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Testing Extreme Dependence in Financial Time Series1

Abstract

Financial interdependence indicates a process through which transmission of shock originat-

ing in the financial market of one economy spreads to others. This paper provides a new idea of

Residual and Recurrence Times of high or low values for bivariate time series to detect extreme

dependence or contagion. In presence of financial extreme dependence, the distributions of resid-

ual and recurrence times are not the same. We examine the equality of two distributions using the

permutation test. In comparison to other methods in multivariate extreme value theory, our pro-

posed method does not need the i.i.d. assumption. Our method can handle the situation where the

extremes for different components do not occur at the same time. We justify our methods in two

ways: first using thorough simulation studies and then applying the proposed method to real data

on weekly stock indices from sixteen markets.

KEYWORDS: Financial Dependence, Residual and Recurrence Times, GARCH.

JEL Classification: C14, C53, G12.
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1 Introduction

In financial market research, interdependence mostly quoted as contagion is a widely researched term.

Financial interdependence can be at both levels: at the domestic level, for example, the crash of

Lehman Brothers and subsequent depressed United States financial markets, and, at the international

level, for example, the Mexican crisis in 1994, the Asian crisis in 1997 or the most recent global, and

Eurozone crisis. King and Wadhwani (1990) demonstrate that the correlations between the United

States, the United Kingdom, and other developed markets increased significantly following the 1987

stock market crash whereas Lee and Kim (1993) extend this analysis to more countries including

emerging markets to show presence of increased correlations during the 1987 crash. In financial mar-

kets, contagion refers to the transmission of a financial shock in one market to other interdependent

markets. In this paper, we are proposing a test for extreme dependence, which is of interest as it

indicates contagion.

Despite the wide use of the term contagion, several definitions exist in the literature (see Pericoli

and Sbracia (2003)). Contagion could refer to i) significant rise in the probability of a crisis conditional

on a crisis in another country, ii) spill overs of volatility from the crisis country to the financial markets

of other countries, iii) significant increase in co-movements of across different markets following a

crisis in one or group of markets, iv) disproportionate co-movements following a shock in one country

and v) co-movements across markets that can not be explained by fundamentals. Therefore three

characteristics are important: the presence of a crisis, the dynamics of the interdependencies and the

way of measuring these interdependencies.

According to Forbes and Rigobon (2001), there have been four methods to test and measure con-

tagion effects. The first and most straightforward one is based on cross-markets correlation coefficient

in asset returns and examines whether inter-related financial markets exhibit anomalous patterns of

correlation in returns during two different periods: stable period and the period following a shock. If

the correlation coefficient increases significantly after the shock, this implies the presence of conta-

gion. Forbes and Rigobon (2002) distinguish between interdependence and contagion.4 Bekaert et

4Shift contagion refers to a situation where the propagation of shocks during crisis periods increases systematically

from that observed during normal times. A broader definition refers to contagion as the transmission of shocks through any

channels that cause markets to co-vary. We acknowledge that our proposed test cannot distinguish between interdependence

and (shift) contagion, given that there is no control for common shocks. We use the term contagion and interdependence

interchangeably throughout the paper.
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al. (2005) have defined contagion as excess correlation on top of the correlation in economic funda-

mentals. In this framework, test for contagion is being conducted by examining the correlation in the

residuals obtained from employing a multi-factor model. In a recent paper, Blatt et al. (2015) detect

changes in correlation matrix, hence extending the approach of the aforementioned papers to multiple

dimensions. But correlation is a moment based statistic and therefore is affected by extreme values.

However, correlation may be high even without extreme events moving together.

The second approach as in Hamao et al. (1990), the ARCH or GARCH models are used to test

for the presence of significant volatility spillover from one market to another during or after the crisis.

Leung et al. (2017) employed GARCH model to examine the volatility spillover between the exchange

rates markets and the equity markets during the global financial crisis and the euro debt crisis and test

whether the increased spillover is the resultant of fundamental contagion (see Dornbusch et al. (2000))

or pure contagion (see Lin (1994)). Shen et al. (2015) have used the Kalman filter to estimate the

time-varying correlation coefficients of the stock market indices between the Eurozone and China to

tests for pure contagion and interdependence. See also Ahmad et al. (2013), and Hemche et al. (2016)

for dynamic conditional correlation using GARCH model for an application.

The third test, implemented by Longin and Solnik (1995), examines whether there is significant

change in the cross-market correlations over time. The fourth procedure applies probit model to as-

certain the probability of a crisis occurring in one economy conditional on a crisis that has already

occurred in another economy (Eichengreen et al. (1996) and Kaminsky and Reinhart (2000)). We

propose a new method based on test of dependence between point processes using Residual and Re-

currence Times (RRT). Our proposed method is closest to the fourth procedure that applies probit

model to ascertain the probability of a crisis occurring in one economy conditional on a crisis that has

already occurred in another economy. However our method is nonparametric in nature. The all other

procedures relying on correlation, volatility etc. concentrates on the center of the data and not on the

extremes. On the other hand, we do not treat the periods between the even and the contagion period

as independent. However, they could be still uncorrelated. Tests based on correlation would not pick

up the dependence but our proposed RRT test can not only detect dependence effect between the two

components but also can tell the direction of the effect. This is our first contribution in the existing

literature.
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Interdependence/contagion is observed when one or more entities are going through extreme high

or low economic phases. Such phases are economically the most interesting and high-impact peri-

ods. Standard methods of multivariate time series analysis are not suitable in this setting, since they

concentrate on the joint behavior during stable and stationary periods. Another approach is through

tail dependence in multivariate extreme value theory. Sivapulle et al. (2016) have used a robust copula

method to model tail dependence and test for contagion effects. See Sen and Tan (2012) and references

therein for a survey. Our method contributes in the existing literature by overcoming the limitation of

standard multivariate extreme value theory that extreme events in different series occur concurrently.

Given the presence of finite time lag in propagation of financial shocks originated in one market to

be transmitted from one market to another, the extremes do not necessarily occur in both series at the

same point of time. The same assumption is made in other works on contagion like Bae et al. (2002).

Although block maxima methods address this to some extent, the length of the block is ad hoc in

nature.

To illustrate our point, we present the returns of stock indices of Korea and Thailand in October-

November 2008 in Figure 1.

[Figure 1 about here]

The small return of Thailand in early October is followed by small value of Korea in late October.

The high value of Korea in early November is followed by high value of Thailand. Thus, contagion

effect is present. We observe that in Figure 1, the extreme events in the two series do not necessarily

occur at the same time point. Thus, here bivariate extreme value theory may not be a good tool.

Furthermore, we find that extremogram, see Davis and Mikosch (2009), for this kind of series is very

small and hence, extremogram may not be appropriate to detect the extremal dependence largely due to

an implicit assumption of fixed time lag between extreme events. Our proposed RRT method does not

suffer from fixed time lag problem and removes the assumption of i.i.d. observations. Related studies

in actuarial risk theory exist with renewal times. For instance Doss (1989) derives the asymptotic

distribution of relevant estimators as the sample size goes to infinity. Our test is non-parametric and

distribution-free and hence valid for any sample size. This is our third contribution in the existing

literature.
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We carry out a thorough simulation study to better emphasize that the test proposed outperforms

various standard methods in the literature in terms of size and power. The comparison with the Longin

and Solnik (1995) test is incomplete, since the latter has problems with computational feasibility. We

consider independent iid series and GARCH type series to compute the size of the proposed test and

that of the competing candidates. We consider correlated bivariate normal or bivariate dynamic con-

ditional correlation GARCH DGP
′
s to assess the power of the proposed test and compare it with that

of the other competing tests. We also consider the case of a DGP characterized by extreme dependent

bivariate series. We believe that this is our final contribution in the existing literature.

Our results using simulation studies show that the size and the power of the proposed test outper-

forms the other tests in general. We demonstrate that many small-sized countries (defined in terms of

their market capitalization) have contagion effects between each other, whereas larger economies like

USA, and China cannot be easily affected. Our results remain valid irrespective of whether we use

return or volatility.

The rest of the paper is organized as follows: We introduce our proposed test and testing procedure

in Section 2. The method validation for the RRT method under different scenarios is presented in

Section 3. Section 4 provides the simulation study and section 5 the results from our proposed test to

real data from financial markets. Section 6 contains concluding comments.

