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EQUIVARIANT MINIMAL SURFACES IN CH
2 AND THEIR HIGGS

BUNDLES.

JOHN LOFTIN AND IAN MCINTOSH

Abstract. This paper gives a construction for all minimal immersions f of the Poincaré disc
into the complex hyperbolic plane CH

2 which are equivariant with respect to an irreducible
representation ρ of a hyperbolic surface group into PU(2, 1). We exploit the fact that each
such immersion is a twisted conformal harmonic map and therefore has a corresponding Higgs
bundle. We identify the structure of these Higgs bundles and show how each is determined
by properties of the map, including the induced metric and a holomorphic cubic differential
on the surface. We show that the moduli space of pairs (ρ, f) is a disjoint union of finitely
many complex manifolds, whose structure we fully describe. The holomorphic (or anti-
holomorphic) maps provide multiple components of this union, as do the non-holomorphic
maps. Each of the latter components has the same dimension as the representation variety for
PU(2, 1), and is indexed by the number of complex and anti-complex points of the immersion.
These numbers determine the Toledo invariant and the Euler number of the normal bundle
of the immersion. We show that there is an open set of quasi-Fuchsian representations of
Toledo invariant zero for which the minimal surface is unique and Lagrangian.

1. Introduction

In this article we provide a complete classification of ρ-equivariant minimal immersions
f : D → CH

2 and a parametrisation for their moduli space as a union of complex manifolds.
HereD is the Poincaré disc and ρ is an irreducible (or more generally, reductive) representation
of a hyperbolic surface group (i.e., the fundamental group π1Σ of a closed orientable surface
Σ of genus at least two) into the group PU(2, 1) = U(2, 1)/centre. Recall that a minimal
immersion of a surface is the same thing as a conformal harmonic map. To say f is ρ-
equivariant means it intertwines the action of a Fuchsian group on D with the action of ρ on
the complex hyperbolic plane CH

2 by holomorphic isometries. One can also think of f as a
section of a CH

2-bundle over Σ or, when ρ is a discrete embedding, as a minimal immersion
f : Σ→ CH

2/ρ into the quotient manifold.
We classify these pairs (ρ, f) up to PU(2, 1)-equivalence, i.e., up to the natural left action

of PU(2, 1) by conjugation of ρ and the simultaneous ambient isometry of f . In particular,
the space of such pairs has a natural “forgetful” map to the moduli space

R(G) = Hom+(π1Σ, G)/G,

of conjugacy classes of reductive representations into G = PU(2, 1). Recall that this is a real
analytic variety whose connected components are indexed by the Toledo invariant τ(ρ) ∈ 2

3Z,
|τ(ρ)| ≤ −χ(Σ) (see, e.g., [19]). We show that there are families of pairs for every value of τ .

We achieve this classification by exploiting the powerful machinery which links equivari-
ant harmonic maps to the Yang-Mills-Higgs equations over a compact Riemann surface and
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2 JOHN LOFTIN AND IAN MCINTOSH

thereby to Higgs bundles [10, 29, 9, 43], Our starting point is two facts: (i) to each irreducible
ρ and marked conformal structure on Σ (i.e., conjugacy class of Fuchsian representations)
there is a ρ-equivariant harmonic map f [10, 9]; (ii) when this information is encoded into
a G-Higgs bundle (E,Φ) f is weakly conformal precisely when tr Φ2 = 0. It is surprising
that this approach has not, to our knowledge, been exploited before, since it provides a very
effective way to understand the moduli as holomorophic data and avoids a direct analysis of
the Gauss-Codazzi equations for minimal surfaces (cf. [44]).

When G = PU(2, 1) the structure of the Higgs bundles and their moduli space is quite
well understood [52, 22, 3]. In this case the bundle E splits into a sum V ⊕ L of a rank two
sub-bundle V and a rank one sub-bundle L which are mapped to each other by the Higgs field,
i.e., we can write Φ = (Φ1,Φ2) where Φ1 : L → KV and Φ2 : V → KL for K the canonical
bundle determined by the marked conformal structure. In fact by projective equivalence we
may assume that L = 1, the trivial bundle. The Higgs field Φ corresponds to the differential
of f . To be precise, it corresponds to

∂f : T 1,0D → TC
CH

2,

and the components Φ1,Φ2 correspond to the components of ∂f with respect to the type
decomposition of TC

CH
2. For a minimal surface there are two possibilities: (i) f is holomor-

phic (Φ2 = 0) or anti-holomorphic (Φ1 = 0), or (ii) f is neither and has isolated complex and
anti-complex points which give finite divisors D2 and D1 over Σ (where, respectively, Φ2 and
Φ1 have zeroes). We treat these two possibilities separately, and in fact it is the latter which
we treat first, in §2 and §3. An important role is played by a cubic holomorphic differential Q
which can be naturally assigned to any minimal surface in a Kähler manifold of constant holo-
morphic section curvature [51]. It vanishes identically for holomorphic or anti-holomorphic
immersions (but not only for them). When f is neither holomorphic nor anti-holomorphic

we show that, with the two bilinear forms γj =
1
2 tr ΦjΦ

†
j, which carry the information of the

metric γ induced by f , the data (γ1, γ2,Q) completely determines the minimal immersion
up to ambient isometries. The principal results of §2 and §3 (Theorems 2.3 and 3.1) can be
summarised as follows.

Theorem 1.1. Let ρ be irreducible and f be minimal and ρ-equivariant. If f is neither
holomorphic nor anti-holomorphic then the pair (ρ, f) is faithfully determined, up to G-
equivalence, by data (Σc,D1,D2, ξ) where: c is a marked conformal structure on Σ, D1 and
D2 are effective divisors on Σ whose degrees d1, d2 satisfy

2d1 + d2 < 6(g − 1) and d1 + 2d2 < 6(g − 1),

and ξ ∈ H1(Σc,K
−2(D1 + D2)) represents an extension class which determines V as an

extension of K−1(D1) by K(−D2). The Higgs bundle is then E = V ⊕1 equipped with a Higgs
field determined by the extension class. Under the Dolbeault isomorphism this extension class
corresponds to the cohomology class of −Q̄/γ1γ2 in H0,1(Σc,K

−2(D1 + D2)), and ξ = 0 if
and only if Q = 0. In this correspondence, ρ has Toledo invariant τ(ρ) = 2

3 (d2 − d1), and the

Euler number of the normal bundle of f is χ(TΣ⊥) = 2(g − 1)− d1 − d2.
In particular, the integers d1, d2 determine, and are determined by, the Toledo invariant of

ρ and the Euler number of the normal bundle of f .
The correspondence is constructive in the sense that, given data (Σc,D1,D2, ξ) satisfying

the conditions above, we give an explicit construction of a stable Higgs bundle (E,Φ) with
trΦ2 = 0. The divisorsD1,D2 are precisely the divisors of anti-complex and complex points of
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the minimal immersion. For f to be strictly an immersion they must have no common points,
but the construction still works to produce branched minimal immersions if they intersect,
with branch points at the intersections.

This construction includes and greatly extends the construction of minimal Lagrangian
embeddings we gave in [37]. Indeed, up to this time we were not aware of any other examples of
non-holomorphic equivariant minimal immersions into CH2 (save for the Lagrangian examples
whose existence is a consequence of the “mountain-pass” solutions to the Gauss equation
described in [31]). The theorem above not only gives all examples for reductive representations
(when we allow branch points) but allows us to describe the structure of the moduli space of
these as a complex manifold (Theorem 1.3 below).

By a theorem of Wolfson [50], f is Lagrangian precisely when it has no complex or anti-
complex points, and is therefore parametrised by the pair (Σc, ξ). The embeddings constructed
in [37] all have the property that the exponential map on the normal bundle provides a
diffeomorphism between TD⊥ and CH

2. It follows that ρ has a finite fundamental domain
(given by the normal bundle over a finite fundamental domain for the action of π1Σ on
D). Here we call such embeddings almost R-Fuchsian, because they are deformations of the
embedding RH

2 → CH
2, which is equivariant with respect to every Fuchsian representation

into SO(2, 1) ⊂ PU(2, 1). In §4 we improve on the results in [37] by showing that whenever
f is minimal Lagrangian with ‖Q‖2γ < 2 it is almost R-Fuchsian and the unique ρ-equivariant
minimal immersion. The R-Fuchsian case corresponds to Q = 0, and therefore ξ = 0 by
the theorem above. The uniqueness of f proved here implies that the data (Σc, ξ) also
parametrises the almost R-Fuchsian family, although at present we do not understand the
appropriate bound on ξ. It is preferable to have the parametrisation in terms of (Σc, ξ) since
that gets us directly to the Higgs bundle and therefore to ρ. The parametrisation in [37] using
Q requires an additional condition to provide a unique solution to the Gauss equation of the
immersion. We describe the subtleties of existence and uniqueness for this equation in §4.1,
which also draws on earlier work by Huang, Loftin & Lucia [31].

The minimal Lagrangian case suggests that it is important to understand those minimal
immersions for which Q = 0. These are treated in §5. We show that they have a very
interesting interpretation in terms of the Higgs bundle, for Q = 0 exactly when the Higgs
bundle is a Hodge bundle (or variation of Hodge structure). These are known to be the critical
points of the Morse-Bott function ‖Φ‖2L2 [22] and come in two flavours: length two or length
three. The length-two Hodge bundles all correspond to holomorphic or anti-holomorphic
maps. The following theorem summarises our results regarding these.

Theorem 1.2. Let ρ be irreducible and f be branched holomorphic and ρ-equivariant. Then
the pair (ρ, f) is faithfully determined by data (Σc, B, L,C.η) where B is an effective divisor
of degree b, L is a holomorphic line bundle of degree l satisfying

3(g − 1) + 1
2b < l < 6(g − 1)− b, 0 ≤ b < 2(g − 1),

and C.η ∈ PH1(Σc,KL
−1(B)) determines the isomorphism class of V as an extension of

K−1(B) by K−2L. The Toledo invariant of ρ is 2
3(6g − 6− b− l) > 0.

This also accounts for anti-holomorphic immersions, since f is anti-holomorphic and ρ-
equivariant if and only if f̄ is holomorphic and ρ̄-equivariant. The latter has the dual Higgs
bundle to ρ.

As with the non-holomorphic case, the extension class η corresponds to the Dolbeault
cohomology class of a tensor over Σc which has geometrical significance and is related to the
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second fundamental form of f (see Theorem 5.2). We explain how the limiting value η = 0
corresponds to reducible representations which are not maximal, i.e., do not have τ = ±χ(Σ).

By contrast, the length-three Hodge bundles correspond to those pairs (ρ, f) coming from
Theorem 1.1 with ξ = 0. By using the method of harmonic sequences [4, 7, 14, 15] we show
that ξ = 0 precisely when the harmonic sequence of f contains a holomorphic ρ-equivariant
(and “timelike”) map into complex de Sitter 2-space. This is a pseudo-Hermitian symmetric
space, the analogue of the real 2-dimensional de Sitter space which complements RH2.

In the final section, §6, we describe the moduli space

V = {(ρ, f) : ρ irreducible, f branched minimal}/G.
By the results stated above it is a union of components V(d1, d2) containing those pairs
described by Theorem 1.1 and W+(b, l) (respectively, W−(b, l)) containing the holomorphic
(resp., anti-holomorphic) immersions described in Theorem 1.2. Of these we prove:

Theorem 1.3. Each V(d1, d2) is a complex manifold of dimension 8g−8, while each W±(b, l)
is a complex manifold of dimension 3(g−1)+ l. All of these are diffeomorphic to bundles over
the Teichmüller space of Σ, and the fibres are complex analytic submanifolds. For V(d1, d2)
each fibre Vc(d1, d2) is a rank 5g − 5 − d1 − d2 vector bundle over Sd1Σc × Sd2Σc, while for
W±(b, l) each fibre is a CP

l−b−g-bundle over SbΣc × Picl(Σc).

We finish in §6.3 with a brief discussion of the map V → R(G) given by forgetting the
immersion. There is much yet to be understood about this map. For example, we do not
know if this map is onto for non-maximal representations, or the dimension of its image on
components of V. Nevertheless, we can make some salient remarks about its restriction to
any fibre over Teichmüller space. We point out that on the image of V the L2-norm of the
Higgs fields equals the area of the minimal immersion. The critical points of ‖Φ‖2L2 are all
accounted for by the Hodge bundles, and therefore lie in the image of V. A comparison of
the structure of Vc(d1, d2) with what is known of the Morse index from [22], together with
an area bound established in §3, suggests that the fibres of the vector bundle Vc(d1, d2) map
onto the downward Morse flow of ‖Φ‖2L2 .

For us, one of the outstanding challenges is to use this construction to study the quasi-
Fuchsian representations, where “quasi-Fuchsian” is meant in the sense of Parker & Platis [41],
i.e., a convex cocompact, totally loxodromic, discrete embedding. Recent work of Guichard
& Wienhard [25, Thm 1.8] has shown that ρ is a convex cocompact embedding precisely
when it is an Anosov embedding. Since the latter are totally loxodromic, the notions “quasi-
Fuchsian”, “convex cocompact embedding” and “Anosov embedding” coincide for PU(2, 1)
(and more generally, any semisimple Lie group of real rank one). One knows from [24] that
quasi-Fuchsian representations comprise an open subset of the representation variety R(G).
Examples for every even value of τ(ρ) were constructued by Goldman, Kapovich & Leeb
[20], while Parker & Platis [40] constructed a open family of quasi-Fuchsian representations
in the Toledo invariant zero component. The latter family are perturbations of the Fuchsian
representations corresponding to the totally geodesic and Lagrangian embedding RH2 ⊂ CH

2,
so they must overlap with the almost R-Fuchsian representations constructed in [37] (all of
which are quasi-Fuchsian).

