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Continuous-variable measurement-device-independent quantum key distribution:

Composable security against coherent attacks
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We present a rigorous security analysis of continuous-variable measurement-device-independent quantum key

distribution (CV MDI QKD) in a finite-size scenario. The security proof is obtained in two steps: by first assessing

the security against collective Gaussian attacks, and then extending to the most general class of coherent attacks

via the Gaussian de Finetti reduction. Our result combines recent state-of-the-art security proofs for CV QKD with

findings about min-entropy calculus and parameter estimation. In doing so, we improve the finite-size estimate

of the secret key rate. Our conclusions confirm that CV MDI protocols allow for high rates on the metropolitan

scale, and may achieve a nonzero secret key rate against the most general class of coherent attacks after 107–109

quantum signal transmissions, depending on loss and noise, and on the required level of security.

DOI: 10.1103/PhysRevA.97.052327

I. INTRODUCTION

Quantum communication technologies, and in particular

quantum key distribution (QKD), are rapidly progressing from

research laboratories towards real-world implementations. The

ultimate goal is building a network of quantum devices (quan-

tum internet) enabling unconditionally secure communications

on the global scale [1–4]. To this end, QKD has been recently

extended to a scenario where two honest users (Alice and

Bob) exploit the mediation of an untrusted relay, operated by

the eavesdropper (Eve), to establish a secure communication

channel [5,6]. This remarkable feature is made possible by the

working mechanism of the relay itself, which activates secret

correlations on the users’ remote stations by performing Bell

detection on the incoming signals and publicly announcing

the results [6]. This architecture has been called measurement-

device-independent (MDI) QKD because, as such, the security

of the communication does not rely on the assumption that the

measurement devices (which are more exposed to side-channel

attacks than other devices) are trusted [5,6].

Protocols exploiting quantum continuous variables have

attracted considerable attention for their potential of boosting

the communication rate and for their employability across

midrange (metropolitan) distances [6,7]. The key rates achiev-

able by continuous-variable (CV) QKD protocols are not far

from the ultimate repeaterless bound for private communica-

tion, which, for a lossy line of transmissivity η is − log (1 − η)

bits per use [8]. The security of CV QKD, which is very

well established under Gaussian attacks and in the asymptotic

regime [9], has been recently generalized to the most general

class of coherent attacks as well as to the finite-size setting

[10–14]. In this landscape, the problem of establishing the

secret key rates achievable by CV MDI QKD in the finite-size

setting has not been yet explicitly addressed.

In this paper we fill this gap and provide a rigorous

composable-security proof of the CV MDI QKD protocol

proposed in Ref. [6] (this proof can then be extended to

tripartite [15] and multipartite CV MDI protocols [16]). The

security of CV MDI QKD against collective attacks can be

obtained along the lines of Ref. [10]. Then, the extension to

the most general class of coherent attacks can be obtained

by exploiting the recently introduced Gaussian de Finetti

reduction [11]. Here we apply to CV MDI QKD and improve

the proof techniques of Ref. [10]:

(1) We present a simpler analysis of parameter estimation

that holds under general coherent attacks. Our analysis exploits

the recently proven optimality of Gaussian attacks in the finite-

size scenario [11] to simplify parameter estimation.

(2) We show that in CV MDI protocols the parameter

estimation routine can be performed locally by the legitimate

users with almost no public communication.

(3) We improve the secret-key rate estimates of Ref. [10]

by exploiting a different entropic inequality.

The paper develops as follows. We start in Sec. II by

reviewing the CV MDI QKD protocol of Ref. [6]. Section III

is devoted to our results about parameter estimation and its sta-

tistical analysis. In Sec. IV we present an improved estimation

of the secret-key rate obtained by applying a new entropic

inequality. A comparison with previous works is presented

in Sec. V. To make our results more concrete, numerical

examples are presented in Sec. VI. We finally discuss the

relation between security proof and experimental realization

and possible improvements in Sec. VII. Finally, conclusions

are presented in Sec. VIII.