2 Testing Procedure

In this section, we describe the testing procedure for the RRT approach. In Section 2.1, we introduce

the used notations and definitions whereas Section 2.2 outlines the procedure for testing contagion.

2.1 Some Notations and Definitions

Let X and Y be two time series, for example, return on assets, volatility, volume, etc.

Definition 2.1. Extreme Event: An extreme event for series X (Y ) is an event defined as being beyond

a chosen threshold, say an upper or lower percentile of the empirical distribution of series X (Y ).

Definition 2.2. Recurrence Time: Recurrence time, denoted by Ui (Vj), for series X (Y ) is the time lag

between two consecutive occurrences of extreme events in series X (Y ).
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Definition 2.3. Raw Residual Time: Raw Residual time, denoted by Zk, for series X given series Y is

the time lag from an extreme event in series Y to the following occurrence of an extreme event in series

X . Mathematically,

Zk =
N

∑
i=1

Ui −
k

∑
j=1

Vj +1,

where N = arg minn{
n

∑
i=1

Ui −
k

∑
j=1

Vj ≥ 0}. (1)

Remark 1. The Raw Residual Time is a measure of time needed for the transmission an extreme shock

from one series to another. In the above definition for Raw Residual Times {Zk}, it has “+1” on the

right hand side of the equation. This is just a matter of convention. The “+1” means that if two extreme

events occur at the same time, we consider the transmission time to be 1.

Definition 2.4. Residual Time: The sequence of residual times, denoted by {Wk}, for series X given se-

ries Y is a subset of {Zk} by eliminating the overlapping raw residual times, and is equal to {Zk}\{Zk′ :

Zk′ +Vk′ = Zk′−1}.

In Figure 2, we demonstrate the definitions that we have introduced so far. The successive events in

each series are marked with dots. Let U denote the waiting times between successive events of return

series for country 1 and V the waiting times between successive events of return series for country

2. W ′s are the residual times according to our definition. The interpretation of W is, after an event is

observed in return series 2, what is the waiting time for an event in return series 1. Our claim is that if

there is no contagion from return series 2 to 1, then the distribution of U ′s will be same as that of W ′s.

[Figure 2 about here]

2.2 Details of the test

Given a bivariate time series (X ,Y ), we can choose a threshold (say 95th percentile or 5th percentile of

the empirical series) and find the extreme events as the values beyond (above or below) the threshold.

Then the recurrence times for X , {Ui}, and the residual times for X given Y , {Wk} can also be obtained.

The null hypothesis is that there is no contagion effect transmitted from Y to X , and the alternative

hypothesis is that there exists contagion effect transmitted from Y to X . The testing rule is constructed
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as follows. If the distribution of recurrence times {Ui} and the distribution of residual times {Wk} are

significantly different, one would reject the null hypothesis. There are well established non-parametric

procedures for testing the equality of two distributions, such as Kolmogorov-Smirnov test (K-S test)

and Permutation test. We use the Permutation test as this test is more appropriate for integer valued

data with ties, while the K-S test is mainly suitable continuous distributions.5

Application of permutation test directly to residual times and recurrence times is problematic as it

requires independence between two samples. But residual times and recurrence times are dependent.

Simulation studies show that this problem leads to a very small size. To avoid this problem, we propose

the following alternative. In order to obtain critical values, we permute the combined group {Ui}∪{Vj}

since {Ui} and {Vj} are independent under null hypothesis. We use these critical values for the test

statistic U −W . We summarize the testing procedure for existence of contagion effect from Y (for

example Mexican return) to X (say USA return) as follows:.

(a) Input two series X and Y , and find the time points of extreme events.

(b) Compute the corresponding recurrence times, {Ui} and {Vj}; denote the sample sizes as nu and

nv for {Ui} and {Vj}, respectively.

(c) Find residual times {Wk} of X based on Y , and calculate U −W , denoted as ∆0.

(d) Combine {Ui} and {Vj} as one group, then permute and divide it into two subgroups, denoted

as {Ũi} and {Ṽj}, with one sample size equal to nu, and the other sample size equal to nv. Find

the corresponding residual times {W̃k} and calculate Ũ −W̃ , denoted as ∆̃i.

(e) Repeat step (d) for all possible permutations (or permute the combined group randomly for many

times), then we have the empirical distribution of {∆̃i}, which will be considered to be the null

distribution of the test statistic.

(f) Finally, the p-value is the proportion of the times when the absolute value of ∆̃i is larger than or

equal to ∆0.

5Moreover, permutation test is an exact test which can deal with small sample size situations and we sometimes have

small sample sizes (less than 30) for the sequences of residual times.
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3 Method Validation

This section gives the detailed theoretical justification for the RRT method under different scenarios.

Section 3.1 verifies the RRT method under the i.i.d. series scenario. Section 3.2 gives the limit theo-

rems for extremal events in ARCH and GARCH converging to those of Compound Poisson Processes.

Based on Compound Poisson Processes, one can find the validation of the RRT method in section 3.3.

3.1 Residual times for two independent i.i.d series

The idea of RRT method comes from a simple scenario for i.i.d. series. Since the goal is to test the

existence of contagion effect or extreme dependence among series, we would consider extreme events

over or below a specified threshold. For two i.i.d. series, called X and Y , we are interested in the

recurrence times (denoted as {Ui} for X , and {Vj} for Y ) over (below) a high (low) threshold. When

the threshold is a fixed number (for example, the theoretical pth percentile of the distribution) then

the recurrence times follow Geometric distribution. If the two recurrence times are independent (or

the two series X and Y are independent over high thresholds), by using “Memoryless" property for

Geometric distribution, the residual times of X given on Y have the same distribution as the recurrence

times of X . We summarize this in the following theorem.

Theorem 3.1. Let X and Y be two i.i.d. series with cumulative distribution function F(x) and G(y), re-

spectively. Define {Ui} ({Vj}) to be the recurrence times for series X (Y ) above the 100p1th (100p2th)

percentile of the distribution F(x) (G(y)), and {Wk} be the residual times of X given Y . Then,

(a) {Ui} is i.i.d. Geometrically distributed with success probability (1− p1), and {Vj} is i.i.d. Geo-

metrically distributed with success probability (1− p2).

(b) If X and Y are independent, {Wk} is i.i.d. Geometrically distributed with success probability

(1− p1), that is, {Ui} and {Wk} have the same distribution.

The following theorem proves the feasibility of the method under the i.i.d. series scenario when

the threshold is a pth sample percentile of the empirical distribution. Detailed proof can be found in

Appendix 7.1.
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Theorem 3.2. Let {Xi}
m
i=1 and {Yj}

m
j=1 be two i.i.d. series with length m. Their empirical distributions

are F̂(x) and Ĝ(y), respectively. Define {Ui}
M
i=1 ({Vj}

M′

i=1) to be the recurrence times for series {Xi}
m
i=1

({Yj}
m
j=1) above the p1th (p2th) sample percentile, and {Wk}

K
k=1 be the residual times of {Xi}

m
i=1 given

{Yj}
m
j=1. Then,

(a) (U1, . . . ,UM)
D
= (R1,R2, ...,RM|R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m), where {Ri}

M+1
i=1

i.i.d.
∼

Geometric(1− p1), and a similar result also holds for (V1, . . . ,VM′).

(b) For any finite integer k, {Ui}
k
i=1 asymptotically

i.i.d.
∼ Geometric(1− p1) as m → ∞, M

m
→ (1−

p1), and {Vj}
k
i=1 asymptotically

i.i.d.
∼ Geometric(1− p2) as m → ∞, M′

m
→ (1− p2).

(c) If {Xi}
m
i=1 and {Yj}

m
j=1 are independent, for any finite integer k′, {Wk}

k′

k=1 asymptotically
i.i.d.
∼

Geometric(1− p1) as m → ∞, M
m
→ (1− p1), that is, {Ui} and {Wk} have the same asymptotic

distribution, as m → ∞, M
m
→ (1− p1).