Beyond these examples, there is very little known; it is not even known whether there
are any quasi-Fuchsian representations for non-integral values of the Toledo invariant. One
compelling reason for looking to minimal immersions to provide more insight is the theorem
of Goldman & Wentworth [21], that for convex cocompact representations the harmonic map
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energy functional on Teichmüller space is a proper function. It therefore has at least one
critical point, and it is a well-known result of Sacks & Uhlenbeck [42] that each critical
point corresponds to a weakly conformal harmonic (i.e., branched minimal) map. Since our
construction includes branched minimal maps, it follows that the map V → R(G) has all
quasi-Fuchsian representations in its image.

Acknowledgements. The authors gratefully acknowledge support from U.S. National Sci-
ence Foundation grants DMS 1107452, 1107263, 1107367 RNMS: Geometric Structures and
Representation Varieties (the GEAR Network). The first author gratefully acknowledges
support support from a Simons Collaboration Grant for Mathematicians 210124. The first
author is grateful to Olivier Guichard, Zeno Huang, and Marcello Lucia for useful conversa-
tions. The second author thanks Peter Gothen for his remarks regarding the Morse flow on
the moduli space of Higgs bundles.

2. Minimal surfaces and their Higgs bundles.

We begin by setting up the notation and standard constructions for the minimal surfaces
and the Higgs bundles we will be working with.

2.1. Equivariant minimal surfaces in CH
2. Our model for CH

2 will be the projective
model, as follows. Let C

2,1 denote the vector space C
3 equipped with the (indefinite) Her-

mitian metric

〈v, v〉 = v1v̄1 + v2v̄2 − v3v̄3.
Let C

2,1
− = {v ∈ C

2,1 : 〈v, v〉 < 0}, so that CH
2 ≃ PC

2,1
− . Thus we consider CH

2 as the

orbit of the line [0, 0, 1] ∈ PC
2,1
− under the standard action of G = PU(2, 1). Consequently

CH
2 ≃ G/H, where H ≃ P (U(2) × U(1)) is a maximal compact subgroup of G. We equip

CH
2 with its Hermitian metric of constant holomorphic sectional curvature −4; so that its

sectional curvature has bounds −4 ≤ κ ≤ −1. We write the Hermitian metric on CH
2 as

h = g−iω, where ω(X,Y ) = g(JX, Y ), and recall that (CH2, h) is a Kähler-Einstein manifold.
We will always think of a minimal immersion f : D → CH

2 as a conformal harmonic
immersion, so the induced metric γ = f∗g is conformally equivalent to the hyperbolic metric
µ, with γ = euµ for a smooth function u : Σ → R. To say that f is ρ-equivariant means
it intertwines ρ with a Fuchsian representation π1Σ → Isom(D). The conjugacy class of
such a representation is equivalent to a choice of a marked conformal structure on Σ, i.e., a
point c ∈ Tg in the Teichmüller space of Σ. We will write Σc to denote the surface with this
structure. From now on we will assume f is ρ-equivariant.

To understand the properties of such minimal immersions we need some notation for the
type decomposition of the (complexified) differential df : TCD → TC

CH
2. Both the domain

and the codomain are complex manifolds, so to distinguish between the type decompositions
of their tangent vectors we will write

TCD = T 1,0D ⊕ T 0,1D, TC
CH

2 = T ′
CH

2 + T ′′
CH

2.

The projections will be such that X = X1,0+X1,0 (or X ′+X ′ as appropriate) whenever X is

real. Our primary model for TC
CH

2 will be the projective model: viz, at any point ℓ ∈ PC
2,1
−

we use the isomorphism

T ′
ℓCH

2 ⊕ T ′′
ℓ CH

2 → Hom(ℓ, ℓ⊥)⊕Hom(ℓ⊥, ℓ) ⊂ End(C2,1); (2.1)

(Z,W ) 7→ (π⊥ℓ ◦ Z, πℓ ◦W ),
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where πℓ : C
2,1 → ℓ is the orthogonal projection and we think of Z,W as operations of differ-

entiation on local sections of CH2 ×C
3. In particular, conjugation in TC

CH
2 corresponds to

taking the Hermitian transpose in End(C2,1), i.e., whose fixed subspace is u(2, 1). The isomor-
phism can be derived from the symmetric space model for CH

2, which we will occasionally
need to use (cf. the related model for CPn in, for example, [5]). For that model, let g = su(2, 1)
and let h ⊂ g denote the Lie subalgebra for H. Then the symmetric space decomposition is
g = h+m where m = h⊥ with respect to the Killing form, and TCH2 ≃ [m] = G×H m, where
the action of H on m is its right adjoint action. It is easy to check that the fibre of [mC] at
ℓ agrees with the codomain of (2.1), and that the metric corresponds to g(A,B) = 1

2 tr(AB)
whenever A,B ∈ m.

By extending ℓ to mean the tautological sub-bundle the Hermitian metric h on T ′
CH

2 is
then equivalent to the inner product

h(Z1, Z2) = 〈π⊥ℓ Z1σ0, π
⊥
ℓ Z2σ0〉, σ0 ∈ Γ(ℓ), 〈σ0, σ0〉 = −1.

Then type decomposition induces an isometry TCH2 → T ′
CH

2. These type decompositions
give four complex linear parts of df :

∂f ′ : T 1,0D → T ′
CH

2, ∂f ′′ : T 1,0D → T ′′
CH

2, (2.2)

∂̄f ′ : T 0,1D → T ′
CH

2, ∂̄f ′′ : T 0,1D → T ′′
CH

2, (2.3)

which are related by ∂̄f ′′ = ∂f ′ and ∂̄f ′ = ∂f ′′ using simultaneously the conjugation in TCD
and TC

CH
2. Since f is ρ-equivariant, so is df , i.e., dfdδ = dρ(δ)df whenever δ ∈ π1Σ ⊂

Isom(D). Therefore we can think of df as a section of the bundle TCΣ∗⊗ (f−1TC
CH

2/ρ) over
Σc. In particular,

∂f = ∂f ′ + ∂f ′′,

is a smooth section of the vector bundleK⊗(f−1TC
CH

2/ρ) over Σc, whereK is the canonical
bundle of Σc.

One says that f has a complex point at p = f(z) when ∂f ′′ vanishes at p (i.e., when
df(T 1,0D) ⊂ T ′

CH
2), and an anti-complex point when ∂f ′ vanishes at p. The Levi-Civita

connexion induces a holomorphic structure on f−1TC
CH

2/ρ which preserves type decompo-

sition, and f is harmonic when ∇CH
2

Z̄
∂f(Z) = 0 for local holomorphic sections Z of T 1,0D,

i.e., when

∇CH
2

Z̄ ∂f ′(Z) = 0 and ∇CH
2

Z̄ ∂f ′′(Z) = 0.

Thus ∂f ′ and ∂f ′′ are holomorphic sections of their respective bundles; so a harmonic im-
mersion which is not holomorphic or anti-holomorphic must have isolated anti-complex and
complex points. We will denote the divisors of zeroes of ∂f ′ and ∂f ′′ on Σ by D1 and D2

respectively .
Through these identifications there is a sesqui-linear form h(df ′, df ′) on TCΣ which gives

the induced metric as γ = Reh(df ′, df ′) = g(df ′, df ′). The map f is weakly conformal when

h(∂f ′, ∂̄f ′) = 0,

and conformal when additionally df ′ does not vanish. Therefore, for conformal maps the
induced metric and the pull-back of the Kähler form are expressed, with respect to a local
complex coordinate z, as

γ = f∗g = (u21 + u22)|dz|2, f∗ω =
i

2
(u21 − u22)dz ∧ dz̄. (2.4)
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where

u1 = ‖∂f ′(Z)‖, u2 = ‖∂f ′′(Z)‖, Z = ∂/∂z. (2.5)

The functions u1, u2 are locally real analytic and vanish precisely at the anti-complex and
complex points, respectively. They correspond to Hermitian metrics

γ1 = h(∂f ′, ∂f ′) = u21dzdz, γ2 = h(∂f ′′, ∂f ′′) = u22dzdz (2.6)

on K−1(D1) and K
−1(D2) respectively. Note that, to apply γ to all elements of TCΣ consis-

tently, the meaning of “|dz|2” above is

|dz|2 = 1
2(dzdz + dz̄dz̄),

in terms of the local complex linear forms dz, dz̄. For this reason we do not write γ = γ1+γ2.
Because the forms γ, f∗ω live on Σ we can use some of the arguments which apply to com-

pact minimal surfaces in Kähler-Einstein manifolds [48, 50, 6] to relate numerical invariants
of a minimal immersion.

Theorem 2.1. Let f : D → CH
2 be a ρ-equivariant minimal immersion which is neither

holomorphic nor anti-holomorphic. Let d1, d2 be the degrees of the divisors D1 and D2 of
anti-complex and complex points. Then

c1(ρ) = d1 − d2, (2.7)

χ(Σ) + χ(TΣ⊥) = −d1 − d2, (2.8)

where c1(ρ) is the first Chern class of the bundle f−1TCH2/ρ over Σ and TΣ⊥ ⊂ f−1TCH2/ρ
is the normal sub-bundle.

Wolfson also showed that in the absence of complex or anti-complex points a minimal
immersion into a Kähler-Einstein surface of negative scalar curvature must be Lagrangian
[50, Thm 2.1]. His argument extends to ρ-equivariant maps, so that in the setting of the
previous theorem f will be Lagrangian if and only if d1 = 0 = d2.

Now we recall that the Toledo invariant τ(ρ) is the integer

τ(ρ) =
2

π

∫

Σ
f∗ω. (2.9)

This is the normalisation which fits with the metric of holomorphic sectional curvature −4.
It is known that for any representation ρ into PU(2, 1), |τ(ρ)| ≤ −χ(Σ) [11] and τ(ρ) ∈ 2

3Z

[20]. Since CH
2 has Einstein constant −6, equation (2.7) tells us that

τ(ρ) = −2
3c1(ρ) =

2
3(d2 − d1). (2.10)

Finally, as well as the degenerate metrics γj above, there is a third important invariant
of minimal equivariant immersions [51, Cor 2.7], the cubic holomorphic differential Q ∈
H0(Σ,K3) defined by

Q(Z,Z,Z) = h(∇CH
2

Z ∂f ′(Z), ∂̄f ′(Z̄)) = −h(∂f ′(Z),∇CH
2

Z̄ ∂̄f ′(Z̄)), (2.11)

for Z ∈ T 1,0D. It follows at once from this that Q vanishes identically for holomorphic or
anti-holomorphic immersions (but not only for them, as we shall see). When f is neither
holomorphic nor anti-holomorphic we will see later that the quantities γ1, γ2,Q uniquely
determine f up to ambient isometries.
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2.2. G-Higgs bundles and representations. As well as fixing our notation for Higgs bun-
dles, we also need to summarise their correspondence with (projectively) flat connexions, and
hence representations and harmonic maps, since we will be making explicit use of this cor-
respondence for most of this article. A good general introduction to Higgs bundles can be
found in, for example, [16, 17], while details for their moduli spaces in the case G = PU(2, 1)
can be found in [22, 52].

Suppose Σ has been given a fixed conformal structure. With the notation of the previous
section, a G-Higgs bundle for G = PU(2, 1) is a projective equivalence class of U(2, 1)-Higgs
bundles. The latter are pairs (E,Φ) consisting of a holomorphic rank three vector bundle
E over Σ equipped with a splitting E = V ⊕ L into a rank two sub-bundle V and a line
sub-bundle L (both holomorphic) together with a holomorphic section

Φ ∈ H0(K ⊗ [Hom(L, V )⊕Hom(V,L)]), (2.12)

called the Higgs field. Projective equivalence identifies pairs (E,Φ) and (E′,Φ′) when there
is a holomorphic line bundle L for which E′ = E ⊗ L and Φ′ = Φ.

We will write Φ = (Φ1,Φ2) to denote the two summands implied by the direct sum (2.12).
It is also convenient to write the holomorphic structure on E as a ∂̄-operator on smooth
sections, ∂̄E : E0(E) → E0,1(E). A Higgs bundle is stable if for any proper (non-zero) Φ-
invariant sub-bundle W ⊂ E the slope condition

deg(W )

rk(W )
< 1

3 deg(E), (2.13)

is satisfied. It is polystable when it is either stable or the direct sum of stable proper Higgs
sub-bundles all having the same slope (these latter type are called strictly polystable). These
properties are independent of the choice of pair (E,Φ) representing the projective equivalence
class. Now we recall that each polystable U(2, 1) Higgs bundle admits a C

2,1 metric and
compatible projectively flat connexion, and thereby produces a flat PU(2, 1)-bundle.

Theorem 2.2 (Prop 3.9, [3]). Fix a Kähler metric on Σc in the conformal class c, with Kähler
2-form ωc, normalised so that Σc has area 2π. For each polystable stable U(2, 1)-Higgs bundle
(E,Φ) of slope µ there is a C

2,1 metric on E for which L = V ⊥ and the corresponding Chern
connexion ∇E and Hermitian adjoint Φ† yield a projectively flat connexion ∇ = ∇E+Φ−Φ†,
i.e.,

R∇ = R∇E + [Φ ∧ Φ†] = −iµωcIE. (2.14)

The connexion ∇ induces a flat connexion on the principal PU(2, 1)-bundle whose asso-
ciated bundle is PE. The holonomy of this flat connexion yields a reductive representation
ρ : π1Σ→ PU(2, 1) (determined up to conjugacy) which is irreducible precisely when (E,Φ)
is stable (hence strictly polystable Higgs bundles correspond to reducible reductive represen-
tations).

