generations is at most 1/p(A). The expected number of genera-
tions until the global optimum is found is

E [T ] ≤
∑

z∈{w,2w,...}

2en(n− 1)

z(z − 1)
. (2)
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We have, using
∑∞

i=1
1
i2

= π2/6,

∑

z∈{w,2w,...}

1

z(z − 1)
≤

∞
∑

i=1

1

iw(iw − 1)

≤
∞
∑

i=1

1

iw(iw − iw/2)
=

2

w2

∞
∑

i=1

1

i2
=

π2

3w2
.

Substituting into (2) yields E [T ] = O(n2/w2).

In order to bound the number of function evaluations made during local
search, we distinguish between local searches that result in a strict improve-
ment over the previous current search point, and those that don’t. This is
an example of the accounting method [2, Chapter 17.2], where function eval-
uations are charged to one of two accounts and the total costs are bounded
separately for each account. Adding the two bounds will yield an upper
bound on the total number of function evaluations made during local search.

We first bound the number of function evaluations spent in any improv-
ing local search.

Lemma 3. Call a local search improving if it terminates with a search
point that has a strictly better fitness than the current search point of the
(1+1) MA; otherwise, the local search is called non-improving. The number
of function evaluations spent in any improving local search call on Hurdle

with hurdle width w and δ ≥ w is at most wn for BILS and at most 2n for
FILS.

Proof. As Hurdle is a function of unitation, while no local optimum is
found, local search will either decrease the number of ones in each iteration,
or increase the number of ones in every iteration. In both cases a local
optimum will be found after at most w−1 iterations. Once a local optimum
has been reached, at most n further evaluations are needed before local
search stops.

As BILS makes n function evaluations in every iteration, it makes at
most n(w − 1) + n = wn function evaluations in total.

For FILS, after one iteration of the outer for loop (see Algorithm 3)
a local optimum will be found, and then n further evaluations are needed
before it stops.

The expected number of function evaluations for non-improving local
searches can be bounded as follows.

Lemma 4. In the setting of Theorem 4, the expected number of function
evaluations spent by BILS and FILS during any non-improving local search
is Θ(n).
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Proof. The lower bound Ω(n) is trivial as both local searches make at least
n function evaluations before stopping.

Let i denote the number of zeros in the current search point of the
(1+1) MA and j denote the number of zeros in the search point after mu-
tation, from which local search is called.

If rem(i, w) = 0, that is, i is a local optimum, j < i − 1 will lead to an
improving local search (see Fig. 1), and j = i − 1 may either be improving
or go back to a search point with i ones in one iteration. If j ≥ i then local
search will make at most j − i iterations.

If rem(i, w) > 0, that is, i is not a local optimum, j < w · ⌈i/w⌉ leads
to an improving local search, whereas j ≥ w · ⌈i/w⌉ will stop after at most
j − i iterations.

In all these cases, local search is either improving, or it makes at most
|j − i| iterations. Note that a necessary condition of mutating a search
point with i ones into one with j ones is that at least |j − i| bits flip. The
probability for this event is at most

(

n
|j−i|

)

n−|j−i| ≤ 1/(|j−i|!). The expected
number of iterations in a non-improving local search is thus at most

n
∑

j=0

|j − i| ·
1

|j − i|!
≤ 2

∞
∑

d=1

d ·
1

d!
= 2

∞
∑

d=1

1

(d− 1)!
= 2

∞
∑

d=0

1

d!
= 2e.

The number of function evaluations made during a local search that stops
after s iterations is at most (s+1)n. Hence the expected number of function
evaluations is at most (2e+ 1)n.

Putting the previous results together, we are now prepared to prove the
upper bounds claimed in Theorem 4.

Proof of the upper bounds from Theorem 4. By Theorem 5 the expected num-
ber of generations is bounded by O(n2/w2). The expected number of func-
tion evaluations spent in any non-improving local search isO(n) according to
Lemma 4. Together, the number of function evaluations in all non-improving
local searches is at most O(n3/w2).