Remark 2. According to above theorem part (c), an asymptotic hypothesis testing procedure for con-

tagion

H0 : No contagion vs H1 : Exists Contagion

can be constructed as

H0 : {Ui} and {Wk} follow the same distribution

vs H1 : {Ui} and {Wk} follow different distributions.

3.2 Limit Theorems for Exceedances of ARCH/GARCH models

Let {Xt} be a stationary ARCH(1) process with tail index κ . For basics in ARCH (GARCH), see

Embrechts et al. (1997) and Jacod and Shiryaev (2003).

For x > 0, the point process of exceedances of the threshold xn1/(2κ) by X1, . . . ,Xn, is given by

Nn(·) =
n

∑
i=1

εn−1i(·)I{Xi>xn1/(2κ)}

where εx denotes Dirac measure at x. de Haan et al. (1989) obtain the result that

Nn
d
→ N, n → ∞, (2)
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where N is a compound Poisson process with intensity cθ−2κ and cluster probabilities given explicitly.

The weak convergence is in Mp((0,1]), the collection of Radon point (or counting) measures on (0,1]

equipped with the Borel sigma algebra. Convergence in distribution of a sequence of point processes

{Nn} toward a point process N, Nn
d
→ N, is well explained in Kallenberg (1983), Daley and Vere-Jones

(1998), Resnick (1987).

Theorem 3.1 of Mikosch and Starica (2000) gives a similar result for GARCH(1,1) processes.

We need to extend this result to a pair of processes. Denote a metric space by S, and let S be the

Borel σ -field, the one generated by the open sets. Let P be a probability measure on S . Assume that

the product T = S′×S′′ is separable, which implies that S′ and S′′ are separable and that the three Borel

σ -fields are related by T = S ′×S ′′. Denote the marginal distribution of a probability measure P on

T by P′ and P′′: P′(A′) = P(A′×S′′) and P′′(A′′) = P(S′×A′′).

Theorem 3.3.

If T = S′×S′′ is separable, then P′
n ×P′′

n
w
→ P′×P′′ if and only if P′

n
w
→ P′ and P′′

n
w
→ P′′

Based on the above Theorem 3.3 and extremal results about ARCH and GARCH in section 3.2,

point processes NX
n and NY

n for the extreme exceedances of two independent ARCH (GARCH) pro-

cesses have convergence property as follows:

(NX
n ,N

Y
n )

d
→ (NX ,NY ) (3)

where NX and NY are two independent compound Poisson processes.

3.3 Residual times for two independent compound Poisson processes

The following theorem derives distribution of residual and recurrence times for compound Poisson

processes. Detailed proof can be found in Appendix 7.2.

Theorem 3.4. Assume that there are two compound poisson processes NX and NY on [0,1] with

intensity λ1 and λ2, respectively. Let Ui and Vj be the recurrence times for NX and NY , respectively.

Also, let {Wk} be the residual times. Then,

(a) Ui
i.i.d.
∼ exp(λ1) and Vj

i.i.d.
∼ exp(λ2).
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(b) If NX and NY are independent, {Wk}
i.i.d.
∼ exp(λ1).

Let Un
i and V n

j be the recurrence time for the point processes NX
n and NY

n , and {W n
k } be the residual

time, which are shown in Figure 2.

From Equation ( 2) and Theorem 3.4 part (a), we have

Un
i

d
→ Ui, i = 1,2, . . . ,

that is, {Un
i } asymptotically

i.i.d.
∼ exp(λ1). (4)

From Equation ( 3) and Theorem 3.4, residual times {W n
k } have convergence property as

W n
k

d
→ Wk, k = 1,2, . . .

that is, {W n
k } asymptotically

i.i.d.
∼ exp(λ1). (5)

Therefore, based on the above Equations (4) and (5), one can construct a hypothesis for contagion

as in remark 2.

4 Simulation Study

In this section, simulations under different scenarios are given. We compare the performance of our

method with those of Censored Likelihood Method (CLM) of Ledford and Tawn (1996), Extremogram

of Davis and Mikosch (2009) and some other methods in testing tail independence following Falk and

Michel (2006), namely, Neyman-Pearson (NP) test, Fisher’s κ (Fish) test, Kolmogorov-Smirnov (KS)

test and Chi-square goodness-of-fit (ChiSq) test. Further details about these methods are in the Ap-

pendix. Section 4.1 shows simulations from an artificial time series where two independent series are

superimposed with dependent extremes. In this case the correlation and extremogram cannot capture

the extreme dependence, but RRT method can, as seen from the power. Section 4.2 and Section 4.3

obtain the power and size of RRT method by using simulated data under different models: the i.i.d.

normal distribution model and the GARCH model (using indices time series to estimate parameters).

All results are reported with threshold 0.9 and significance level 0.05. Simulations for other values

give similar results and are available from the authors on request.
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4.1 Series with Dependent Extremes but Independent Non-extremes

This section describes a procedure for generating a bivariate sequence with dependent extremes but

independent non-extremes, where the dependent extremes account for a small proportion (say, 10%)

and the independent non-extremes take up a large proportion (say, 90%). For such a bivariate sequence,

the cross-correlation between the two components are very small. Thus, cross-correlation does not

indicate extreme dependence.

The steps of series generating procedure is shown as below.

(a) First generate two independent i.i.d. standard normal series, called series x and series y (the

cross-autocorrelation between x and y is close to zero, since they are independent).

(b) Find the time points (denoted as {t j}
J
j=1) of series y, where extreme events occur (above 90th

percentile of y), and make these values more extreme by adding 1 to each of them, then call the

modified series, Y .

(c) Add 4 to the value in series x at each time point t j + k j, where k j is an independent random

variable taking value {0,1,2} with probability {1/6,1/3,1/2} and 1 ≤ j ≤ J. Call the modified

series, X . This step makes the modified series X and Y extreme dependent, since an extreme

event in series Y will trigger another extreme event in series X in a few, say 0-2, time points

later.

By using the above procedure, one can generate 1000 bivariate series X and Y with length 1000,

then apply the RRT method to test contagion effects and obtain the power of the test. Since the

extreme events only account for 10% of the data and the independent part accounts for 90%, thus the

cross-autocorrelation between X and Y are still close to zero (no cross-autocorrelation). Additionally,

extreme events in the two series do not necessarily occur simultaneously and time lags between two

extreme events in the two series are not fixed. We calculate the extremogram (with A = B = (1,∞)×

(1,∞)) for each generated series as above, with different thresholds (90%, 95%, 99%) and lags from

1 to 100. The values in the extremogram plot are all very small (nearly all are less than 0.05). Thus,

using the extremogram cannot detect any extremal dependence in the simulated series. Using the same

simulated series, we obtain the power for the other methods. The results in Table 3 show that the CLM

test outperforms the other four tests, but is still far worse than RRT.
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4.2 i.i.d. Normal Simulation

In this section, we generate i.i.d. univariate and bivariate normal series to obtain the size and power of

our RRT test. The simulation study is as follows.

(a) Size: simulate two independent series of i.i.d. normal samples with σ1 = 1,σ2 = 10, and length

equal to 1000. Apply our algorithm to test independence of the two simulated series with signif-

icant level 0.05. We call this model M0. Repeat the above procedure 1000 times, then we can

obtain the size of our algorithm.

(b) Power: simulate i.i.d. bivariate normal mean zero random vector series from 2 models, M1 and

M2. The former has positive correlated covariance matrix




10 2

2 3


, the latter has negative

correlated covariance matrix




10 −2

−2 3


. The length for both is 1000. Apply our algorithm to

test the independence of the two components in each of two models (with significant level 0.05).

Repeat the above procedure for 1000 times, then we can obtain the powers of our algorithm.

There are four possible directions of contagion and corresponding tests, Upper vs Upper, Upper vs

Lower, Lower vs Upper and Lower vs Lower. We shall denote them by A, B, C and D respectively.

We report the results from all the tests in Table 4.

The first row of Table 4 report sizes of our test for the simulated series for case A. Using the same

simulated series, one can also obtain similar size for the other 3 cases. In the second row of Table

4, we report the powers of our test for M1 for case A. Using the same simulated series, one can also

obtain a similar table of rejection rates for case D. The power for case B and C under M2 also similar.