Remark 2.1. This theorem can be thought of as an example of the Donaldson-Uhlenbeck-
Yau correspondence between stable bundles over compact Kähler manifolds and Hermitian-
Einstein connections (Garcia-Prada gives a good overview which fits our context in [16]). For
G-Higgs bundles such a correspondence is due to Hitchin for G = SL(2,C) [29] and Simpson
[43] when G is a complex reductive algebraic group.

Note that the usual statement of the previous theorem gives the existence of a Hermitian
metric on E. This is equivalent, since one can simply swap the sign of the metric on L,
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and the condition (2.12) on the Higgs field ensures that the adjoint remains the same. This
makes the C2,1 metric negative definite on L, and therefore L determines a smooth section of
the CH

2 bundle PE− (where E− denotes the bundle of negative length vectors in E). Since
PE− ≃ D ×ρ CH2 this section is equivalent to a ρ-equivariant map f : D → CH

2 in such a

way that Φ = ∂f . Moreover, ∇E induces a metric connexion on f−1TCH2 which agrees with
the pull-back of the Levi-Civita connexion, so that the equation ∂̄EΦ = 0 is the harmonic
map condition for f .

In the reverse direction, a representation ρ : π1Σ→ G determines the projective bundle PE
uniquely and therefore a class of projectively equivalent C2,1 bundles, each with a projectively
flat connexion. By Corlette’s results [9], there is a ρ-equivariant harmonic map f : D → CH

2

precisely when ρ is reductive, and this map is unique when ρ is irreducible . The map
corresponds to a line sub-bundle L ⊂ E and therefore a splitting E = L⊥ ⊕ L. The splitting
determines a bundle automorphism σ ∈ End(E,E) for which σ|L⊥ = 1 and σ|L = −1, and
therefore a decomposition ∇ = ∇E +Ψ, where

∇E = 1
2(∇+ σ∇σ), Ψ = 1

2(∇− σ∇σ).
The Higgs field is Φ = Ψ1,0. The harmonic map equation, when paired with the projective
flatness of ∇, asserts that ∂̄EΨ1,0 = 0, and thus the Higgs field satisfies (2.12) when we take
V = L⊥.

Two such bundles, (E,∇) and (E′,∇′), are projectively equivalent when there is a line
bundle L equipped with a connexion ∇L for which E′ ≃ E ⊗ L and ∇′ ≃ ∇ ⊗ ∇L (the
induced connexion on the tensor product). In particular, by taking L = L−1 equipped
with the connexion obtained from the restriction of ∇ to L, we may assume without loss of
generality that E = V ⊕ 1, where 1 denotes the trivial bundle, and the restriction of ∇ to 1
is the canonical flat connexion. In that case the Toledo invariant of ρ is −2

3 deg(V ).

Remark 2.2. The alternative normalisation, used by Xia [52], is to note that since deg(E⊗L) =
deg(E)+3deg(L) one can normalise by degree, i.e., insist that 0 ≤ deg(E) < 3. In particular,
the topological type of PE is determined by deg(E) mod 3, and the representation ρ only lifts
to SU(2, 1) when there exists an L for which E ⊗ L ≃ D ×ρ̂ C2,1 for some representation
ρ̂ : π1Σ→ U(2, 1). This happens if and only if deg(E) ≡ 0 mod 3, i.e., when τ ∈ 2Z.

Remark 2.3. From the Higgs bundle perspective, the Toledo invariant is sometimes defined
to be 2

3 deg(V L
−1) (see, for example, [52]). This differs by a sign from our convention, since

2
3 deg(V L

−1) = 2
3 degHom(L, V ) = 2

3c1(ρ) = −τ(ρ). (2.15)

2.3. Minimal surfaces and their Higgs bundles. We are now in a position to classify, in
terms of Higgs bundle data, the minimal ρ-equivariant surfaces which are neither holomorphic
nor anti-holomorphic, when ρ is irreducible.

Theorem 2.3. An irreducible representation ρ ∈ Hom(π1Σ, G) admits a ρ-equivariant mini-
mal immersion f : D → CH

2 which is neither holomorphic nor anti-holomorphic if and only if
it corresponds to a Higgs bundle (E,Φ) for which E = V ⊕1 where V is a rank 2 holomorphic
extension

0→ K−1(D1)
Φ1→ V

Φ2→ K(−D2)→ 0. (2.16)

Here D1,D2 are effective divisors with no common points, whose degrees d1, d2 satisfy the
stability inequalities

2d1 + d2 < 6(g − 1) and d1 + 2d2 < 6(g − 1), (2.17)



10 JOHN LOFTIN AND IAN MCINTOSH

where g is the genus of Σ. The Higgs field is given by Φ = (Φ1,Φ2), after making the canonical
identifications

Hom(K−1(D1), V ) ≃ K(−D1)⊗Hom(1, V ),

Hom(V,K(−D2)) ≃ K(−D2)⊗Hom(V, 1). (2.18)

These divisors are, respectively, the divisors of anti-complex and complex points of the minimal
immersion f . The representation ρ has τ(ρ) = 2

3(d2 − d1).

Proof. Given ρ we obtain a projectively flat C2,1 bundle of the form E = V ⊕ 1, and then f
provides holomorphic sections

Φ1 = ∂f ′ ∈ H0(K ⊗Hom(1, V )) ≃ H0(Hom(K−1, V )),

Φ2 = ∂f ′′ ∈ H0(K ⊗Hom(V, 1)) ≃ H0(Hom(V,K)),

whose sum is Φ = ∂f . Since f is conformal we have

0 = g(∂f, ∂f) = 1
2 tr(Φ

2).

From this we can show that Φ2 ◦ Φ1 = 0, by the following local frame argument. Neither of
Φ1,Φ2 are identically zero since f is not ±-holomorphic. So, away from its zero locus, the
image of Φ1 is a rank one sub-bundle V1 ⊂ V . We can locally frame E by sections σ1, σ2 of
V and σ3 of 1 such that σ1 generates V1, and we may assume this is a U(2, 1) frame with
respect to the metric on E. It follows that there are locally holomorphic sections a, b, c of K
for which

Φ2(σ1) = aσ3, Φ2(σ2) = bσ3, Φ1(σ3) = cσ1.

Since f is not anti-holomorphic c 6= 0. Now

tr(Φ2) = tr(Φ1 ◦ Φ2 +Φ2 ◦ Φ1)

= 〈Φ1 ◦ Φ2(σ1), σ1〉+ 〈Φ1 ◦Φ2(σ2), σ2〉 − 〈Φ2 ◦Φ1(σ3), σ3〉
= 2ac.

Therefore tr(Φ2) = 0 implies a = 0, i.e., Φ2 ◦Φ1 = 0. Thus

K−1 Φ1→ V
Φ2→ K,

has the image of Φ1 in the kernel of Φ2. Now Φ1 vanishes precisely on anti-complex points,
while Φ2 vanishes precisely on complex points, so we have

0→ K−1(D1)
Φ1→ V

Φ2→ K(−D2)→ 0.

This must be exact at the middle since V has rank 2.
For stability we need to identify the Φ-invariant sub-bundles. With respect to the local

frame σ1, σ2, σ3 above Φ is represented by the matrix




0 0 c
0 0 0
0 b 0



 .

It follows that the only Φ-invariant proper sub-bundles of E are the image V1 of Φ1 and V1⊕1.
So stability requires

deg(V1) <
1
3 deg(E), 1

2 deg(V1) <
1
3 deg(E).
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Since deg(V1) = d1 − 2(g − 1) and deg(E) = d1 − d2 these inequalities are equivalent to the
inequalities (2.17).

Reversing the argument is straightforward: when the Higgs bundle has this form we have
Φ2 ◦ Φ1 = 0, hence tr(Φ2) = 0. So when the Higgs bundle is stable the sub-bundle 1 ⊂ E
provides a conformal harmonic ρ-equivariant map f for some irreducible ρ. �

The proof works perfectly well in the case where D1,D2 have common points, in which
case the map f is a branched minimal immersion with branch points on D1 ∩ D2. We will
follow common usage and say D1,D2 are co-prime when they are disjoint.

The Higgs bundle data which appears in the previous theorem can be written as a quadru-
ple (Σc,D1,D2, ξ), where ξ ∈ H1(Σc,K

−2(D1 + D2)) is the extension class of (2.16). The
theorem shows that this data determines the pair (ρ, f) up to G-equivalance, i.e., up to the
simultaneous action of G by conjugacy of ρ and ambient isometry of f . The exact sequence
(2.16), which gives us V and Φ1,Φ2, is completely and uniquely determined by its extension
class ξ [26, Ch. 5]. Moreover, since the isomorphisms (2.18) require D1,D2, not just their
linear equivalence classes, the assignment from (Σc,D1,D2, ξ) to the G-equivalance class of
(ρ, f) is bijective. The moduli space parametrised by this data will be described in §6.
Remark 2.4. The proof above shows that when (E,Φ) has tr(Φ2) = 0 it cannot split into a
direct sum of Φ-invariant sub-bundles unless one of Φ1 or Φ2 is identically zero. It follows
that a reducible ρ can only admit ρ-equivariant minimal surfaces which are holomorphic or
anti-holomorphic. We describe all these reducible representations in Remark 5.1 below. How-
ever, there are also irreducible representations which admit holomorphic or anti-holomorphic
surfaces: we give a complete classification in §5.

3. The Higgs bundle data in terms of minimal surface data.

In this section we will give the explicit correspondence between the minimal surface data
(γ1, γ2,Q) and the Higgs bundle data (Σc,D1,D2, ξ) of the previous section. This is achieved
by exploiting the harmonic sequence for a minimal surface in CH

2. It provides us with a
preferred system of local U(2, 1) frames for the bundle E in Theorem 2.3, and which we
will call Toda frames. These frames are explictly determined by the minimal surface data,
and through them we calculate the extension class ξ of the bundle V in Theorem 2.3. The
correspondence between the Higgs data and the minimal surface data then comes through
the Dolbeault isomorphism

H1(Σc,K
−2(D1 +D2)) ≃ H0,1(Σc,K

−2(D1 +D2)).

Theorem 3.1. Let the pair (ρ, f) correspond to the Higgs data (Σc,D1,D2, ξ) as in the
previous section. Let γ1, γ2,Q be the minimal surface data determined by f through (2.6)
and (2.11). Then the extension class ξ corresponds, under the Dolbeault isomorphism, to the
cohomology class

−
[ Q̄
γ1γ2

]

∈ H0,1(Σc,K
−2(D1 +D2)).

Moreover ξ = 0 if and only if Q = 0.

In particular, this means that (γ1, γ2,Q) determines (Σc,D1,D2, ξ), since we get the confor-
mal structure of the induced metric and the divisors D1,D2 from γ1, γ2. Therefore Theorems
2.3 and 3.1 together have the following corollary.
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Corollary 3.2. If two ρ-equivariant minimal surfaces have the same data (γ1, γ2,Q) then
they are identical up to ambient isometry.

Before we begin the proof of Theorem 3.1 we describe the local Toda frames which link
the minimal surface data to the local geometry of the Higgs bundle. Fix a pair (ρ, f) and let
E = V ⊕ 1 be the Higgs bundle over Σc corresponding to them as above, equipped with its
Higgs field Φ, its C2,1 metric and the Chern connexion ∇E.
Lemma 3.3. Let (U, z) be holomorphic chart on Σc for which U contains no complex or
anti-complex points of f . Then over U there is a local trivialisation ϕ : E|U → U × C

3 for
which

ϕ ◦ ∂̄E ◦ ϕ−1 = dz̄





∂

∂z̄
+





−Z̄ log u1 −Q̄/u1u2 0
0 Z̄ log u2 0
0 0 0







 (3.1)

and

ϕ ◦ Φ ◦ ϕ−1 =





0 0 u1
0 0 0
0 u2 0



 dz, (3.2)

where Z̄ = ∂/∂z̄ and u1, u2, Q are given by (2.5) and (2.11).

Proof. For notational convenience, let us set ℓ0 = 1 ⊂ E. Then V = ℓ⊥0 with respect to the
C
2,1 metric, and ℓ0 is the section of PE− which represents f . Thus ∂f ′, ∂̄f ′ ∈ Ω1

Σ(Hom(ℓ0, ℓ
⊥
0 ))

and they determine line sub-bundles ℓ1, ℓ2 ⊂ ℓ⊥0 via their images, i.e.,

ℓ2 ⊗ K̄ ∂̄f ′← ℓ0
∂f ′→ ℓ1 ⊗K. (3.3)

These two sub-bundles are orthogonal since f is conformal. We give each of these line bundles
the holomorphic structure it inherits from ∂̄E, i.e., a local section σj of ℓj is holomorphic when

πj ∂̄Eσj = 0, where πj : E → ℓj is the orthogonal projection. Note that since Φ ∈ Hom(ℓ0, ℓ
⊥
0 )

this holomorphic structure on each ℓj agrees with the one induced by the projectively flat

connexion ∇ = ∇E + Φ + Φ†. Then ∂f ′ = Φ1 is a holomorphic map, while ∂̄f ′ = Φ†
2 is

anti-holomorphic, since f is harmonic. Since ∇ induces the canonical flat connexion on 1 we
can choose a globally flat section f0 of 1, i.e., 〈∇f0, f0〉 = 0 with 〈f0, f0〉 = −1.