By Lemma 3, the number of function evaluations in any improving local
search is at most wn for BILS and at most 2n ≤ wn for FILS. Since every
improving local search ends in a local optimum with a better fitness than the
current search point of the (1+1) MA, there can only be O(n/w) improving
local searches as this is a bound on the number of fitness levels containing
local optima. Hence the effort in all improving local searches is bounded
by O(n2), and the overall number of function evaluations is bounded by
O(n2 + n3/w2).

To prove the lower bounds from Theorem 4, we first show a very general
lower bound of Ω(n2) for the (1+1) MA with BILS. It holds for all functions
with a unique global optimum and may be of independent interest.

15



Theorem 6. The (1+1) MA using BILS makes at least Ω(n2) function
evaluations, with probability 1− 2−Ω(n) and in expectation, on any function
with a unique global optimum.

Proof. It suffices to show the high-probability statement as the expectation
is at least (1− 2−Ω(n)) · Ω(n2) = Ω(n2).

We show that with probability 1 − 2−Ω(n) one of the following events
occurs.

A: The (1+1) MA spends at least n/12 generations before finding the opti-
mum.

B: BILS makes a total of at least n/6 iterations before finding the optimum.

Each event implies a lower bound of Ω(n2) as each iteration of BILS makes
n function evaluations, and each generation leads to at least one iteration
of BILS.

In order for none of these events to occur, the (1+1) MA must find the
optimum within n/12 generations, using fewer than n/6 iterations of BILS

in total. For this to happen, one of the following rare events must occur:

E1: the (1+1) MA is initialised with a search point that has a Hamming
distance less than n/3 to the unique optimum or

E2: the initial search point has a Hamming distance of at least n/3 to the
optimum, and the algorithm decreases this distance to 0 during the first
n/12 generations, using fewer than n/6 iterations of BILS.

The reason is that, if none of the events E1 and E2 occur, then this im-
plies A ∪ B. By contraposition, A ∪B ⇒ E1 ∪ E2 and Prob

(

A ∪B
)

≤
Prob (E1 ∪ E2) ≤ Prob (E1) + Prob (E2) by the union bound.

Event E1 has probability Prob (E1) ≤ 2−Ω(n) by Chernoff bounds.
For E2, note that each iteration of local search can decrease the Hamming

distance to the optimum by at most 1. Hence all iterations of BILS can only
decrease the Hamming distance to the optimum by n/6 in total, and so the
remaining distance of n/3 − n/6 = n/6 needs to be covered by mutations.
Each flipping bit can decrease the distance to the optimum by at most 1.
We have at most n/12 mutations, hence the expected number of flipping bits
is at most n/12. The probability that at least n/6 bits flip during at most
n/12 mutations is 2−Ω(n), which follows from applying Chernoff bounds to
iid indicator variables Xi,t ∈ {0, 1} that describe whether the i-th bit is
flipped during generation t or not. Hence Prob (E2) ≤ 2−Ω(n).

Together, we have by the union bound,

Prob
(

A ∪B
)

≤ Prob (E1) + Prob (E2) ≤ 2−Ω(n) + 2−Ω(n) ≤ 2−Ω(n).

This completes the proof.
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Proof of the lower bounds from Theorem 4. A bound of Ω(n2) for the (1+1) MA
with BILS follows from Theorem 6.

We prove lower bounds Ω(n3/w2) for both local searches by consider-
ing the remaining time when the (1+1) MA has reached a local optimum
with w zeros. Theorem 3 reveals that the (1+1) EA reaches such a local
optimum with probability Ω(1), and it is obvious that the same statement
also holds for the (1+1) MA. Then a lower bound of Ω(n3/w2) follows from
showing that the expected number of function evaluations starting with a
local optimum having w zeros is Ω(n3/w2).

From such a local optimum, the (1+1) MA with BILS has to flip at
least two zeros in one mutation. Otherwise, the offspring will have at least
w − 1 zeros, and BILS will run back into a local optimum with w zeros
(or a worse local optimum). The probability for such a mutation is at most
(

w
2

)

· 1/n2 = O(w2/n2), and the expected number of generations until such
a mutation happens is at least Ω(n2/w2).