In the last row of Table 4, we have rejection rates of our test for M1 in case of B. We refrain from

calling these power as the underlying model has positive correlation and the test is set up to reject for

contagion in the opposite direction. Ideally one would like these values to be small. Using the same

simulated series, one can also obtain a similar table of rejection rates for case C. The rejection rates

case A and D under M2 are also similar.

Considering the first column of Table 4, one can find that for the positively corrected series, the

rejection rate of RRT for case A (and D) reported in row 2 is much larger than that in case B (and C)
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reported in row 3. It shows that the RRT test can not only detect contagion effect between the two

components but also can tell in which quadrant contagion effect exists. None of the other tests except

NP have this property .

It should be noted that the CLM test is based on maximum likelihood method and often encounters

bad results, for example, warning messages, errors and NaN. We present the percentage of such bad

results in brackets in the tables. We present this percentage in brackets. The powers for the Fisher’s κ

test, and the ChiSq test are quite low.

4.3 GARCH Simulation

In this section, we use GARCH model to fit real indices series and use fitted model to simulate time

series in order to find the size and power of our method. An introduction to DCC-GARCH model can

be found in Nakatani and Tersvirta (2008). The real data being used is weekly indices for Mexico

and USA from May 2003 to May 2007 (about 4 years weekly data), since this time period data shows

contagion effects from USA to Mexico with p-value very close to 0 for case D and the p-value in case

B is 0.685, which indicates no contagion transmission in Upper vs Lower quadrant.

(a) Size: use above data to fit two univariate GARCH models (GARCH(1,1)), then use the fitted

models to simulate two series. Apply our algorithm to test independence of the simulated series.

Repeat the above process for 1000 times, then we can obtain the size of our algorithm.

(b) Power: use the same data to fit a bivariate GARCH model (DCC-GARCH), then use the fitted

model to simulate log returns. Apply our algorithm to test independence of the simulated series.

Repeat the above process for 1000 times, then we can obtain the power of our algorithm. It is

desirable that the power be high for case D and rejection rate be low for case B, since that is true

in the underlying model.

Size, power and rejection rate of all the tests for the simulated series are reported in Table 5. The

Fisher’s κ test shows low power. Although the size and power for the other tests are good, the rejection

rate for case B is always high except for RRT. So none of the other tests can distinguish between the

directions of contagion. As before, CLM runs into computational problems too often.
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5 Empirical Study for Stock Indices Data

Our data set consists of stock indices time series for 16 economies, namely Argentina, Brazil, Chile,

Colombia, Mexico, Peru, China, India, Indonesia, Korea, Malaysia, Philippines, Taiwan, Thailand,

USA and Japan. These are MSCI indices obtained from Datastream in US dollars and the data is

weekly. The study is based on weekly data from January 1993 to December 2011, giving 992 ob-

servations for each of the 16 time series. We use weekly data to reduce the potential problem of

nonsynchronous data partially.6

We define the return as rit = log(Pit/Pi,t−1); i= 1, ...17, t = 1, ...,T . In Table 1 and 2, we report basic

descriptive statistics of our return series. Except China and Japan, all countries show positive returns.

Highest average return was observed for Peru, followed by Brazil, Colombia, Chile and Mexico. Our

volatility measure is calculated using a moving average over a rolling window of four weeks of squared

returns. We observe highest volatility in case of Indonesia followed by Brazil. The US market shows

the lowest volatility. Among the emerging market economies, volatility in Chile and in Taiwan market

is lower compared to others. Most return series show negative skewness except for Taiwan. All

the return series displays excess kurtosis above zero and the Jarque−Bera(JB) test rejects the null

hypothesis of normality for each of the 16 stock markets. The correlations are all positive and the

highest value is 0.64.

Figure 3 plots the rolling average return using a window of 52 weeks for some of these pairs,

namely, Argentina-Brazil, Korea-Thailand, Mexico-USA and Korea-USA. The Asian crisis is visible

from Korea-Thailand case but not so for other countries whereas the impact of sub-prime crisis is clear

in all pairs. We also observe that the Mexican “Tequila crisis" in 1994 did not have much impact in

USA but in Argentina and Brazil. Similar inferences can be drawn about the Asian Crisis. Our aim

is to find an objective testing criterion for such statements. We get back to these specific examples in

section 5.

Following RRT methods, we examine the contagion effects in the return as well as in the volatility.

Subsection 5.1 gives a table (Table 6) of pairwise p-values resulting from applying RRT test to the

return data where we have used the data from 2006 to the end of 2011 to test for directed contagion

effects. The result using the volatility data is presented in Table 7. Using return data, we in Subsec-

6Nonsynchronous data may arise due to markets closure in one country and open in another.
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tion 5.2, focus on four specific pairs: Argentina given Brazil, Korea given Thailand, and Mexico given

USA using data from 1993 to 2011.

5.1 Directed contagion effect

We use RRT method to test for directed contagion effect using the return and the change in volatility

data set from 2006 to the end of 2011.7 We consider the change in volatility for two reasons: first

the volatility series could be non-stationary and second we are more interested in the volatility trans-

mission: whether a big increase in volatility in one market is followed by a big increase in the other.

Pairwise p-values for return are presented for directed contagion effect in Table 6, using 0.1 vs 0.1

threshold. This implies that extreme events are defined to be below 10th percentile of the correspond-

ing series data. For change in volatility, we only consider upper quantiles (using 0.85 vs 0.85 threshold,

results in Table 7). The choice of threshold is data dependent.

The evidence favouring the contagion is evident in those cases where the obtained p-value is less

than 0.05 (in bold) or less than (0.10) (in italics). Let us take the case for Argentina: the contagion

effect is significant either at 5% or at 10% level from Argentina to Brazil, Colombia, Mexico, Peru and

Philippines. From Brazil, the same set of countries appear with the addition of Argentina, Taiwan and

Thailand. However from Chili, there appears to be significant contagion to Argentina, Peru and Thai-

land. Looking at the East-Asian countries, we observe that for Korea, significant contagion exists in

case of Peru, Philippines and Taiwan. For Thailand, we observe significant contagion effects towards

Brazil, Colombia, Mexico and Peru. Note none of these are East-Asian countries. However, signif-

icant contagion exits from China, Indonesia, Philippines, Taiwan and to some extent from Malaysia

and Japan towards Thai Market. Chinese stock market gets significant contagion effect from Brazil,

Peru, Philippines, Taiwan and Thailand. Note, Brazil is one of the BRICS countries. Similarly for

India; Brazil, Colombia and Peru exerts significant contagion effects, but none of the other East-Asian

countries. Many small-sized countries (defined in terms of their market capitalization) have contagion

effects between each other. On the other hand, developed markets like Japan and USA almost get no

significant contagion effects.

Our results in terms of directed contagion effects in the higher volatility (as presented in Table 7)

7This reflects the time period of sub-prime crisis and events thereafter.
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shows that the contagion effect is significant either at 5% or at 10% level from Argentina, China,

Colombia, India, Peru and Philippines to Brazil. For Argentina, presence of contagion effect in volatil-

ity is only from Brazil. Looking at Korea, we observe that there exists no significant contagion in

higher volatility from other countries and vice versa. The Chinese market on the other hand shows sig-

nificant directed contagion effect towards Brazil, Peru, India, Malaysia and Philippines. We observe

no significant contagion effect from other countries to USA or Japan. Also, except for Philippines, the

East-Asian and the Latin-American groups seem to be well-segregated.

In order to see the long term evolution of contagion in return series, we present four-year snapshots

directed contagion effect for all countries. The nodes of the graph are the countries positioned at the

latitude and longitude of their capital city. The arrows are for directed contagion effect detected at

significance level 0.001 with thresholds at 1%. The color denotes the nature of contagion: Red for

lower to lower, Green for Lower to Upper, Blue for Upper to Lower and Black for Upper to Upper. We

focus on 1997−2000 (the East Asian Crisis) and 2007−2010 (the Global Financial Crisis).8 During

the East-Asian Crisis (Figure 4), we observe that for upper−upper return (color Black), directed con-

tagion effect is present from Philippines to Thailand and China, Thailand to Indonesia and vice versa,

Thailand to Malaysia, China to Malaysia and Taiwan to Brazil. For the same period, for lower−lower

return (color Red), we observe presence of more directed contagion effects: from USA and India to

Japan, Mexico to Brazil, from Taiwan to India, China to Korea, from China, Philippines and Malaysia

to Argentina, and Chile to Philippines. The only directed contagion between Lower to Upper return

exists from Thailand to China.