Now fix a chart (U, z) and for any section σ of E|U write Xσ to mean ∇Xσ with respect
to the projectively flat connexion ∇. Then the maps above can be written locally as

ℓ2
π⊥

0 Z̄← ℓ0
π⊥

0 Z→ ℓ1.

Define local sections σj ∈ Γ(U, ℓj), j = 1, 2 by

σ1 = ∂f ′(Z)f0 = π⊥0 Zf0, σ2 = ∂̄f ′(Z̄)f0 = π⊥0 Z̄f0.

We assume that U does not contain any complex or anti-complex points, and therefore the
functions u1, u2 in (2.5) are non-vanishing. Clearly |σj | = uj, and we set fj = σj/uj . Then
f1, f2, f0 is a U(2, 1) frame for E. We claim that these satisfy the equations

Zf1 = (Z log u1)f1 + (Q/u1u2)f2, (3.4)

Zf2 = −(Z log u2)f2 + u2f0, (3.5)

Zf0 = u1f1. (3.6)

The last of these is obvious, since Zf0 = π⊥0 Zf0.
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Next consider

Zf1 = 〈Zf1, f1〉f1 + 〈Zf1, f2〉f2.
Since f0 is holomorphic, so is σ1, and therefore Z〈σ1, σ1〉 = 〈Zσ1, σ1〉. Thus

〈Zf1, f1〉 = u−1
1 〈Z(u−1

1 σ1), σ1〉
= −Z log(u1) + u−2

1 Z〈σ1, σ1〉
= Z log(u1).

Now

〈Zf1, f2〉 = 〈Z(σ1/u1), σ2/u2〉
= 〈Zσ1, σ2〉/u1u2
= 〈π⊥0 Zπ⊥0 Zf0, π⊥0 Z̄f0〉/u1u2.

On the other hand, using (2.11) and the fact that ∇CH
2

is the connexion on Hom(ℓ0, ℓ
⊥
0 )

induced by the connexions on each bundle ℓ0, ℓ
⊥
0 , we have

Q = 〈[∇CH
2

Z ∂f ′(Z)]f0, ∂̄f
′(Z̄))f0〉

= 〈π⊥0 Z[∂f ′(Z)f0]− ∂f ′(Z)[π0Zf0], ∂̄f ′(Z̄))f0〉
= 〈π⊥0 Zπ⊥0 Zf0, π⊥0 Z̄f0〉 − 〈π⊥0 Zπ0Zf0, π⊥0 Z̄f0〉. (3.7)

The second term in the last line vanishes since ℓ−1 is orthogonal to ℓ1. Thus 〈Zf1, f2〉 =
Q/u1u2.

Finally, consider

Zf2 = 〈Zf2, f2〉f2 − 〈Zf2, f0〉f0.
For the first term we note that σ2 is anti-holomorphic since f0 is, so

0 = 〈Zσ2, f2〉 = Zu2 + u2〈Zf2, f2〉.
Since 〈f2, f0〉 = 0 the second term yields

−〈Zf2, f0〉 = 〈f2, Z̄f0〉 = 〈f2, σ2〉 = u2.

Now that we have established the equations for the frame f1, f2, f0, we take ϕ to be the
corresponding trivialisation. In this frame the equations (3.4)-(3.6) show us that

ϕ ◦ ∇1,0 ◦ ϕ−1 = dz





∂

∂z
+





Z log u1 0 u1
Q/u1u2 −Z log u2 0

0 u2 0







 (3.8)

Thus (3.1) and (3.2) follow. �

At complex or anti-complex points we require a slight adjustment of the frame above. We
may choose the chart (U, z) so that U contains precisely one complex or anti-complex point,
at z = 0. Thus one of σ1, σ2 vanishes at z = 0. To treat all cases simultaneously, let p, q
be the non-negative integers for which z−qσ1 and z̄−pσ2 are respectively holomorphic and
anti-holomorphic, and do not vanish at z = 0: at most one of p, q is non-zero. It follows that
the functions u1/|z|q = |z−qσ1| and u2/|z|p = |z̄−pσ2| do not vanish. By setting

f̃1 =
z−qσ1
|z−qσ1|

= (|z|/z)qf1, f̃2 = (|z|/z̄)pf2 = (z/|z|)pf2,
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we obtain a U(2) frame f̃1, f̃2 for V throughout U , with corresponding trivialisation ϕ̃. This
is easiest to work with by writing it as

ϕ̃ = S(ϕ|V ), S =

(

(z/|z|)q 0
0 (|z|/z)p

)

. (3.9)

The next step towards Theorem 3.1 is to represent the extension class ξ of V using a 1-cocycle
with values in K−2(D1+D2). For this computation, we choose an atlas U = {(Uj , zj)} for Σc
of contractible charts for which each complex or anti-complex point lies only in one chart, at
zj = 0, and for simplicity assume charts containing distinct complex or anti-complex points
are disjoint.

Lemma 3.4. There is a holomorphic atlas U = {(Uj , zj)} for Σc in which ξ is represented
by the 1-cocycle {(ξjk, Uj , Uk)} ∈ H1(U ,K−2(D1 +D2)) for which

ξjk = ajz
−(pj+qj)dz−2

j − akdz−2
k on Uj ∩ Uk, (3.10)

for smooth functions aj on Uj satisfying

∂aj/∂z̄j = −
Q̄jz

pj+qj
j

u21ju
2
2j

,

(assuming Uk contains no complex or anti-complex points).

Proof. For simplicity, set w = z/|z|. Using the previous lemma and the transformation (3.9)
we have, on V over a single chart (U, z),

ϕ̃ ◦ ∂̄E ◦ ϕ̃−1 = dz̄

[

∂

∂z̄
+

(

−Z̄ log(u1/|z|q) −Q̄wp+q/u1u2
0 Z̄ log(u2/|z|p)

)]

.

Now suppose Uj ∩Uk 6= ∅, and assume without loss of generality that Uk contains no complex
or anti-complex points, so that pk = 0 = qk and ϕ̃k = ϕk|V . Then we have transition relations
ϕ̃j = cjkϕ̃k where

cjk =

(

w
qj
j

dzj/dzk
|dzj/dzk | 0

0 w
−pj
j

|dzj/dzk |
dzj/dzk

)

,

where we have used that fact that

dz̄j/dz̄k
|dz̄j/dz̄k|

=
dzj/dzk
|dzj/dzk|

=
|dzj/dzk|
dzj/dzk

.

It follows that, as a smooth bundle, V ≃ K−1(D1)⊕K(−D2).
To elucidate its holomorphic structure we find local trivialisations χj in which

χj ◦ ∂̄E ◦ χ−1
j = dz̄j

∂

∂z̄j
,

i.e., we seek local gauge transformations χj = Rjϕ̃j for which

Rj[ϕ̃ ◦ ∂̄E ◦ ϕ̃−1]R−1
j = dz̄j

∂

∂z̄j
.

A straightforward calculation shows that this is achieved by taking

Rj =

(

1 aj
0 1

)(

(u1j/|zj |qj)−1 0
0 u2j/|zj |pj

)

,
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where
∂aj
∂z̄j

= −Q̄jz
pj+qj

u21ju
2
2j

, (3.11)

throughout Uj. Such a function aj exists, by the ∂̄-Poincaré Lemma, because the right hand
side is smooth throughout Uj since Qj vanishes to at least order pj + qj at zj = 0 by (2.11).
Thus the transition between two such charts χj = bjkχk is given by

bjk = RjcjkR
−1
k =

(

z
qj
j dzj/dzk λjk

0 z
−pj
j dzk/dzj

)

,

where

λjk = ajz
−pj
j

dzk
dzj
− akzqjj

dzj
dzk

,

and this is holomorphic on Uj ∩ Uk (this follows easily from (3.11)). Now using the same
convention as [26, p74] this determines the 1-cocycle with values in K−2(D1 +D2) given by

ξjk = (z
qj
j

dzj
dzk

)−1λjkdz
−2
k

= ajz
−(pj+qj)
j dz−2

j − akdz−2
k .

�

Proof of Theorem 3.1. For notational simplicity, set L = K−2(D1 +D2). In Uj the quantity

z
−(pj+qj)
j dz−2

j

is a local holomorphic section of L. Therefore we have local smooth sections

ηj = ajz
−(pj+qj)
j dz−2

j ∈ Γ(Uj , E0(L)),
which provide a 0-cochain η for the sheaf E0(L) of locally smooth sections of L. By (3.10)
the 1-cocyle {(ξjk, Uj , Uk)} is, as a smooth cocycle, the coboundary of η. Now recall that the
Dolbeault isomorphism H1(U ,L)→ H0,1(U ,L) is derived from the short exact sequence

0→ O(L)→ E0(L) ∂̄→ E0,1(L) ∂̄→ 0,

by taking the cohomology class of ∂̄η. But

∂̄ηj = −
Q̄j

u21ju
2
2j

dz−2
j d̄zj .

So ∂̄η is represented by the cohomology class of the smooth form

−Q̄/γ1γ2 ∈ Γ(Σc, E0,1(L)).
Finally, we show that this vanishes when it is ∂̄-exact, by showing that it is harmonic with
respect to Hermitian metric B = γ1γ2 on L. With respect to the Hodge inner product on
E∗,∗(L) determined by B on L and the induced metric γ on Σc, the adjoint of ∂̄ : E0(L) →
E0,1(L) is given by

E0,1(L) ∂̄
∗

→ E0(L); ∂̄∗ = −⋆̄∂̄⋆̄,
where ⋆̄ is the conjugate linear Hodge star operator for our choice of metrics (see, for example,
[49, p168]). It therefore suffices for us to show that

∂̄⋆̄(Q̄/γ1γ2) = 0.
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Let (U, z) be a chart in which the divisor D1+D2 has at most one point, of degree d at z = 0.
Then τ = z−ddz−2 is a local holomorphic trivialising section of L over U and

E0,1(U,L) ⋆̄→ E1,0(U,L∗); aτdz̄ 7→ −iāB(·, τ)dz,
for any locally smooth complex function a over U . Now in U we write

Q̄/γ1γ2 =
Q̄zd

u21u
2
2

τdz̄,

and therefore

∂̄⋆̄(Q̄/γ1γ2) = −i
∂

∂z̄

(

Qz̄d‖τ‖2
u21u

2
2

)

(zddz2)dz̄ ∧ dz.

But
‖τ‖2 = B(τ, τ) = |z|−2du21u

2
2,

and therefore ∂̄⋆̄(Q̄/γ1γ2) = 0 throughout U since Q is holomorphic. �

We finish this section by giving a global expression which relates the curvatures of the
immersion f to the norms of Q and Q/γ1γ2 with respect to the induced metric. This in turn
provides an area bound for such immersions.

First we note that a straightfoward calculation using (3.8) shows that the projective flatness
of the connexion ∇ is equivalent to the local equations

ZZ̄ log u21 = 2u21 + |Q|2/u21u22 − u22, (3.12)

ZZ̄ log u22 = 2u22 + |Q|2/u21u22 − u21, (3.13)

in a chart (U, z) containing no complex or anti-complex points. These are the appropriate
version of the Toda equations for this geometry (cf. [4] for the CP

n version). They are also
related to the two equations Wolfson derived for the Kähler angle in [50]. Recall that the
Kähler angle is a continuous function θ : Σc → R for which f∗ω = cos(θ)vγ , where vγ is the
area form for the induced metric. Wolfson showed that, except at complex or anti-complex
points where θ is not differentiable,

i∂∂̄ log tan2(θ/2) = f∗Ric, (3.14)

i∂∂̄ log sin2(θ) = (κγ + κ⊥)vγ , (3.15)

where Ric is the Ricci form and κγ , κ
⊥ are the Gaussian and normal curvatures of the immer-

sion respectively. In our case we have, from (2.4), cos(θ) = (u11 − u22)/(u21 + u22). Therefore

tan2(θ/2) =
u22
u21
, sin2(θ) =

4u21u
2
2

(u21 + u22)
2
,

and (3.14) is just the difference of (3.12) and (3.13) since f∗Ric = −6f∗ω. Now
ZZ̄ log sin2 θ = ZZ̄u21 + ZZ̄u22 − 2ZZ̄ log(u21 + u22)

=u21 +
2|Q|2
u21u

2
2

+ u22 −
2

u21 + u22
[ZZ̄ log(u21 + u22)](u

2
1 + u22),

using (3.12) and (3.13). The second term on the right contains the local expression for κγ , so
substituting this equation into (3.15) reveals that

κ⊥ − κγ = 2

(

1 +
2|Q|2

u21u
2
2(u

2
1 + u22)

)

.



EQUIVARIANT MINIMAL SURFACES 17

The right hand side can be written in terms of the quantities

‖Q‖γ =
2
√
2|Q|

(u21 + u22)
3/2

, ‖ Q
γ1γ2

‖γ =
|Q|
√

u21 + u22√
2u21u

2
2

.

It is easy to check that their product is smooth everywhere, so that we obtain the global
identity

κ⊥ − κγ = 2(1 + ‖ Q
γ1γ2

‖γ‖Q‖γ). (3.16)

By integration over Σ, and using (2.8), we arrive at the following conclusion.

Proposition 3.5. Let f be a ρ-equivariant minimal immersion which is neither holomor-
phic nor anti-holomorphic, with induced metric γ, cubic holomorphic differential Q, d1 anti-
complex points and d2 complex points. Then

(4(g − 1)− d1 − d2)π ≥ Areaγ(Σ) +

∫

Σ
‖Q‖2γvγ , (3.17)

with equality if and only if either Q = 0 or when f is Lagrangian.