The same statement holds for the (1+1) MA with FILS: here it is
necessary to either flip at least two zeros as above, or to create a search
point with w − 1 zeros and to have FILS find a search point with w − 2
zeros as the first improvement. In the latter case, FILS will find the global
optimum. The probability of creating a search point with w − 1 zeros is at
most w/n as it is necessary to flip one of w zeros. In this case FILS creates
a search point with w − 2 ones as first improvement if and only if the first
bit to be flipped is a zero. Since there are w− 1 zeros, and each bit has the
same probability of 1/n of being the first bit flipped, the probability of the
first improvement decreasing the number of zeros is (w−1)/n. Together, the
probability of a generation creating the global optimum is still O(w2/n2),
and the expected number of generations is still at least Ω(n2/w2).

In every generation, both BILS and FILS make at least n evaluations.
Hence we obtain Ω(n3/w2) as a lower bound on the number of function
evaluations.

6 Conclusions and Future Work

We have provided a rigorous runtime analysis, comparing the simple (1+1) EA
with the (1+1) MA using two local search algorithms, FILS and BILS,
on the class of Hurdle problems. Our main results are tight bounds
of Θ(n2 + n3/w2) on the expected number of function evaluations of the
(1+1) MA using BILS and Θ(n3/w2) for the (1+1) MA using FILS. On
the other hand, the (1+1) EA and local search algorithms on their own
take time Θ(nw) and 2Ω(n), respectively. For w = ω(1) the latter times are
superpolynomial, whereas the expected number of function evaluations for
the (1+1) MA is always polynomial, regardless of the hurdle width w.

The Hurdle problem hence represents an illustrative problem where
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a hybrid algorithm drastically outperforms both of the individual search
algorithms it contains, when these are run on their own.

A surprising conclusion is also that the Hurdle problem class becomes
easier for the (1+1) MA as the hurdle width w grows. The reason is that
while the (1+1) EA has to jump to the global optimum by mutation, for
the (1+1) MA it suffices to jump into the basin of attraction of the global
optimum. Increasing the hurdle width w makes it harder for the (1+1) EA
to make this jump, but it also increases the size of the basin of attraction
of the global optimum, effectively giving the (1+1) MA a bigger target to
jump to.

More specifically, our analysis has shown that the (1+1) MA can effi-
ciently reach a better local optimum by flipping two 0-bits during mutation,
as then the resulting mutant is located in the basin of attraction of a bet-
ter local optimum. The expected optimisation time is dominated by the
time spent in the last local optimum, that is, when the current search point
contains w zeros. From here, a mutation flipping two 0-bits has probabil-
ity Θ(w2/n2), where the factor of w2 results from

(

w
2

)

choices for the two
flipping 0-bits. The larger the hurdle width, the larger the probability of
making such a mutation, and the lower the term of order n3/w2 becomes.
Note that the (1+1) MA is otherwise agnostic to the width of the fitness
valley, as local search will efficiently locate a better local optimum, regard-
less of the distance between local optima. This is in sharp contrast to the
(1+1) EA, which has to flip exactly w bits to jump to the optimum, leading
to an expected time of Θ(nw).

Amongst problems with a “big valley” structure, Hurdle has a favourable
landscape for the (1+1) MA as local optima have a very small Hamming dis-
tance to search points in the basin of attraction of better local optima. This
makes it easy to transition from one local optimum to another by mutation
and local search. A promising avenue for future work would be to analyse
the performance of the (1+1) MA for other classes of problems with big
valley structures where larger jumps need to be made to transition to better
local optima. This may require increasing the mutation rate, as commonly
done in iterated local search algorithms [7].

Another avenue for future work could be to rigorously analyse the ex-
pected running time of genetic algorithms with crossover on the Hurdle

problem class, to investigate how their performance compares against that of
the (1+1) MA. Experimental results in [14] suggest that crossover provides
a substantial advantage over the (1+1) EA, however no rigorous analysis
has been done.
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