For the global financial crisis period (Figure 5), we observe that amongst the countries, there is ab-

sence of significant contagion effect from any countries in our sample to India and Japan. On the other

hand, the crisis seems to be global in nature as there is contagion effect across countries irrespective

of their geographical locations. Fr example, we observe the presence of significant contagion from

China to Mexico, Thailand and USA for lower to upper return (color green), to Colombia, Peru, and

Taiwan for the lower−lower return (color red) and to Philippines for the upper−lower return (color

blue). Similarly, significant contagion is present from Chile to Argentina, Brazil, Colombia, Mexico,

Peru, Indonesia, Thailand, Taiwan and USA for lower to lower return (color red); to Korea for the

8All other plots are available from the authors on request.
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upper−lower return (color blue).

Given the above set of results, we also try to examine two other events. First, we use only the Asian

countries (China, Indonesia, Korea, Malaysia,Philippines, Taiwan, Thailand and Japan) and the return

data from 1998-2000 for the East Asian Crisis.9 The obtained results show that significant directed

contagion effect from Korea exists for China, Indonesia, Taiwan, and Thailand. On the other hand,

Korean market gets significantly influenced by China and Japan. The Japanese market does not get

significantly affected by any other markets.

Second, we turn our focus to Latin-American countries (Argentina, Brazil, Chile, Colombia, Mex-

ico and Peru). We also include USA here. Our sample runs from 1998 to 2000 broadly covering the

period of Brazilian Crisis.10 We observe significant directed contagion effect is present from Brazil

and Mexico. The Mexican market gets significant contagion from Argentina and USA but not from

the Brazilian market. Countries like Colombia, Chile and Peru does not receive any significant conta-

gion from others and also do not exert any significant contagion to others. The USA market remains

unaffected by any other countries in the sample.

5.2 Moving Window Plots

In this section, we examine contagion effects for specific pair of countries. We concentrate on three

specific pairs: Korea given Thailand (for the “Asian Flu" in 1997), Argentina given Brazil (for the crisis

in Brazil in 1998/1999 and Argentina being the largest trading partner of Brazil), and Mexico given

USA (given the Tequila crisis and the Trade agreement between Mexico and USA). Plots of p-value

against initial time for a period of 4 weeks are shown in Figure 6, Figure 7, and in Figure 8, with a

moving window of 3 years (about 156 data points) and 4 years (about 208 data points), and step of

one month (about 4 data points). p-values below the horizontal line indicate significant contagion at

5% level for the corresponding time period. Here, we vary the quantile (the top and bottom panels of

Figures 4-7) and observe that the result of the test is quite robust to the choice of quantile.

The “Asian Flu" impact is clear from Figure 6. The crisis that has generated in 1997 following the

devaluation of Thai Baht exerts its impact on Korea and the contagion effect is stronger until 2004. This

is in contrast with the results that we have obtained from directed contagion effect test when we use

9The results are not reported but available on request.
10The results are not reported but available on request.
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sample from 2006-2011. Figure 7 demonstrates that for Argentina and Brazil, the impact was strong

during 1998-1999 and then again from late 2004. Note our directed contagion effect tests also have

detected the presence of significant contagion from Argentina to Brazil and vice-versa. For Mexico

and USA, the contagion effect is stronger around year 2005 and it also shows large contagion effects

especially around the sub-prime crisis and the events thereafter.

6 Concluding Comments

Most of the development in recurrence time has been so far with univariate time series. This paper

provides a new idea of RRT method of high or low values for bivariate time series to detect contagion.

We document that our proposed method does not need the i.i.d. assumption and can handle the situation

where the extremes for different components do not occur at the same time.

Our primary intent is to reveal that there is a good source of information on contagion contained in

the recurrence and residual time distribution of a certain characteristic event, if properly chosen. We

have chosen the characteristic event as the returns as well as change in volatility hitting a threshold.

The choice of threshold is data dependent, in that, it is a particular quantile of the data. The definition

of some given percentile for the tail of the distribution is current practice in finance for eg. the value at

risk. Most studies of contagion use fixed threshold, for example Bae et al. (2002). In the real example,

we vary this quantile (the top and bottom panels of fig 4-7 are for different alpha) and observe that the

result of the test is quite robust to the choice of quantile.

Our results show that RRT test helps to detect in which quadrant contagion effect exists. The

simulation study show that the size and the power of the proposed test outperforms the other tests

in general. Third, we demonstrate that many small-sized countries (defined in terms of their market

capitalization) have contagion effects between each other, whereas larger economies like USA and

China cannot be easily affected. Finally the East-Asian and the Latin-American groups seem to be

well-segregated irrespective of our use of return or change in volatility.

Several extensions are possible: first, in order to choose optimal threshold parameters, one can

follow adaptive model selection criterion of Fushing et al. (2012). Other ways to select the threshold

value are suggested in Longin and Solnik (2001) and Danielsson et al. (2001). Another possibility is to

fit bivariate or multivariate VAR model and then apply the RRT method with the estimated residuals.
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Recently Dias et al. (2015) using an extended Hidden Markov Model, show the presence of three

regimes: the bull, the bear and a stable regime with the stable regime occurring most frequently. One

can use this method to detect regime changes. Changes from stable to bull will count as hitting upper

threshold and changes from stable to bear will count as hitting lower threshold. The full development

in our paper can then be carried out by combining our method with that of Dias et al. (2015). It will

detect contagion in the sense of entering bull or bear states in one market drives the same behavior in

the other.

Although we apply the RRT method to financial series, this method can be a valid tool in many

areas, for example, one can apply this to the credit-rating literature to examine the spatial patterns. The

same could be applied to housing price bubbles and the transmission mechanism form one country to

another or from a regional perspective using data from single country. Finally one can examine lead-

lag relationships using high frequency return data (for example see Huth and Abergel (2014)) where

the Residual and Recurrence time method can be used. In all, we are looking forward to a deeper

development of this method and more applications in the future.
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7 Appendix

7.1 Proof of Theorem 3.2

Proof. (a) Using the definition of {Ui}, it follows P(U1 = u1,U2 = u2, ...,UM = uM) = 1

(m
M)
.

Let R := (R1,R2, ...,RM+1) be (M+1) i.i.d. Geometric(q1) random variables, where q1 = 1− p1. Then,

P(R1 = r1,R2 = r2, ...,RM = rM|R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m)

=
P(R1 = r1,R2 = r2, ...,RM = rM,R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m)

P(R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m)

=
qM

1 pm−M
1

qM
1 pm−M

1

(
m
M

) = 1(
m
M

) .

As a result, (U1, . . . ,UM)
D
= (R1,R2, ...,RM|R1 + · · ·+RM ≤ m,R1 + · · ·+RM+1 > m).

(b) For any integer k ≤ M,

P(Ui = ui, i = 1, . . . ,k)

=

(
m−u1
M−1

)
/
(

m
M

)

1
×

(
m−u1−u2

M−2

)
/
(

m
M

)
(

m−u1
M−1

)
/
(

m
M

) ×·· ·

(
m−u1−...−uk

M−k

)
/
(

m
M

)
(m−u1−···−uM−1

M−(k−1)

)
/
(

m
M

)

M≈(1−p1)m
−→ (1− p1)p

u1−1
1 × (1− p1)p

u2−1
1 ×·· ·× (1− p1)p

uk−1
1 .

As a result, for any finite k, {Ui}
k
i=1 is asymptotically

i.i.d.
∼ Geometric(1− p1) as m→∞, M

m
→ (1− p1).

In the same way, {Vj}
k
j=1 is asymptotically

i.i.d.
∼ Geometric(1− p2) as m → ∞, M′

m
→ (1− p2).

(c) In order to find the asymptotic joint distribution for the residual times {Wk}, one would first find the

asymptotic joint distribution for raw residual times {Zk}. Let us define Sk and Tk as the partial sums of

the Ui and Vi series. Also, we shall denote V
˜
= (V1, · · · ,VM).