Note that the stability inequalities (2.17) confirm that the left hand side is positive. The
last statement follows because if Q 6= 0 equality requires ‖Q/γ1γ2‖γ = ‖Q‖γ , which in turn
requires u1 = u2, whence cos(θ) = 0.

Remark 3.1. The local equations (3.12), (3.13) are clearly invariant under any unimodular
scaling Q 7→ eiαQ. Globally this corresponds to the symmetryQ 7→ eiαQ, and by Theorem 3.1
this corresponds in turn to ξ 7→ e−iαξ. In fact this is equivalent to the well-known symmetry
of the equations (2.14) Φ 7→ eiψΦ (taking α = 2ψ) which Hitchin showed is a Hamiltonian
circle action on the moduli space of SL(2,C)-Higgs bundles [29]. To see this equivalence it
is enough to perform the following gauge transformation for ∂E + eiψΦ using the local gauge
(3.8):

Ad





e−2iψ0 0
0 1 0
0 0 e−iψ



 ·





∂

∂z
+





Z log u1 0 eiψu1
Q/u1u2 −Z log u2 0

0 eiψu2 0









=
∂

∂z
+





Z log u1 0 u1
e2iψQ/u1u2 −Z log u2 0

0 u2 0



 (3.18)

Note in particular that, unlike the SL(2,C) case, the map (E,Φ) 7→ (E,−Φ) fixes every
PU(2, 1)-Higgs bundle since ∂E+Φ and ∂E−Φ are gauge equivalent (by the symmetric space
involution).

4. Minimal Lagrangian immersions.

By Wolfson’s theorem [50, Thm 2.1] Theorem 2.3 yields minimal Lagrangian immersions
when both divisors D1,D1 are zero. Therefore Theorem 2.3 implies the following characteri-
sation of all equivariant minimal Lagrangian immersions.

Corollary 4.1. Given a closed oriented surface Σ of hyperbolic type, minimal Lagrangian
immersions f : D → CH

2 which are equivariant with respect to an irreducible representation
of π1Σ into PU(2, 1) are in one-to-one correspondence with the Higgs data (Σc, ξ), where c is
a point in Teichmüller space and ξ ∈ H0,1(Σc,K

−2).
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It is not strictly necessary to say that ρ is irreducible in this statement: this is implied
by a combination of Corlette’s result that twisted harmonic maps correspond to reductive
representations [9] and Remark 2.4.

For a Lagrangian immersion the Kähler angle satisfies sin θ = 1, so that (3.15) implies
κ⊥ = −κγ . Moreover, ‖Q‖2γ = 2‖Af‖2, where Af is the shape operator of f [38, Lemma 2.8]
and

‖Af‖2 = sup{12(trγ Af (ν)2) : ν ∈ TpD⊥, |ν| = 1}.
Since CH2 has constant Lagrangian sectional curvature −1, (3.16) reduces to the Gauss (and
Ricci) equation for minimal Lagrangian immersions:

− 1 = κγ + 2‖Af‖2. (4.1)

In [37] we wrote this as an equation for the conformal factor γ = euµ of the induced metric
with respect to the hyperbolic metric µ:

∆µu− 2‖Q‖2µe−2u − 2eu + 2 = 0. (4.2)

We gave existence results for this in terms of pairs (Σc,Q), and showed that there is a constant
k, independent of c ∈ Tg, for which ‖Q‖µ ≤ k yields a minimal ρ-equivariant embedding for

which the normal bundle exponential map exp⊥ : TD⊥ → CH
2 is a diffeomorphism. We then

showed that ρ is quasi-Fuchsian, since the image under exp⊥ of a fundamental domain for
π1Σ gives a globally finite fundamental domain for ρ. Taking Q = 0 gives the R-Fuchsian
representations, i.e., those which factor through the canonical inclusion SO(2, 1) → PU(2, 1).
It is therefore convenient to adopt here the following terminology (similar terminology is used
in the study of minimal surfaces in RH

3, where it was introduced in [34]).

Definition 4.2. A representation ρ ∈ Hom(π1, PU(2, 1)) will be called almost R-Fuchsian if
it admits a ρ-equivariant minimal Lagrangian embedding f : D → CH

2 whose normal bundle
exponential map exp⊥ is a diffeomorphism. We will call f an almost R-Fuchsian embedding.

A necessary and sufficient condition for exp⊥ to be an immersion is that ‖Q‖2γ ≤ 2 [37,
Thm 7.1]. The following theorem improves substantially on the existence results in [37] by
showing that almost R-Fuchsian immersions exist, and are the unique minimal immersion, up
to this optimal bound on Q: this is the direct analogue of Uhlenbeck’s result [46, Thm 3.3]
for almost Fuchsian minimal surfaces in RH

3.

Theorem 4.3. Let f be a ρ-equivariant minimal Lagrangian immersion for which ‖Q‖2γ < 2.
Then f is an almost R-Fuchsian embedding (and ρ is almost R-Fuchsian). Moreover, f is the
unique ρ-equivariant minimal immersion.

Remark 4.1. This theorem should also be compared with the parametrisation of hyperbolic
affine sphere immersions D → R

3 equivariant with respect to an irreducible representation into
PSL(3,R), or equally, to the parametrisation of all convex real projective structures on Σ [47,
36, 35]. The data is a pair (Σc,Q) where Q is a cubic holomorphic differential. By a theorem
of Choi & Goldman [8] this data parametrises an entire component, the Hitchin component,
of the representation space R(SL(3,R)). Labourie [35] directly related the hyperbolic affine
sphere data to the Higgs bundles identified by Hitchin in [30]. In that case the Hitchin
component is parametrized by Higgs bundles over Σc with bundle K−1 ⊕ 1 ⊕ K and Higgs
field





0 1 0
0 0 1
Q 0 0



 .
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Theorem 4.3 shows that Corollary 4.1 provides a similar parametrisation of the almost Fuch-
sian locus inside the τ = 0 component R(PU(2, 1)). It is unlikely, however, to parametrise
the entire component. In the analogous case of equivariant minimal surfaces in RH

3, there
are examples of quasi-Fuchisan hyperbolic 3-manifolds which admit more than one minimal
surface [1, 32].

We will break the proof of Theorem 4.3 into two parts, starting with the proof that f is an
embedding. For this we need to recall from [37, §7] an explicit expression for exp⊥ : TD⊥ →
CH

2 when f is minimal Lagrangian. In this case the frame f1, f2, f0 used in the proof of
Theorem 3.1 has the simple form

f1 =
1

s
(f0)z , f2 =

1

s
(f0)z̄, s = u1 = u2.

Let S− ⊂ C
2,1
− be the pseudo-sphere into which f0 maps, and π : S− → CH

2 be the projection.

When f is Lagrangian TD⊥ = Jf∗TD is a Lagrangian 2-plane in TCH2. This implies that
exp⊥(TzD⊥) is a totally geodesic Lagrangian disc normal to f(D) at f(z). This Lagrangian
disc has the form

{π[(ia − b)f1(z) + (ia+ b)f2(z) + f0(z)] : a
2 + b2 < 1

2}.

Let ∆ ⊂ C denote the open disc of radius 1/2. Then we have an identification between TD⊥

and D ×∆ for which exp⊥ is represented by the map

Θ : D ×∆→ CH
2; Θ(z, w) = π(−w̄f1(z) + wf2(z) + f0(z)).

The following result improves [37, Thm 8.1].

Lemma 4.4. When ‖Q‖2γ < 2 the pullback metric Θ∗g is complete, and therefore Θ is a
proper map and hence a diffeomorphism. In that case f is an embedding and ρ is almost
R-Fuchsian.

Proof. Fix a point p ∈ D. We can normalise the frame f1, f2, f0 so that these are the standard
basis vectors e1, e2, e3 at p, and choose a conformal normal coordinate z centred at p so that
γ(p) = |dz|2 (i.e., s(0) = 1/

√
2) with sz = 0 = sz̄ at this point. We may also rotate z so that

Q0 = Q(p) is real and non-negative. Since Q = Q0dz
3 and ‖dz‖ =

√
2 we have 0 ≤ Q0 <

1
2 .

With such choices, in [37, §7], we computed the differential of Θ (in affine coordinates) at p
to be given by









dΘ1

dΘ̄1

dΘ2

dΘ̄2









=









l k 0 −1
k̄ l −1 0
k̄ l 1 0
l k 0 1

















dz
dz̄
dw
dw̄









,

where

l = 1√
2
(1 + |w|2), k = −2Q0w − 1√

2
w̄2.



20 JOHN LOFTIN AND IAN MCINTOSH

Now set φ = ldz + kdz̄ and notice that in affine coordinates Θ(p) = (−w̄, w). Then at p we
compute the pull-back of g to be

(Θ∗g)p =
2
∑

i,j=1

1

1− ‖Θ‖2
(

δij +
Θ̄iΘj

1− ‖Θ‖2
)

dΘidΘ̄j

=
1

1− 2|w|2
[(

1 +
(−w)(−w̄)
1− 2|w|2

)

(φ− dw̄)(φ̄− dw)

+

(

0 +
(−w)w
1− 2|w|2

)

(φ− dw̄)(φ̄+ dw̄)

+

(

0 +
w̄(−w̄)
1− 2|w|2

)

(φ̄+ dw)(φ̄ − dw)

+

(

1 +
w̄w)

1− 2|w|2
)

(φ̄+ dw)(φ + dw̄)

]

=
1

(1− 2|w|2)2
(

[2|φ|2 − (wφ+ w̄φ̄)2] + [2|dw|2 + (wdw̄ − w̄dw)2]
)

. (4.3)

Now consider the two terms in this expression:

θ1 =
1

(1− 2|w|2)2
(

2|φ|2 − (wφ+ w̄φ̄)2
)

, θ2 =
1

(1− 2|w|2)2
(

2|dw|2 + (wdw̄ − w̄dw)2
)

.

The term θ2, which is the induced metric on ∆, is just the Klein model for the hyperbolic
plane and reflects the fact that the fibres of exp⊥ are totally geodesic. The first term θ1 is the
expression at p for the metric induced by the immersion ϕw : D → CH

2, ϕw(z) = Θ(z, w).
We can think of each vector (−w̄, w) as determining a section of TD⊥, and ϕw is the image
of this under exp⊥. We claim that there is a constant ε1 > 0 for which, for every w,

ϕ∗
wg(X,X) ≥ ε1γ(X,X), ∀X ∈ TpD.

It follows that Θ∗g = θ1+θ2 is bounded below by ε2γ+θ2. The latter is a product of complete
metrics on D ×∆ and therefore Θ∗g is also complete.

To prove the claim, write w = w1+ iw2 and φ = φ1+ iφ2 for real and imaginary parts, and
set r2 = |w|2 < 1/2. Then

θ1 =
1

(1− 2r2)2
(

φ1 φ2
)

(

2− 4w2
1 4w1w2

4w1w2 2− 4w2
2

)(

φ1
φ2

)

. (4.4)

The eigenvalues of the matrix are 2 and 2 − 4r2. Therefore, using the smaller eigenvalue
2− 4r2,

θ1 ≥
2

1− 2r2
|φ|2 ≥ 2|φ|2.

It now suffices to show that
|φ|2 ≥ ε2γ = ε2(dx

2 + dy2),

for a constant ε2 > 0 independent of w, where z = x+ iy. For this, write k = k1+ ik2 so that
(

φ1
φ2

)

= B

(

dx
dy

)

for B =

(

l + k1 k2
k2 l − k1

)

. (4.5)

The components of the metric |φ|2 are the entries of BtB = B2, and the eigenvalues are the
roots of

λ2 − 2(l2 + |k|2)λ+ (l2 − |k|2)2 = 0,
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and are therefore (l ± |k|)2. Thus for any unit vector X ∈ TpD,
|φ|2(X,X) ≥ (l − |k|)2.

Now

l − |k| = l2 − |k|2
l + |k| ,

and l+ |k| is clearly bounded above, so it suffices to show that l2 − |k|2 is bounded below by
a positive constant independent of w. We compute

l2 − |k|2 = 1
2(1 + r2)2 − (2Q0w + 1√

2
w̄2)(2Q0w̄ + 1√

2
w2)

= r2(1− 4Q2
0) +

1
2 −Q0(

√
2r)3 cos(3α), (4.6)

where w = reiα. Now Q0 <
1
2 and

√
2r < 1, so 1 − 4Q2

0 > 0 and 1
2 − 2

√
2Q0r

3 cos(3α) > 0.
With Q fixed we get a uniform positive lower bound over r, α. Thus the metric Θ∗g is complete
on D ×∆. We conclude, as in [37], that Θ is a proper map and a diffeomorphism, whence f
is an embedding and ρ is almost R-Fuchsian. �

To prove that f is unique we first need a result which can be given in greater generality
than our current situation. Let (N, g) be a complete Riemannian manifold.

Proposition 4.5. Let f :M → (N, g) be a compact embedded minimal submanifold for which
exp⊥ : TM⊥ → N is a diffeomorphism. For a local section η of TM⊥ of unit length and a
positive constant r, set ϕr = exp⊥(rη) and let vr be the volume form for the metric ϕ∗

rg on
an open subset of M . Suppose dvr/dr > 0 for all r and for every η. Then f is the unique
minimal immersion of M transverse to the fibres of exp⊥.