II. DESCRIPTION OF THE PROTOCOL

In this section, we review the CV MDI QKD protocol

introduced in Ref. [6]. The protocol develops in five steps (see

Fig. 1):

(1) Coherent states preparation. Alice and Bob locally

prepare 2n coherent states, whose complex amplitudes α′ =
(q ′

A + ip′
A)/2 and β ′ = (q ′

B + ip′
B)/2 are drawn independent

and identically distributed (i.i.d.) from circular symmetric,

zero-mean Gaussian distributions with variance V A
M and V B

M ,
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FIG. 1. The scheme of the CV MDI QKD protocol as described

in detail in Sec. II. Single lines represent bosonic modes, double lines

classical variables. Time evolves from left to right. Alice and Bob

initially prepare coherent states by applying displacement operators

DA, DB to the vacuum state |0〉, according to the value of their local

classical variables. The coherent states are collected by the relay that,

through some (unknown) physical transformation, outputs a classical

variable Z and gives to Eve quantum side information. Finally, Alice

and Bob apply classical displacement dA, dB , conditioned on the value

of Z, to their local classical variables.

respectively [17]. The initial random variables of Alice and

Bob are respectively denoted as X′ = (q ′
A,p′

A), Y ′ = (q ′
B ,p′

B).

(2) Operations of the relay. The 2n coherent states are sent

to the relay. For each pair of coherent states received the relay

publicly announces a complex value γ = (qZ + ipZ)/2.

(3) Parameter estimation. Alice and Bob estimate the co-

variance matrix (CM) of the variables (q ′
A,p′

A,q ′
B ,p′

B ,qZ,pZ).

(4) Conditional displacements. Alice and Bob define the

displaced variables α = (qA + ipA)/2 and β = (qB + ipB)/2

such that

qA = q ′
A − gq ′

A
(γ ), (1)

pA = p′
A − gp′

A
(γ ), (2)

qB = q ′
B − gq ′

B
(γ ), (3)

pB = p′
B − gp′

B
(γ ), (4)

where g⋆, for each ⋆ = q ′
A,p′

A,q ′
B ,p′

B , is an affine function of

γ . As shown in Ref. [19], the optimal choice is to define the

functions as

g⋆(γ ) = u⋆qZ + v⋆pZ, (5)

where [20]

u⋆ =
〈⋆ qZ〉

〈

p2
Z

〉

− 〈⋆ pZ〉〈qZpZ〉
〈

p2
Z

〉〈

q2
Z

〉

− 〈qZpZ〉2
, (6)

v⋆ =
〈⋆ pZ〉

〈

q2
Z

〉

− 〈⋆ qZ〉〈qZpZ〉
〈

q2
Z

〉〈

p2
Z

〉

− 〈qZpZ〉2
. (7)

We remark that the parameters u⋆, v⋆ can be computed directly

from the estimated CM.

(5) Classical postprocessing. The variables X = (qA,pA),

Y = (qB,pB) represent the local raw keys of Alice and Bob,

respectively. To conclude the protocol, the raw keys X, Y are

postprocessed for error correction and privacy amplification.

We assume without loss of generality that error reconciliation

is on Alice’s raw key.

The CV MDI QKD protocol described above has two

main characteristic features. The first is that Alice and Bob

do not apply any measurement, as the only measurement

is performed by the untrusted relay. This property defines

the protocol as MDI [5,6]. The second feature is that the

correlations between Alice and Bob are generated through the

variable Z announced by the relay. As explained in detail in

Ref. [19], this property allows Alice and Bob to do parameter

estimation with a negligible amount of public communication

[21]. Therefore, they can exploit the whole raw key for both

parameter estimation and secret-key extraction.

Finally we remark that, although the variables X and Y have

in principle infinite cardinality, in practice they are always

specified by a finite number of digits. Furthermore, for the

finite-size analysis of the protocol (as well as for other practical

issues), one needs to map the unbounded and continuous

variables X, Y to some discrete and bounded variables X̄,

Ȳ . The mappings X → X̄, Y → Ȳ can be realized by an

analog-to-digital conversion (ADC) algorithm. We therefore

assume that X̄ and Ȳ are discrete variables with cardinality

22d (i.e., d bits per quadrature).

III. PARAMETER ESTIMATION

In this section we discuss how Alice and Bob can estimate

the CM of the variables (qA,pA,qB ,pB). Without loss of

generality we can assume that these variables have zero mean

and the CM has the form

VAB =

 ⎛
⎜

⎜

⎝

q2
A qApA qAqB qApB

pAqA p2
A pAqB pApB

qBqA qBpA q2
B qBpB

pBqA pBqB pBqB p2
B

⎞

⎟

⎟

⎠

!
=

(

xI zI

zI yI

)

,

(8)

where I = diag(1,1), and

x =
〈

q2
A

〉

+
〈

p2
A

〉

2
, (9)

y =
〈

q2
B

〉

+
〈

p2
B

〉

2
, (10)

z =
〈qAqB〉 + 〈pApB〉

2
. (11)

Clearly, the entries on the principal diagonal of (8) can be

estimated locally by either Alice or Bob. It remains to estimate

the off-diagonal term z. This can be done in three different

ways:

(1) The traditional way is that Alice and Bob exchange

part of the data via a public channel to estimate the correlation

terms 〈qAqB〉 and 〈pApB〉. Clearly, in order to do so they have

to disclose part of the raw key, thus reducing the final secret-

key rate. Suppose that, over a total of n signals exchanged,

Alice and Bob usem < n signals for parameter estimation, thus

allowing an error in the estimation of the order of m−1/2. Then

only the remaining n − m < n signals are available for secret-

key extraction (i.e., error correction and privacy amplification).