Note that P(Un = s−t|Sn−1 = t) =
(m−s

M−n)
( m−t

M−n+1)
and P(Un ≥ ν−t|Sn−1 = t) =

(m−ν+1
M−n+1)
( m−t

M−n+1)
. Using this, for

any t < ν , it is straightforward to derive that P(Sn = s|Sn−1 = t,Sn ≥ ν)=
(m−s

M−n)
(m−ν+1

M−n+1)
, which is not depending on t.

This in turn leads to the result, P(Sn = s|Sn−1 < ν ,Sn ≥ ν) =
(m−s

M−n)
(m−ν+1

M−n+1)
.

Using the definition of N in equation 1, we get P(N = n|Tk = ν) =
(ν−1

n−1)(
m−ν+1
M−n+1)

(m
M)

. Thus,

P(SN = s|Tk = ν) =

(
m−s+v−1

M−1

)
(

m
M

) .
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Since Zk = SN −∑
k
j=1Vj +1, for any k < M,

P(Zk = zk|V˜
) = P(SN = zk +ν −1|Tk = ν)

=

(
m−zk−ν+1+ν−1

M−1

)
(

m
M

)

=

(
m−zk
M−1

)
(

m
M

)

M≈(1−p1)m
−→ (1− p1)p

zk−1
1 as m → ∞.

Thus, (Zk|V˜
)

appr.
∼ Geometric(1− p1), which does not depend on k or V

˜
.

Now we proceed to find the asymptotic joint distribution for (W1, . . . ,W
′
k), where k′ is the number of

non-overlapping Z’s as in definition 3.4.

For k′ = 1,W1 = Z1. So we already have the result above. For k′ = 2, one needs to find the conditional

distribution of W2 given W1 and V
˜

. Note that,

W2 =





Z2 if w1 ≤ v2

Z3 if v2 < w1 ≤ v2+ v3

...

In each case, P(W2 = w2|W1 = w1,V
˜
) =

(m−w1−w2
M−2 )

(m−w1
M−1 )

→ (1− p1)p
w2−1
1 . Therefore,

P(W1 = w1,W2 = w2|V˜
) = P(W1 = w1|V˜

)P(W2 = w2|W1 = w1,V˜
)

=

((
m−w1
M−1

)
(

m
M

)
)
·

((
m−w1−w2

M−2

)
(

m−w1
M−1

)
)

→ (1− p1)p
w1−1
1 · ((1− p1)p

w2−1
1 ).

By applying the same technique P(Wi+1 = wi+1|W1 = w1, · · · ,Wi = wi,V˜
)→ ((1− p1)p

wi+1−1
1 ) where

w=∑
i
j=1 w j. In conclusion, P(W1 =w1, · · · ,Wk′ =wk′ |V˜

)→ ((1− p1)p
w1−1
1 ) ·((1− p1)p

w2−1
1 ) · · ·((1−

p1)p
wk′−1

1 ). Thus, {Wk} are asymptotically i.i.d. Geometric(1− p1).

�
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7.2 Proof of Theorem 3.4

proof. (a) This is obvious by using the “memoryless" property of exponential distribution.

(b) Define {Zk} to be raw residual times as in section 2.1 and as shown in Figure 2

P(Z1 = z1, . . . ,Zn = zn|Vj, j = 1, . . . ,n)

=





if zn−1 <Vn :

P(Z1 = z1, . . . ,Zn−1 = zn−1|Vj, j = 1, . . . ,n−1)×

×P(Zn = zn|Vj, j = 1, . . . ,n),

if zn−1 ≥Vn :

P(Z1 = z1, . . . ,Zn−1 = zn−1|Vj, j = 1, . . . ,n−1) (note : zn−1 +Vn = zn)

= P(Z1 = z1, . . . ,Zn−1 = zn−1|Vj, j = 1, . . . ,n)×

×P(Zn = zn|Vj, j = 1, . . . ,n)
I{zn−1<Vn}

= P(Z1 = z1|V1) ·P(Z2 = z2|V1,V2)
I{z1<V2} ×·· ·

· · ·×P(Zn = zn|Vj, j = 1, . . . ,n)
I{zn−1<Vn}

By using “memoryless” property for exponential random variable, one would have

P(Zk = zk|Vj, j = 1, . . . ,k) = λ1e−λ1zk

Therefore,

P(Z1 = z1, . . . ,Zn = zn|Vj, j = 1, . . . ,n)

= (λ1e−λ1z1)(λ1e−λ1z2)I{z1<V2} · · ·(λ1e−λ1zn)
I{zn−1<Vn}

Then, the distribution for residual times {Wk} is

{Wk}
i.i.d.
∼ exp(λ1).

�
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Table 1: Descriptive Statistics

Country Mean Median SD Skewness Kurtosis J-B Test Statistics

Argentina 0.075 0.329 5.287 -0.732 5.975 1562.590

Brazil 0.242 0.595 5.777 -0.578 3.037 435.987

Chile 0.149 0.293 3.456 -1.275 12.288 6503.458

China -0.064 0.122 4.822 -0.190 2.360 235.976

Colombia 0.236 0.224 4.056 -0.726 5.088 1156.163

India 0.126 0.393 4.067 -0.353 1.998 185.495

Indonesia 0.100 0.259 6.570 -0.926 17.279 12469.401

Japan -0.006 -0.028 2.961 -0.026 1.599 105.708

Korea 0.114 0.330 5.498 -0.933 12.071 6160.741

Malaysia 0.078 0.246 4.194 -0.982 22.510 21082.735

Mexico 0.144 0.515 4.547 -0.781 6.655 1929.592

Peru 0.265 0.219 4.328 -0.211 4.242 750.403

Philippines 0.012 0.133 4.135 -0.618 4.750 994.692

Taiwan 0.048 0.245 3.944 0.052 1.846 141.158

Thailand 0.002 0.061 5.188 -0.068 3.907 631.049

USA 0.109 0.217 2.491 -0.758 6.549 1865.783

Note: SD refers to standard deviation. The J −B test statistic is distributed as a χ2

and the critical value is 5.99 at 5% level.
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Table 2: Correlation matrix
Argen- Bra- Chile Colo- Mex- Peru China India Indo- Korea Mala- Phili- Tai- Thai- USA Japan

tina zil mbia ico nesia ysia ppines wan land

Arg 1.000 0.559 0.518 0.302 0.585 0.486 0.304 0.296 0.288 0.340 0.215 0.326 0.288 0.334 0.455 0.251

Bra 0.559 1.000 0.601 0.361 0.636 0.548 0.341 0.361 0.309 0.395 0.206 0.360 0.334 0.329 0.544 0.308

Chile 0.518 0.601 1.000 0.404 0.564 0.528 0.398 0.371 0.336 0.366 0.258 0.390 0.359 0.381 0.526 0.291

Colombia 0.302 0.361 0.404 1.000 0.353 0.380 0.209 0.299 0.263 0.226 0.125 0.283 0.214 0.226 0.350 0.166

Mexico 0.585 0.636 0.564 0.353 1.000 0.520 0.380 0.359 0.293 0.410 0.288 0.395 0.341 0.347 0.637 0.319

Peru 0.486 0.548 0.528 0.380 0.520 1.000 0.342 0.336 0.285 0.337 0.199 0.328 0.321 0.313 0.440 0.289

China 0.304 0.341 0.398 0.209 0.380 0.342 1.000 0.368 0.358 0.410 0.399 0.432 0.440 0.418 0.368 0.361

India 0.296 0.361 0.371 0.299 0.359 0.336 0.368 1.000 0.279 0.397 0.258 0.279 0.343 0.298 0.370 0.257

Indonesia 0.288 0.309 0.336 0.263 0.293 0.285 0.358 0.279 1.000 0.417 0.477 0.532 0.278 0.522 0.257 0.267

Korea 0.340 0.395 0.366 0.226 0.410 0.337 0.410 0.397 0.417 1.000 0.314 0.371 0.444 0.471 0.419 0.415

Malaysia 0.215 0.206 0.258 0.125 0.288 0.199 0.399 0.258 0.477 0.314 1.000 0.456 0.340 0.445 0.240 0.279

Phili 0.326 0.360 0.390 0.283 0.395 0.328 0.432 0.279 0.532 0.371 0.456 1.000 0.359 0.502 0.326 0.299

Taiwan 0.288 0.334 0.359 0.214 0.341 0.321 0.440 0.343 0.278 0.444 0.340 0.359 1.000 0.363 0.339 0.353

Thailand 0.334 0.329 0.381 0.226 0.347 0.313 0.418 0.298 0.522 0.471 0.445 0.502 0.363 1.000 0.290 0.363

USA 0.455 0.544 0.526 0.350 0.637 0.440 0.368 0.370 0.257 0.419 0.240 0.326 0.339 0.290 1.000 0.346

Japan 0.251 0.308 0.291 0.166 0.319 0.289 0.361 0.257 0.267 0.415 0.279 0.299 0.353 0.363 0.346 1.000

2
8



Table 3: Power, Dependent extremes with Independent

non-extremes

Method RRT CLM NP Fish KS ChiSq

Power 1 0.358 0.223 0.092 0.130 0.082

Table 4: Size, Power and Rejection Rate. Normal Positively correlated.