The proof is given in Appendix A.
Now we can complete the proof of Theorem 4.3. Since ρ is quasi-Fuchsian the quotient

CH
2/ρ is a manifold, and by the previous lemma f : Σ→ CH

2/ρ is a minimal embedding such
that exp⊥ : TΣ⊥ → CH

2/ρ is a diffeomorphism. Now if ϕ : D → CH
2 is any ρ-equivariant

immersion then it must be transverse to the fibres of exp⊥, since dϕ ◦ dδ = dρ(δ) ◦ dϕ for
every δ ∈ π1Σ and the action of ρ is transverse to the fibres. Therefore the uniqueness claim
in Theorem 4.3 follows from the previous proposition and the following lemma.

Lemma 4.6. Under the assumptions of Theorem 4.3, if vr is the area form for the metric
ϕ∗
rg induced by any local immersion of the form ϕr = exp⊥(rη) for a local section η of TM⊥

of unit length and a positive constant r, then dvr/dr > 0.

Proof. Since ϕr(z) = Θ(z, reiα) for some fixed r and α, the induced metric ϕ∗
rg at a point

p ∈ Σ is given by θ1 from the proof of Lemma 4.4. Using the expression (4.4) we can write

ϕ∗
rg =

1

(1− 2r2)2
(

dx dy
)

Bt

(

2− 4w2
1 4w1w2

4w1w2 2− 4w2
2

)

B

(

dx
dy

)

,

where B is given by (4.5). The determinant of the matrix in the middle is 2(2− 4r2), so that
vr = a(r)dx ∧ dy where

a(r) =
1

(1− 2r2)2
2
√

1− 2r2(l2 − |k|2)

=
1

(1− 2r2)3/2

(

1 + 2r2(1− 4Q2
0)− 4

√
2Q0r

3 cos(3α)
)

,
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using (4.6). A calculation shows that

da

dr
=

4r

(1− 2r2)3/2

[

(1 + r2)(1 − 4Q2
0) +

3
2(1− 2

√
2Q0r cos(3α))

]

.

Now Q0 <
1
2 , r < 1/

√
2 and cos(3α) ≤ 1, so da/dr > 0. �

4.1. Families of solutions to the Gauss equation. Theorem 4.3 shows that the norm
‖Q‖γ gives control over uniqueness of minimal Lagrangian immersions, but at present we have
no clear way of relating it to the parametrisation by the extension class ξ. Moreover, since
this norm depends upon the solution to (4.2) it is difficult to control a priori. On the other
hand, the combined results of [37] and [31] show that a bound on ‖Q‖µ must be combined
with a condition the solution of (4.2) to get existence and uniqueness. One knows that the
zero solution u ≡ 0 is the unique solution for Q = 0, and that for ‖Q‖µ small and non-zero
there are always solutions [37], but these are not unique [31]. The challenge is to understand
how solutions behave as one moves along a ray tQ0, t ≥ 0, given a fixed cubic holomorphic
differential Q0. To study solutions along such rays, Huang et. al [31] introduced the following
terminology.

Definition 4.7. A solution u to (4.2) is F-stable if the linearised operator

L = −∆µ + 2eu − 4‖Q‖2µe−2u, (4.7)

is positive.

This condition ensures, by the Implicit Function Theorem in the appropriate Sobolov
spaces, that there is locally a smooth curve u(t) of solutions to

H(u, t) = ∆µu− 2‖tQ0‖2µe−2u − 2eu + 2 = 0, (4.8)

nearby any F-stable solution u(t0). Our aim here is to show that, given Q0, the F-stable
solutions form a continuous curve terminated at one end by the zero solution and at the other
end by the first solution which is not F-stable. This, together with the results of [37, 31],
gives the following summary of the behaviour of solutions to (4.2) as the cubic differential is
scaled.

Theorem 4.8. Fix a non-zero cubic holomorphic differential Q0 on Σc. Set

T0 =
√

4/27(sup
Σ
‖Q0‖µ)−1.

Then:

(i) there exists a T2 > T0 such that (4.8) has no solutions for t ≥ T2;
(ii) there exists T0 ≤ T1 < T2 such that for t < T1 there is a unique continuous family of
F-stable solutions to (4.8). All F-stable solutions lie on this family and the limiting
solution u(T1) is not F-stable;

(iii) for t < T0 the F-stable solutions yield almost Fuchsian embeddings;
(iv) for 0 < t < T1 there is at least one solution which is not F-stable.

Remark 4.2. This result is analogous to Uhlenbeck’s description of the bifurcation in families
of solutions to the Gauss equation for minimal surfaces in RH

3 [46, Thm 4.4]. We note that
for Uhlenbeck the right notion of stability was stability with respect to the area functional.
In our case that gives no extra control, since all minimal Lagrangian surfaces in CH

2/ρ are
stable by a theorem of Oh [39].
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Part (i) comes from [37], while (iii) comes from [37] and Theorem 4.3 above. Part (iv) and
the existence of a local family of unique F-stable solutions for t < T1 come from [31]. Here
we provide the rest of (ii) via the following lemma.

Lemma 4.9. Let Q0 be a holomorphic cubic differential on Σc, and let τ > 0 be such that
u(τ) is an F-stable solution. Let u(t) be the local family of F-stable solutions to (4.8) through
u(τ). Then u̇(τ) ≤ 0 on all of Σc.

Proof. By differentiating (4.8) we find that u̇ satisfies

−Lτ u̇ = 4τ‖Q0‖2µe−2u.

Elliptic regularity implies u̇ is C∞. Now define u̇+ = max{u̇(τ), 0}.
Then u̇+ is in the Sobolev space H(Σ) and du̇+ = 0 wherever u̇ ≤ 0 (see e.g.[18]). Recall

we define

〈−∆µu̇
+, u̇+〉 =

∫

Σ
‖du̇+‖2µ dAµ

in this case. Let v = 4τ‖Q0‖2µe−2u, and let ǫj ց 0 be regular values of u̇ (as guaranteed by
Sard’s Theorem). Thus we can integrate by parts, as each {u̇ = ǫj} = ∂{u̇ > ǫj} is a smooth
1-manifold. Let wj = max{u̇− ǫj, 0}. Now since L > 0,

0 ≥ 〈−Lu̇+, u̇+〉

=

∫

Σ

[

−‖du̇+‖2µ + (−2eu + 4‖Q0‖2µe−2u)(u̇+)2
]

dAµ

=

∫

{u̇>0}

[

−‖du̇‖2µ + (−2eu + 4‖Q0‖2µe−2u)u̇2
]

dAµ

= lim
j→∞

∫

{u̇>ǫj}

[

−‖dwj‖2µ + (−2eu + 4‖Q0‖2µe−2u)u̇2
]

dAµ

= lim
j→∞

∫

{u̇>ǫj}

[

wj∆µwj + (−2eu + 4‖Q0‖2µe−2u)u̇2
]

dAµ

= lim
j→∞

∫

{u̇>ǫj}

[

(u̇− ǫj)∆µu̇+ (−2eu + 4‖Q0‖2µe−2u)u̇2
]

dAµ

=

∫

{u̇>0}
(−Lu̇)u̇ dAµ

=

∫

{u̇>0}
vu̇ dAµ ≥ 0.

(The limits above are valid by the Dominated Convergence Theorem.)
Since v is positive almost everywhere, the last inequality is strict if u̇ > 0 anywhere on Σ.

Thus by contradiction u̇(τ) ≤ 0 everywhere on Σ. �

Proof of Thm 4.8(ii). Let u(τ) be an F-stable solution, with local family u(t) and let Lt be
the corresponding family of linearised operators (4.7). Now

L̇ = 2u̇eu + 8t‖Q‖2µe−2u(u̇− t),
which is nonpositive for t > 0 by the previous Lemma. Thus Lτ > 0 implies Lt > 0 for all
t ∈ [0, τ ] in the path of solutions.



24 JOHN LOFTIN AND IAN MCINTOSH

The Maximum Principle shows that every solution to (4.8) is nonpositive. Thus for any t in
an interval of the form (τ0, τ ] the proposition implies 0 ≥ ut ≥ uτ , and thus we have uniform
L∞ bounds on ut for all t ∈ (τ0, τ ]. Then the Lp theory, applied to (4.8), and standard
bootstrapping show that the limit

lim
t→τ+

0

ut

exists and is a solution uτ0 to the equation. This provides a closedness argument for the con-
tinuity method. On the other hand the Lt > 0 condition, verified in the previous paragraph,
provides openness as well, and thus we can extend the solution space back down to t = 0. �

5. Surfaces with zero cubic holomorphic differential.

Minimal (possibly branched) immersions for which Q = 0 have particularly important
properties. They include all the holomorphic and anti-holomorphic immersions and, by The-
orem 3.1, the extension class zero cases when f is not holomorphic or anti-holomorphic. In
all such cases, the Higgs bundle E is a Hodge bundle (or variation of Hodge structure), i.e.,
E = ⊕mi=1Ei for proper sub-bundles Ei for which Φ : Ei → Ei+1 ⊗K, with Em+1 = 0. For
PU(2, 1) the length m of the Hodge bundle must be either two or three [22]. We will show
below that the length-two Hodge bundles correspond to holomorphic or anti-holomorphic im-
mersions, while immersions which arise from Theorem 3.1 with ξ = 0 give length-three Hodge
bundles.

Hodge bundles play the central role in calculating the Betti numbers of the smooth com-
ponents of the moduli space H(Σc, G) of polystable Higgs bundles, and therefore the Betti
numbers of the representation space R(G). For on smooth components the Hitchin function
‖Φ‖2L2 : H(Σc, G)→ R, is a perfect Morse-Bott function, whose critical points are the Hodge
bundles. The length-two Hodge bundles are minima, while the length-three Hodge bundles
have non-zero Morse index [22].

5.1. Holomorphic and anti-holomorphic surfaces. By Toledo’s theorem [45] every max-
imal representation (those for which τ(ρ) = ±χ(Σ)) leaves invariant a complex line and acts
on that line as a Fuchsian representation. Such representations are reducible. To understand
the non-maximal ρ-equivariant holomorphic or anti-holomorphic immersions, we will start by
describing their Hodge bundles. First we note that for any holomorphic ρ-equivariant immer-
sion f : D → CH

2 the area form vγ for the induced metric equals f∗ω. It follows from the
definition (2.9) that τ(ρ) > 0. For anti-holomorphic immersions f∗ω = −vγ so that τ(ρ) < 0.
The next lemma completely characterises the Higgs bundle data for representations which
admit either holomorphic or anti-holomorphic branched immersions.

Theorem 5.1. An irreducible representation ρ admits a branched holomorphic ρ-equivariant
immersion if and only if it corresponds to a Hodge bundle (V ⊕ 1,Φ) with Φ = (Φ1, 0) and V
a non-trivial extension bundle of the form

0→ K−1(B)
Φ1→ V → K−2L→ 0. (5.1)

Here B is an effective divisor of degree b ≥ 0 (the divisor of branch points of the immer-
sion) and L is a line bundle of degree l, only determined up to isomorphism, satisfying the
inequalities

3(g − 1) + 1
2b < l < 6(g − 1)− b, 0 ≤ b < 2(g − 1). (5.2)

In particular, τ(ρ) = 2
3 (6g − 6− b− l) and 0 < τ(ρ) < 2(g − 1)− b.
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Moreover, (E,Φ) corresponds to a branched anti-holomorphic immersion f if and only if
f̄ is the branched holomorphic immersion determined by (E∗,Φt).

Note that by f̄ we mean the post-composition of f with the natural anti-holomorphic invo-
lution on CH

2 which descends from complex conjugation on C
2,1. Clearly f is ρ-equivariant

precisely when f̄ is ρ̄-equivariant. The map ρ 7→ ρ̄ is an involution on Hom(πΣ, G)/G for
which τ(ρ̄) = −τ(ρ): it fixes the representations with values in SO(2, 1).

Proof. First suppose (E,Φ), with E = V ⊕ 1 and Φ = (Φ1,Φ2), is a length-two Hodge bundle
with deg(V ) < 0. In this case by [22, §3] we have Φ2 = 0. The corresponding representation
ρ admits a ρ-equivariant harmonic map f : D → CH

2 determined by the sub-bundle 1 as a
section PE− with df ′ = Φ. Therefore ∂̄f ′ = 0 and f is holomorphic. Conversely, suppose ρ
admits a holomorphic immersion f . Taking V = f−1T ′

CH
2 and Φ = ∂f ′ : 1 → KV gives

a length-two Hodge bundle with deg(V ) < 0. The involution (E,Φ) → (E∗,Φt) on Higgs
bundles maps length-two Hodge bundles with Φ2 = 0 to those with Φ1 = 0. In the latter case
V ≃ f−1T ′′

CH
2 with the opposite complex structure, and the map f is anti-holomorphic.

Now the structure of (V ⊕ 1,Φ) follows a simplified version of the argument in the proof
of Theorem 2.3. We can think of Φ1 as a holomorphic section of KV , with divisor B ≥ 0
corresponding to the branch divisor of f . The bundle injection Φ1 : K

−1(B)→ V has image
V1 and quotient line bundle V2 = V/V1. Provided V is not the direct sum V1 ⊕ V2 the
Φ-invariant sub-bundles of E are V1, V1 ⊕ 1 and V . The stability inequalities are therefore

deg(V1) <
1
3 deg(V ), 1

2 deg(V1) <
1
3 deg(V ), 1

2 deg(V ) < 1
3 deg(V ).

On the other hand, if V is the direct sum then V2 is also Φ-invariant and stability requires
the additional inequality

deg(V2) <
1
3 deg(V ), i.e., 2

3 deg(V ) < deg(V1),

so this is not possible. For later convenience we write V2 = K−2L and the inequalities (5.2)
follow from deg(V1) = b− 2(g − 1) and deg(V2) = l − 4(g − 1). �

Note that while the splitting of V ≃ f−1T ′
CH

2/ρ into TΣ ⊕ TΣ⊥ is J-invariant, the
sub-bundle TΣ⊥ is not ∂̄E-invariant unless ρ is reducible. Indeed, the normal bundle is ∂E-
invariant (since it is paired with TΣ by the Hermitan metric) so the induced structure of this
splitting makes the normal bundle anti-holomorphic.

Remark 5.1 (Reducible representations.). Although E = V ⊕ 1 cannot be stable when V is a
trivial extension, it can be polystable. This corresponds to a reducible reductive representa-
tion. Such representations either:

(i) factor through a maximal compact subgroup, or,
(ii) factor through P (U(1, 1) × U(1)).

This is easy to see. We may simplify things, by replacing ρ by ρ̄ if necessary, to assume that
τ(ρ) ≥ 0 and thus Φ2 = 0. To be strictly polystable (E,Φ) must decompose into either

(i) (V, 0) ⊕ (1, 0), or (ii) (1⊕ V1,Φ1)⊕ (V2, 0),

where V = V1 ⊕ V2 and Φ1 : 1→ V1. In the first case V must be a stable rank two bundle of
degree zero (to have the same slope as 1) and therefore the representation lies in a maximal
compact subgroup and has τ(ρ) = 0. We note that the corresponding harmonic map f is
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constant. In the second case (1⊕V1,Φ1) corresponds to a representation into U(1, 1). In this
case polystability requires

deg(V1) <
1
2 deg(V1 ⊕ 1) = 1

2 deg(V1), i.e., deg(V1) < 0,

together with the “same slope” condition 1
2 deg(V1) = deg(V2). When we write V1 = K−1(B)

as above we deduce that

b < 2(g − 1), deg(V2) =
1
2b− g + 1.

Thus b is even and

τ(ρ) = −2
3 deg(V ) = − deg(V1) = 2g − 2− b ∈ 2Z.

In particular, such ρ can only admit an unbranched holomorphic map f when τ(ρ) is maximal,
i.e., when ρ factors through a Fuchsian representation. The map f : D → CH

2 is a totally
geodesic embedding onto a complex line. More generally, the PU(1, 1) representation corre-
sponding to the rank two Higgs bundle (1⊕ V1,Φ1) has Toledo invariant − deg(Hom(1, V1)),
which therefore equals τ(ρ). Every irreducible representation into PU(1, 1) of even Toledo
invariant lifts to SU(1, 1), and therefore provides a representation into P (U(1, 1) × U(1)).
Thus the whole structure of Higgs bundles for irreducible representations in SU(1, 1) [29] lifts
up to provide reducible representations into PU(2, 1), and this is what we are seeing above.
Note that those which are non-maximal cannot be convex cocompact, since they preserve a
complex line but act non-cocompactly on this line.

Let η 6= 0 be the extension class of the extension (5.1) for ρ irreducible. Since L is only
determined up to isomorphism the Higgs bundle only determines η up to scale. Therefore
each Higgs bundle in Theorem 5.1 corresponds to a quadruple (Σc, B, L,C.η) where C.η is
the line generated by η, i.e., a point in PH1(Σc,KL

−1(B)). In fact, it is not hard to show
that the rescaling of η corresponds to the C

∗-action on the Higgs bundle (E,Φ) 7→ (E, tΦ).
Since Hodge bundles are invariant under this action, this gives another way of interpreting the
independence of the data on the scale of η. However, once (ρ, f) is known there is a preferred
representative for η given by the geometric invariants of f via the Dolbeault isomorphism.
First we need to introduce the tensor

S ∈ E0(Σc,K2K̄2), S = h(II2,0, II2,0),

where II2,0 = π⊥∇′∂f ′ is the (2, 0) component of the second fundamental form of f (here
π⊥ : f−1T ′

CH
2/ρ→ TΣ⊥ is projection onto the normal bundle). We will show that II2,0 is a

holomorphic section of K2 ⊗ TΣ⊥.

Theorem 5.2. Let f : D → CH
2 be a ρ-equivariant branched holomorphic immersion, with

ρ irreducible and data (Σc, B, L,C.η). Then L ≃ O(D), where D is the divisor of zeroes of
II2,0, and we can choose η so that under the Dolbeault isomorphism it maps to the cohomology
class

−[S/γ] ∈ H0,1(Σc,K(B −D)).

Proof. We follow the steps in the proof of Theorem 3.1 but using a local frame more suited to
holomorphic maps. As before, use ℓ0 ⊂ E to denote 1 and write its ∂f ′ transform as ℓ1 ⊗K.
But now take the further transform of ℓ1, so we have a harmonic sequence

ℓ0
π⊥

0
Z→ ℓ1

π⊥

1
Z→ ℓ2

π⊥

2
Z→ 0,
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in each chart (U, z). The last step terminates the sequence because π⊥2 Z : ℓ2 → ℓ0 is the
adjoint to π⊥0 Z̄ : ℓ0 → ℓ2, which represents ∂̄f ′ = 0. As before, let f0 ∈ Γ(ℓ0) be global and
parallel with 〈f0, f0〉 = −1. Set

σ1 = π⊥0 Zf0 = Zf0, σ2 = π⊥1 Zσ1 = π⊥1 ZZf0.

Since f0 is a holomorphic section of ℓ0, σj is a holomorphic section of ℓj (by standard harmonic

sequence theory [4]). Under the isomorphism f−1T ′
CH

2/ρ ≃ Hom(1, V ) ≃ V the image
∂f ′(T 1,0Σ) of the holomorphic tangent bundle of Σ is identified with ℓ1, i.e., ℓ1 ≃ K−1(B).
Clearly the induced metric of f is u21|dz|2 for u1 = |σ1|. Further, since

(∇ZZ)f0 = π⊥0 Zπ
⊥
0 Zf0 − π⊥0 Zπ0Zf0 = π⊥0 ZZf0,

we have
II(Z,Z) = [π⊥(∇ZZ)]f0 = π⊥1 ZZf0 = σ2.

In particular, II2,0 is a holomorphic section of K2 ⊗ ℓ2. Set s2 = |σ2|. Then
S(Z,Z, Z̄, Z̄) = 〈II(Z,Z), II(Z,Z)〉 = |σ2|2 = s22.

Thus in a chart U in which neither u1 nor s2 vanishes we have a local U(2, 1) frame given by
f1, f2, f0 where f1 = σ1/u1, f2 = σ2/s2. Straighforward calculations as before give

Zf1 = (Z log u1)f1 + u−1
1 s2f2, (5.3)

Zf2 = (Z log s2)f2,

Zf0 = u1f1.

From this we can read off the connexion 1-form for the projectively flat connexion ∇ in this
frame. Now let ϕ : V |U → U × C

2 be the local trivialisation corresponding to f1, f2. Then

ϕ ◦ ∂̄E ◦ ϕ−1 = dz̄

[

∂

∂z̄
−
(

Z̄ log u1 s2/u1
0 Z̄ log s2

)]

.

To deal with zeroes of u1 and s2, we may assume U only has these at z = 0, to order p
and q respectively. In such a chart we take the local frame f̃1 = w−pf1, f̃2 = w−qf2, where
w = z/|z|, and in the corresponding trivialisation ϕ̃ we have

ϕ̃ ◦ ∇0,1 ◦ ϕ̃−1 = dz̄

[

∂

∂z̄
−
(

Z̄ log(u1/|z|p) −s2wp−q/u1
0 Z̄ log(s2/|z|q)

)]

.

We obtain a local holomorphic trivialisation, with respect to ∂̄E , by applying a gauge trans-
formation of the form

R =

(

1 a
0 1

)(

|z|p/u1 0
0 |z|q/s2

)

,

i.e., for χ = Rϕ̃ we have χ ◦ ∂̄E ◦ χ−1 = dz̄(∂/∂z̄). This requires

∂a/∂z̄ = −s22zp−q/u21. (5.4)

When U is contractible this equation has a solution since s22/u
2
1 ∼ |z|2(q−p) near z = 0,

therefore the right hand side of (5.4) is smooth throughout U .
Now cover Σc by charts (Uj , zj) of the type used above, and index the local objects living

over Uj by j. Thus for V we have transition relations ϕ̃j = c̃jkϕ̃k where

c̃jk =





dzj/dzk
|dzj/dzk | 0

0
(dzj/dzk)

2

|dzj/dzk|2





(

w
pj
j w

−pk
k 0

0 w
qj
j w

−qk
k

)

.



28 JOHN LOFTIN AND IAN MCINTOSH

Therefore χj = bjkχk where

bjk = Rj c̃jkR
−1
k =

(

z
pj
j z

−pk
k dzj/dzk λjk

0 z
qj
j z

−qk
k (dzj/dzk)

2

)

, (5.5)

for
λjk = ajz

qj
j z

−qk
k (dzj/dzk)

2 − akzpjj z
−pk
k dzj/dzk, (5.6)

and we have used the fact that

u1k/u1j = |dzj/dzk|, s2k/s2j = |dzj/dzk|2.
In particular, this shows that V is an extension of the line bundle K−1(B) by the line bundle
K−2(D) where D is the divisor of zeroes of II2,0, and therefore we have fixed an isomorphism
L ≃ O(D). As earlier, the extension class of V is given by the Čech cohomology class η of
the 1-cocycle {(ηjk, Uj , Uk)} where

ηjk = z
−pj
j zpkk (dzk/dzj)λjkdzk

= ajz
qj−pj
j dzj − akzqk−pkdzk.

This is plainly a coboundary for Čech cohomology in smooth sections of K(B−D) of the form
δτ where {(τj , Uj)} has τj = ajz

qj−pjdzj . Under the Dolbeault isomorphism this corresponds
to

∂̄τj = −
s22j
u21j

dzjdz̄j ,

which is the local expression for −S/γ. �

5.2. Surfaces arising from zero extension class. Theorems 2.3 and 3.1 imply that Higgs
bundles for non-holomorphic minimal surfaces with Q = 0 are exactly the length-three Hodge
bundles. When Q = 0 we have a trivial extension bundle and can take

E1 ⊕ E2 ⊕ E3 = K(−D2)⊕ 1⊕K−1(D1),

to get Φ : Ei → KEi+1. Conversely, any length-three Hodge bundle is projectively equivalent
to one of this form and has tr Φ2 = 0. We will show that f is still related to a holomorphic
map, via its harmonic sequence (in the sense of Erdem & Glazebrook [15], f is isotropic but
non-holomorphic). To explain this, we first recall (from e.g., [4, 14]), the notion of the Gauss
transforms ϕ1, ϕ2 of f .

The line bundles ℓ1, ℓ2 defined by (3.3) both lie inside the subset E+ consisting of fibre
vectors which have positive length with respect to the C

2,1 metric. Let

C
2,1
+ = {v ∈ C

2,1 : 〈v, v〉 > 0}.
Then its projective space PC

2,1
+ is an open submanifold of CP2 on which G = PU(2, 1) acts

transitively. We identify it with the orbit of the line [e2], with isotropy subgroup H2 ≃
P (U(1, 1) × U(1)), so that PC2,1

+ ≃ G/H2. In fact we can think of it as the complex version

of two dimensional de Sitter space, and will henceforth denote it by CdS2. Its tangent space
at the base point [e2] is identified with the orthogonal complement m2 = h⊥2 ⊂ su(2, 1) with
respect to the Killing form −1

2 tr(AB), and the latter gives m2 an indefinite Hermitian metric.

This extends to the tangent bundle, isomorphic to G ×H2
m2, and makes CdS2 a pseudo-

Hermitian symmetric space. Clearly PE+ ≃ D ×ρ CdS2 and therefore ℓ1, ℓ2 each determine

a smooth ρ-equivariant map ϕ1, ϕ2 : D → CdS2, and these will be conformal harmonic with



EQUIVARIANT MINIMAL SURFACES 29

respect to the pseudo-Hermitian metric (they are isotropic in the sense of [15]). Following
the terminology of harmonic sequences, we call ϕ1 the ∂-Gauss transform of f , and ϕ2 the
∂̄-Gauss transform of f . An immersion into CdS2 is timelike when its induced metric is
negative definite (away from branch points).

Proposition 5.3. Let f : D → CH
2 be ρ-equivariant and not ±-holomorphic. Then Q = 0

if and only if the ∂̄-transform ϕ2 : D → CdS2 of f is a timelike ρ-equivariant holomorphic
map, branched at the divisor of complex points D2 of f .

Proof. Let ϕ2 : D → CdS2 be the ∂̄-Gauss transform f . Write the differential of ϕ2 as
dϕ′

2 = ∂ϕ′
2 + ∂̄ϕ′

2 in terms of the type decomposition

ϕ−1
2 Tℓ2CdS

2 = Hom(ℓ2, ℓ
⊥
2 )⊕Hom(ℓ⊥2 , ℓ2).

In local coordinates

∂̄ϕ′
2(Z̄) = π⊥2 Z̄.

But from (3.7) and the fact that ℓ0, ℓ1, ℓ2 are mutually orthogonal we have

Q = 〈π⊥0 Zπ⊥0 Zf0, π⊥0 Z̄f0〉,
= −〈π⊥0 Zf0, π⊥2 Z̄π⊥0 Z̄f0〉.

Therefore if neither π⊥0 Zf0 nor π⊥0 Z̄f0 is zero, Q vanishes if and only if π⊥2 Z̄ is identically
zero on ℓ2. Hence ∂̄ϕ

′
2 vanishes and ϕ2 is holomorphic.