Method RRT CLM NP Fish KS ChiSq

Size 0.042 0.051(0.176) 0.068 0.048 0.035 0.032

Power 0.954 1.000(0.185) 0.870 0.144 0.467 0.329

Rejection Rate 0.161 1.000(0.165) 0.000 0.379 0.667 0.474

Note: Numbers in brackets denote proportion of times the CLM algorithm

gave error messages as the likelihood could not be maximized.

Table 5: Size, Power and Rejection Rate. GARCH Mex | USA

Method RRT CLM NP Fish KS ChiSq

Size 0.038 0.066(0.119) 0.067 0.050 0.060 0.055

Power 0.911 1.000(0.153) 1.000 0.169 0.876 0.785

Rejection Rate 0.195 0.823(0.156) 0.924 0.111 0.533 0.419

Note: Numbers in brackets denote proportion of times the CLM algorithm

gave error messages as the likelihood could not be maximized.
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Table 6: Directed Contagion Effect in Return: p-values with 0.1 vs 0.1 threshold
Argen- Bra- Chile Colo- Mex- Peru China India Indo- Korea Mala- Phili- Tai- Thai- USA Japan

tina zil mbia ico nesia ysia ppines wan land

Arg NA 0.06 0.32 0.04 0.10 0.01 0.30 0.18 0.11 0.25 0.56 0.05 0.13 0.11 0.99 0.31

Bra 0.06 NA 0.38 0.02 0.03 0.00 0.22 0.10 0.14 0.14 0.34 0.05 0.06 0.01 0.50 0.26

Chile 0.07 0.13 NA 0.13 0.15 0.01 0.44 0.22 0.32 0.52 0.65 0.10 0.11 0.07 0.84 0.22

Colombia 0.18 0.01 0.84 NA 0.08 0.00 0.42 0.36 0.19 0.53 0.63 0.10 0.15 0.03 0.91 0.99

Mexico 0.09 0.07 0.66 0.08 NA 0.00 0.93 0.34 0.37 0.55 0.98 0.39 0.35 0.10 0.28 0.24

Peru 0.02 0.00 0.23 0.02 0.02 NA 0.39 0.17 0.15 0.08 0.92 0.02 0.18 0.01 0.84 0.25

China 0.13 0.03 0.42 0.24 0.23 0.01 NA 0.24 0.13 0.19 0.39 0.02 0.07 0.03 0.80 0.30

India 0.18 0.06 0.71 0.05 0.24 0.04 0.30 NA 0.21 0.38 0.39 0.17 0.27 0.12 0.56 0.62

Indonesia 0.30 0.05 0.70 0.12 0.20 0.03 0.10 0.17 NA 0.51 0.41 0.06 0.06 0.01 0.90 0.42

Korea 0.17 0.21 0.24 0.38 0.20 0.05 0.43 0.45 0.37 NA 0.43 0.10 0.07 0.16 0.69 0.22

Malaysia 0.13 0.29 0.39 0.23 0.23 0.06 0.17 0.25 0.30 0.35 NA 0.09 0.12 0.10 0.93 0.20

Phili 0.20 0.05 0.38 0.03 0.13 0.01 0.33 0.24 0.07 0.29 0.80 NA 0.05 0.03 0.92 0.31

Taiwan 0.19 0.07 0.46 0.13 0.21 0.03 0.17 0.22 0.12 0.21 0.43 0.05 NA 0.02 0.78 0.09

Thailand 0.40 0.01 0.98 0.02 0.04 0.00 0.69 0.41 0.22 0.20 0.87 0.42 0.18 NA 0.91 0.19

USA 0.12 0.30 0.66 0.29 0.34 0.13 0.53 0.54 0.47 0.61 0.71 0.28 0.55 0.55 NA 0.55

Japan 0.17 0.17 0.70 0.15 0.25 0.08 0.83 0.43 0.28 0.99 0.63 0.73 0.19 0.10 0.80 NA
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Table 7: Directed Contagion Effect in Volatility: p-values with 0.85 vs 0.85 threshold
Argen- Bra- Chile Colo- Mex- Peru China India Indo- Korea Mala- Phili- Taiwan Thai- USA Japan

tina zil mbia ico nesia ysia ppines land

Arg NA 0.02 0.68 0.44 0.55 0.30 0.1 0.11 0.84 0.94 0.98 0.10 0.47 0.17 0.73 0.31

Bra 0.06 NA 0.55 0.04 0.50 0.04 0.03 0.01 0.77 0.96 0.79 0.02 0.58 0.11 0.64 0.3

Chile 0.03 0.03 NA 0.32 0.54 0.14 0.11 0.09 0.84 0.86 0.36 0.05 0.51 0.23 0.88 0.18

Colombia 0.2 0.14 0.79 NA 0.46 0.31 0.07 0.10 0.74 0.73 0.76 0.04 0.28 0.20 0.99 0.67

Mexico 0.32 0.08 0.58 0.24 NA 0.20 0.16 0.26 0.69 0.85 0.65 0.65 0.28 0.40 0.47 0.4

Peru 0.060 0.03 0.66 0.12 0.31 NA 0.04 0.46 0.91 0.48 0.89 0.07 0.50 0.41 0.82 0.38

China 0.28 0.08 0.52 0.75 0.46 0.04 NA 0.06 0.75 0.46 0.81 0.05 0.29 0.23 0.66 0.3

India 0.91 0.10 0.59 0.21 0.99 0.21 0.04 NA 0.62 0.84 0.43 0.03 0.36 0.28 0.69 0.9

Indonesia 0.69 0.41 0.88 0.39 0.66 0.51 0.43 0.42 NA 0.87 0.69 0.29 0.25 0.27 0.89 0.59

Korea 0.52 0.40 0.38 0.43 1.00 0.52 0.20 0.18 0.85 NA 0.85 0.14 0.34 0.33 0.89 0.29

Malaysia 0.48 0.15 0.82 0.94 0.65 0.14 0.00 0.25 0.97 0.56 NA 0.22 0.30 0.26 0.93 0.46

Phili 0.24 0.06 0.71 0.22 0.52 0.06 0.00 0.20 0.71 0.88 0.31 NA 0.72 0.10 0.65 0.3

Taiwan 0.48 0.11 0.42 0.18 0.77 0.28 0.16 0.40 0.85 0.61 0.64 0.13 NA 0.05 0.56 0.05

Thailand 0.81 0.11 0.63 0.44 0.53 0.08 0.11 0.16 0.50 0.74 0.45 0.34 0.21 NA 0.78 0.15

USA 0.27 0.21 0.52 0.42 0.67 0.39 0.23 0.40 0.49 0.76 0.53 0.28 0.54 0.88 NA 0.87

Japan 0.47 0.38 0.44 0.21 0.76 0.39 0.30 0.53 0.95 0.86 0.48 0.21 0.93 0.11 0.58 NA
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Figure 1: Percentage return series of Korea and Thailand in Oct-Nov 2008

Figure 2: Recurrence, Raw Residual and Residual Times
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Figure 3: Rolling Average Returns for Different Country Pairs: 52 week Window. The pairs considered

from top to bottom are: (1) Argentina-Brazil (2) Korea-Thailand (3) Mexico-USA and (4) Korea-USA.
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Figure 4: Directed Contagion Effects: Asian Crisis
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Figure 5: Directed Contagion Effects: Global Financial Crisis
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Figure 6: Moving Window Plot for Korea | Thailand
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Figure 7: Moving Window Plot for Argentina | Brazil
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Figure 8: Moving Window Plot for Mexico | USA.
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A Censored Likelihood Method

As suggested in Tawn (1990), the joint distribution above a threshold is assumed to be of the form,

F(x1, . . . ,xD) = exp{−V (−1/log(1−λ1t1(x1)), . . . ,−1/log(1−λDtD(xD)))},

for x j > u j, j = 1, . . . ,D. where t j(x j) = {1+ξ j(x j −u j)/σ j}
−1/ξ j

+ , and λ j is some small probability

such that the thresholds u j are taken to be the 1−λ j quantiles of the marginal distributions.