Finally, we claim that when Q = 0 the induced metric for ϕ2 is −u22|dz|2. To see this, let
(f0, f1, f2) be a local Toda frame for f . Then by definition ϕ2 is given locally by the family
of lines [f2]. To calculate the differential we use (3.8) to deduce that in this frame dϕ2 is
represented by





0
Q/u1u2 0

u2



 dz +





−Q̄/u1u2
0 u2

0



 dz̄.

Here we use blank spaces to indicate the Lie subalgebra h2 ⊂ g of isotropy group H2: relative
to the frame dϕ2 takes values in h⊥2 . Therefore the induced metric is

−1
2 tr(dϕ2)

2 = (
|Q|2
u21u

2
2

− u22)|dz|2.

�

Note that, since ∂ϕ′
2 : ℓ2 → Kℓ0, f is the ∂-Gauss transform of ϕ2.

6. Moduli

Theorems 2.3 and 5.1 provide parameterisations for different components of the set

V = {(ρ, f) : ρ irreducible, f branched minimal}/G,
where the quotient is by the simultaneous action of G as conjugation of ρ and ambient isometry
of f . By those theorems it is natural to write V as a disjoint union of the sets

V(d1, d2) = {(ρ, f) ∈ V : f has d1 anti-complex points and d2 complex points}
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and

W+(b, l) = {(ρ, f) ∈ V : f holomorphic with deg(B) = b, deg(L) = l},
W−(b, l) = {(ρ, f) ∈ V : (ρ̄, f̄) ∈ W+(b, l)}.

These last two spaces are bijective under (ρ, f) 7→ (ρ̄, f̄). We will now show that the parametri-
sations give each component the structure of a complex manifold.

6.1. The structure of V(d1, d2). As explained at the end of §2, each point of V(d1, d2) is
parametrised by a quadruple (Σc,D1,D2, ξ). To understand the space of these quadruples we
must understand how H1(Σc,K

−2(D1 +D2)) varies with (Σc,D1,D2). Note that

deg(K−2(D1 +D2)) = d1 + d2 − 4(g − 1) < 0,

by the inequalities (2.17). Whenever a holomorphic line bundle L over Σc has negative degree
d its first cohomology has, by the Riemann-Roch theorem, dimension

h1(L) = g − 1− d.
Therefore as L moves over Picd(Σc), the Picard component of degree d line bundles, the
dimension of H1(Σc,L) is constant. Now Σc × Picd(Σc) carries a tautological line bundle P
(sometimes called a Poincaré line bundle) whose fibre over (p,L) is the fibre of L at p. The
vector spaces H1(Σc,L) are the fibres of the higher direct image R1π∗(P) for the projection
π : Σc × Picd(Σc) → Picd(Σc) to the second factor. By a theorem of Grauert [27, III, Cor
12.9] their constant dimension implies they form a vector bundle over Picd(Σc). In particular,
for d = d1 + d2 − 4(g − 1) this bundle has rank

h1(K−2(D1 +D2)) = 5g − 5− d1 − d2.
The pairs (D1,D2) are parametrised by the product of symmetric products Sd1Σc×Sd2Σc (in
which the co-prime pairs occupy an open subvariety). The bundle can be pulled back along
the holomorphic map

Sd1Σc × Sd2Σc → Picd(Σc); (D1,D2) 7→ K−2(D1 +D2),

and the total space of the pullback parametrises the data (D1,D2, ξ). It is a connected
non-singular complex manifold of dimension 5g − 5.

As c varies over the Teichmüller space Tg of Σ we can take the disjoint union Cg = ∪c∈TgΣc,
and likewise for any of the objects SdΣc or Pic(Σd) above. In each of these cases we obtain
a complex analytic family over Tg, i.e., the total space is a complex manifold for which the
projection onto Tg is holomorphic map, and although only a fibre bundle in the smooth
category the fibre over c is a complex submanifold biholomorphic to the structure determined
by c. In particular, πC : Cg → Tg is called the (universal) Teichmüller curve. About each
point Cg has a permanent uniformising local parameter, i.e., a complex chart (U , z) for which
z = (z1, . . . , z3g−3, ζ) has the properties that: (i) each non-empty intersection Uc = π−1

C (c)∩U
is such that (Uc, ζ) is a chart on Σc; (ii) the coordinates zj are constant on the fibres. The
existence of such a chart is an immediate consequence of Bers’ construction of Cg as a quotient
of an open submanifold Fg ⊂ Tg×C by a properly discontinuous action of π1Σ which preserves
the fibes over Tg [2] (this is also just the standard picture of Kodaira-Spencer for unobstructed
deformations of complex structure [33]). It follows that one can put complex charts on
the symmetric fibre-products of Cg over Tg, whose fibres are SdΣc, to obtain non-singular
complex analytic families over Tg. The corresponding families of Picard components have
been constructed by Earle [12].
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Thus for each pair d1, d2 satisfying (2.17) we obtain a manifold parametrising the data
(Σc,D1,D2, ξ) with deg(Dj) = dj. Each is clearly a connected non-singular complex manifold
of dimension 8g − 8. Therefore we have proved the following theorem.

Theorem 6.1. Each set V(d1, d2) can be given the structure of a non-singular complex man-
ifold of dimension 8g − 8. With this structure V(d1, d2) is complex analytic family over
Teichmüller space Tg. The fibre over c ∈ Tg is a complex submanifold biholomorphic to a

holomorphic vector bundle over Sd1Σc × Sd2Σc of rank 5(g − 1)− d1 − d2.
6.2. The structure ofW±(b, l). By Theorem 5.1 the setW+(b, l) is parametrised by quadru-
ples (Σc, B, L,C.η) with η ∈ H1(Σc,KL

−1(B)) and η 6= 0. We want to show this cohomology
space has constant dimension as the pair (B,L) moves over SbΣc × Picl(Σc). Its suffices to
see that, by the stability inequalities (5.2),

deg(KL−1(B)) = 2g − 2 + b− l < 1
2b− (g − 1) < 0,

and therefore

h1(KL−1(B)) = l + 1− b− g.
By much the same argument as above, for each marked conformal structure c ∈ Tg the triple

(B,L,C.η) lies in a holomorphic CP
l−b−g-bundle over SbΣc × Picl(Σc). The total space of

this bundle has dimension

(b+ g) + l − b− g = l.

As c moves through Tg we obtain a complex analytic manifold, fibred over Tg, of total dimen-
sion 3(g − 1) + l.

Theorem 6.2. Each set W±(b, l) can be given the structure of a non-singular complex man-
ifold of dimension 3(g − 1) + l. It is a complex analytic family over Tg whose fibre at

c ∈ Tg is a complex analytic submanifold biholomorphic to a holomorphic CP
l−b−g-bundle

over SbΣc × Picl(Σc).

6.3. Map from V to R(G). In order to understand when we can use minimal surface data
to parametrise representations, we must understand the map

R : V → R(G), (ρ, f) 7→ ρ. (6.1)

We can expect this to be smooth. From the results above, this is likely to be most interesting
on the components V(d1, d2) since these have the same dimension as R(G). While a full
understanding of this map will require further work, we can at least make some interesting
comments about its behaviour on the fibres Vc of V over Teichmüller space. With a fixed
conformal structure c we can identify R(G) with the moduli space H(Σc, G) of G-Higgs
bundles. Then R is injective on Vc, since it amounts to inclusion (equally, this is a consequence
of the uniqueness theorem for twisted harmonic maps [9, 10]). Indeed

Vc = {(E,Φ) ∈ H(Σc, G) : tr Φ2 = 0},
and so it plays the role of the nilpotent cone in H(Σc, G). Let us consider the structure of
this in light of the discussion above. Recall that ‖Φ‖2L2 is a proper Morse-Bott function on
H(Σc, G) (at least at smooth points): we will normalise this by defining

F(E,Φ) =
i

2

∫

Σ
tr(Φ ∧ Φ†).
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Whenever the twisted harmonic map determined by (E,Φ) is conformal, we have

F(E,Φ) =

∫

Σ
vγ = Areaγ(Σ),

for the induced metric γ. Now fix a non-maximal value τ for the Toledo invariant and con-
sider the connected component H(Σc, G)τ . Whenever d2 =

3
2τ + d1 this component contains

Vc(d1, d2). Inside the latter lies the locus ξ = 0 consisting of length-three Hodge bundles,
and this represents one connected critical manifold of F (cf. [22, §3]). Since ξ = 0 exactly
when Q = 0 we deduce from Prop. 3.5 that this is the level F = (4g − 4 − d1 − d2)π. As we
move along the fibres of the bundle Vc(d1, d2) Prop. 3.5 tells us that F < (4g − 4− d1 − d2)π.
Moreover, a comparison with [22, Prop 3.2] shows that the dimension of these fibres equals
the Morse index of the critical manifold. Indeed, we conjecture that the bundle Vc(d1, d2)
is precisely the unstable manifold of the vector field − gradF as a bundle over the critical
manifold. This seems to be a manifestation of Hausel’s theorem [28, Thm 5.2]. He proved
that in the moduli space of stable GL(2,C)-Higgs bundles of odd degree, the downward Morse
flow coincides with the nilpotent cone. Although Hausel only gave the proof for GL(2,C),
the ingredients hold equally well in the case of the smooth components of H(Σc, G) for a real
form G [23].

By contrast the image of W±
c (b, l) in H(Σc, G) gives all the length-two Hodge bundles,

which are the absolute minima of F in their connected component. On the smooth lo-
cus of H(Σc, G), hence particularly when τ 6= 2Z, there is a single connected component
of minima for fixed τ (since F is a perfect Morse-Bott function). Hence for fixed τ the
“components” W±

c (b, l) should really be thought of as strata of the space of holomorphic (or
anti-holomorphic) branched immersions. Gothen [22, §3] explains how to view each critical
manifold of length-two Hodge bundles as a moduli space of α-stable Bradlow pairs. A Brad-
low pair is a rank 2 vector bundle equipped with a holomorphic section. In our picture the
Bradlow pair is (K ⊗ V,Φ). The stratification of length-two Hodge bundles of fixed Toledo
invariant by W±

c (b, l) amounts to fixing the degree b of Φ.

Appendix A. Uniqueness of minimal embeddings.

Here we give the proof of Proposition 4.5. We are assuming that exp⊥ : TM⊥ → N is
a diffeomorphism, and therefore there is a radial distance function ρ : N → R

+
0 given by

ρ(p) = ‖(exp⊥)−1(p)‖. The idea of the proof is to show that the condition on dvr/dr means
each ϕr = exp⊥(rη) must have non-zero mean curvature, and that by local comparison every
immersion must also have non-zero mean curvature at non-zero maximum values of ρ. Note
that this is a local argument: we do not need the existence of global sections of TM⊥ of unit
length (which will not, in general, exist).

First recall that for a family of immersions ϕt : M × R → (N, g) with variational vector
field V = ϕ∗∂/∂t a standard calculation gives

dvγ(t)

dt
|0 = d ⋆ g(V, dϕ) − g(V,Hϕ)vγ ,

where Hϕ = trγ IIϕ is the mean curvature for γ = ϕ∗g. In particular, for the mean curvature
Hr of the map ϕr,

dρ(Hr) = g(grad ρ,Hr) = −
1

vr

dvr
dr

, (A.1)

since grad ρ is a normal variation.



EQUIVARIANT MINIMAL SURFACES 33

Next we show that a local embedding ϕ which comes from an arbitrary non-vanishing local
section ν of TM⊥ must have non-zero mean curvature at any point at which |ν| has a local
maximum.

Lemma A.1. Let ϕ : U → N be an embedding of the form ϕ = exp⊥(ν) for some local section
ν of TM⊥ which does not vanish on an open subset U ⊂M , and suppose u = ‖ν‖ = ρ ◦ϕ has
a local maximum at x ∈ U . For each r > 0 set ϕr = exp⊥(rν/u), and let vr be the volume
form for ϕ∗

rg. Suppose that dvr/dr > 0 at x for each r, then ϕ must have non-zero mean
curvature Hϕ at x.

Proof. Consider the expressions for the mean curvatures Hϕ and Hr, considered as the tension
fields τ(ϕ) and τ(ϕr), in terms the tension fields for u = ρ ◦ ϕ and the constant function
r = ρ ◦ ϕr. The composition formulas [13, 2.20] give

τ(u) = dρ(Hϕ) + trγ ∇dρ(dϕ, dϕ),
0 = τ(ρ ◦ ϕr) = dρ(Hr) + trγr ∇dρ(dϕr, dϕr),

where γ = ϕ∗g and γr = ϕ∗
rg. Now τ(u) = trγ Hess(u) and at the local maximum x we have

du = 0, which implies dϕ = dϕu(x) and γ = γu(x). Therefore at x we have

dρ(Hϕ)|x = trγ Hess(u)|x + dρ(Hu(x))|x.
Since x is a local maximum we have trγ Hess(u)|x ≤ 0, and by assumption dρ(Hr)|x < 0 for
all r > 0, using (A.1). Thus Hϕ cannot vanish at x. �

Proof of Prop 4.5. Suppose ψ : M → N is any immersion transverse to the fibres of exp⊥,
other than f . The function ρ ◦ ψ must have a non-zero maximum at some y ∈ M . Then
there is a local section ν of TM⊥ and a local diffeomorphism α on M for which ψ = ϕ ◦ α
where ϕ = exp⊥(ν), and Hψ|y = Hϕ|α(y) as elements of Tψ(y)N . Now (ϕ,α(y)) satisfy the
conditions of Lemma A.1, so Hψ|y 6= 0. �
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