A particular dependence structure for V , the multivariate logstic structure is defined as

V (z1, . . . ,zD) = (z
−1/α
1 + · · ·+ z

−1/α
D )α ,

where α is the dependence parameter (0 < α ≤ 1).

Remark A.1. (a) When α = 1, V (z1, . . . ,zD) = z1 + · · ·+ zD, the marginal variables are independent.

(b) When α → 0, the marginal variables are totally dependent. (c) The dependence weakens as α

increases from 0 to 1.

The parameters Θ = ({λ j,ξ j,σ j}
D
j=1) can be estimated by maximum likelihood estimation. How-

ever, notice that the above model is only specified on the region [u,∞). The likelihood cannot be

obtained directly. Instead, the observations such that x j < u j need to be censored.

Let J = {J1, . . . ,Jm} ⊂ {1, . . . ,D}, then

L(x) ∝ P(Xj ∈ dxj, j ∈ J;Xi ≤ ui, i /∈ J) ∝
∂ mF

∂xj1
· · ·∂xjm

(x∨u)
.

Define the total score,

U(n) =
n

∑
i=1

∂

∂α
logLi(Θ̃,α)|α=1,

where Θ̃ is the maximizer of L(xi
n
i=1;Θ,1).

As shown by the Proposition 1 in Ledford and Tawn (1996),

Theorem A.1. If the marginal variables are independent, then U(n)/cn → N(0,1) in distribution as

n → ∞, where cn = ((n logn)/2)1/2.

The above theorem is used to test independence in simulation study.
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B Extremogram

In the paper of Davis and Mikosch (2009), the authors define the extremogram, which depends only

on the extreme events in the series, as an analog of autocorrelation function. The details are as follows.

Let (Xt) be a strictly stationary, regularly varying sequence of a d dimension random vector (with

index α > 0), i.e., for any h ≥ 1, the vector Yh = vec(X1, . . . ,Xh) satisfies

P(x−1Yh ∈ ·)

P(|Yh|> x)

v
→ µh(·) (6)

where µh(tS) = t−α µh(S), t > 0, for any Borel set S ⊂ R̄
hd\{0} = R̄

hd
0 , and

v
→ means vague conver-

gence.

If P(|X| > an) ∼ n−1 for a sequence an ↑ ∞, then formula (6) holds if and only if there exist

constants bh > 0 such that nP(a−1
n Yh ∈ ·)

v
→ bhµh(·) = υh(·), then,

nP(a−1
n X0 ∈ A,a−1

n Xh ∈ B)→ υh+1(A× R̄
d(h−1)
0 ×B) = γAB(h).

Let A,B be two Borel sets, bounded away from zero, then

n cov(I{a−1
n X0∈A}, I{a−1

n Xh∈B})∼ γAB(h).

Define the extremogram at lag h to be

ρAB(h) =
γAB(h)

υ1(A)
= lim

n→∞

P(a−1
n X0 ∈ A,a−1

n Xh ∈ B)

P(a−1
n X ∈ A)

. (7)

A natural estimator of ρAB(h) is the empirical extremogram

ρ̂AB(h) =
∑

n−h
t=1 I{a−1

m Xt∈A, a−1
m Xt+h∈B}

∑
n
t=1 I{a−1

m Xt∈A}

, h = 0,1, . . . .

We can have several values for am, say 0.90, 0.95, 0.99 empirical quantile of the absolute values of the

series, and A,B can chosen to be (1,∞),(−∞,−1) or (−∞,−1)∪ (1,∞).
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C Some Other Methods in Testing Tail Independence

In Falk and Michel (2006), the authors introduce four methods in testing tail independence in the

extreme value model setting. The basic idea is as follows.

Let (X ,Y ) be a random vector in (−∞,0]2, whose upper tail follows a bivariate extreme value

distribution G with reverse exponential margins. They show that conditional distribution function of

X +Y , given that X +Y > c, converges to F(t) = t2, t ∈ [0,1], as c ↑ 0 if and only if X ,Y are tail

independent (or asymptotically independent), i.e. limc↑0 P(Y > c|X > c) = 0. Otherwise, the limit is

F(t) = t. Utilizing this property, they gives us four kinds of tests, Neyman-Pearson test, Fisher’s κ

test, Kolmogorov-Smirnov test, and Chi-square goodness-of-fit test.

Let (X1,Y1), . . . ,(Xn,Yn) be n iid samples of (X ,Y ). For any fixed c < 0, we only consider samples

Xi +Yi satisfying Xi +Yi > c, and denote these by Z1,Z2, . . . ,ZK(n) in the order of their outcomes. Note

that

Fc(t) := P(X +Y > tc|X +Y > c) = t2(1+O(c)),0 ≤ t ≤ 1.

Then, Zi/c are iid ∼ Fc, and for c close to 0, Fc is independent of K(n).

For the Neyman-Pearson test, we want to test whether Zi/c, i = 1,2, . . . is distributed as null hy-

pothesis F(t) = t2 or alternative F(t) = t,0 ≤ t ≤ 1. Assume that K(n) = m > 0, the test statistics is

based on log likelihood ratio,

T (Z1, . . . ,Zm) := log

(
Πm

i=1

1

2Zi/c

)
.

and null hypothesis is rejected if T gets too large. Note that −2log(Zi/c) has a distribution function

1−exp(−x),x ≥ 0, under null hypothesis, thus T has distribution function 1−exp(−x)∑0≤i≤m−1 xi/i!,

under null hypothesis. The corresponding p-value is

pNP ≃= Φ

(
2∑

m
i=1 log(Zi/c)+m

m1/2

)
.

For Fisher’s κ test, assuming K(n)=m, let Ui :=Fc(Zi/c),1≤ i≤m. The corresponding order statistics
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are denoted by Ui:m. Then, define the Fisher’s κ statistic to be

κm := (m+1) max
j≤m+1

S j where S j =U j:m −U j−1:m,1 ≤ j ≤ m+1.

Note that given K(n) = m > 0, κm has distribution function

P(κm ≤ x) = Gm+1(x/(m+1)),

where Gm+1(x) =
m+1

∑
j=0

(−1) j

(
m+1

j

)
(max(0,1− jx))m,x > 0.

Then, the null hypothesis of tail independence is rejected for small values of the p-value given by

pκ := 1−Gm+1

(
κm

m+1

)
.

For Kolmogorov-Smirnov test, assuming K(n) = m > 0, the Kolmogorov-Smirnov statistic is given by

∆m := m1/2 sup
t∈[0,1]

|F̂m(t)− t|,

where F̂m(t) = m−1 ∑
m
i=1 1[0,t](Ui). Then, the null hypothesis is rejected if the approximate p-value

pKS = 1−KD(∆m)

is small, where KD is the Kolomogorov distribution.

For Chi-square goodness-of-fit test, assuming K(n) = m > 0 and dividing the interval [0,1] into k

consecutive and disjoint intervals I1, . . . , Ik, the test statistic is

χ2
m,k :=

k

∑
i=1

(mi −mpi)
2

mpi
,

where mi is the number of observations among U1, . . . ,Um that fall into the interval Ii and pi is the

length of Ii. If m is large and mpi > 5,1 ≤ i ≤ k, the null hypothesis is rejected for small values of the

approximate p-value

pχ2 = 1−χ2
k−1(χ

2
m,k).
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