(2) As noted in Ref. [10] (see also Ref. [22]) a rough

estimate of the signal-to-noise ratio is sufficient for Alice

and Bob to run the error correction routine before performing

052327-2



CONTINUOUS-VARIABLE MEASUREMENT-DEVICE- … PHYSICAL REVIEW A 97, 052327 (2018)

parameter estimation. Then, a verification step is done to ensure

that the initial estimate was accurate enough. In this way

Alice and Bob can exploit virtually all the raw data for key

generation.

(3) For our MDI protocol Alice and Bob can exploit the

relations (see Sec. II)

qA = q ′
A − uq ′

A
qZ − vq ′

A
pZ, (12)

pA = p′
A − up′

A
qZ − vp′

A
pZ, (13)

qB = q ′
B − uq ′

B
qZ − vq ′

B
pZ, (14)

pB = p′
B − up′

B
qZ − vp′

B
pZ, (15)

to obtain

z =
〈qAqB〉 + 〈pApB〉

2

= w1

〈

q2
Z

〉

+ w2

〈

p2
Z

〉

+ w3〈qZpZ〉, (16)

where we have defined

w1 := 1
2

(

uq ′
A
uq ′

B
+ up′

A
up′

B

)

, (17)

w2 := 1
2

(

vq ′
A
vq ′

B
+ vp′

A
vp′

B

)

, (18)

w3 := 1
2

(

uq ′
A
vq ′

B
+ vq ′

A
uq ′

B
+ up′

A
vp′

B
+ vp′

A
up′

B

)

. (19)

Since the variances 〈qZ〉, 〈pZ〉 and the covariance 〈qZpZ〉
can be locally computed by the users, then this implies that

Alice and Bob can do parameter estimation without publicly

announcing their local data [21]. In conclusion, in this way

Alice and Bob can exploit all their raw data for both parameter

estimation and secret-key extraction.

Here we follow the latter approach because, in contrast

with the first approach and in analogy with the second one,

it requires only a constant (and hence negligible) amount

of public communication. Furthermore, the third approach

exploits the very structure of the MDI protocol and therefore

appears to be the most natural in this context.

Statistical analysis of parameter estimation

We are then left with the problem of estimating the con-

fidence interval associated with the statistical estimation of

the CM of (qA,pA,qB ,pB). It is worth stressing that this

is a remarkably complex problem in the case of general

collective attacks (see Ref. [10]). By contrast, this task becomes

straightforward under the assumption of collective Gaussian

attacks. Unlike other authors [23–25], our analysis of parame-

ter estimation under collective Gaussian attacks does not rely

on the central limit theorem and is therefore mathematically

rigorous in the finite-size setting (see instead Refs. [26,27] for

a statistical analysis of parameter estimation in CV MDI QKD

that exploits the central limit theorem).

Our analysis is based on the assumption that the

(q ′
A,p′

A,q ′
B ,p′

B,qZ,pZ) are Gaussian variables. This assump-

tion comes with no loss of generality because

(i) The variables (q ′
A,p′

A,q ′
B ,p′

B) are Gaussian by definition

of the protocol.

(ii) The optimality of Gaussian attacks in the finite-size

scenario was established in Ref. [11]. This implies that the

variables (qA,pA,qB ,pB) can be assumed to be Gaussian

without loss of generality.

(iii) In principle, the variables (qZ,pZ) are not necessarily

Gaussian. Notwithstanding, by inverting Eqs. (12)–(15) we can

write (qZ,pZ) as linear combinations of (qA,pA,qB ,pB) and

(q ′
A,p′

A,q ′
B ,p′

B). Since the latter are assumed to be Gaussian,

and since a linear combination of Gaussian variables is also

Gaussian, it follows that (qZ,pZ) are Gaussian variables too.

First consider the estimation of, say, 〈q2
Z〉, whose estimator

is the empirical variance n−1
∑n

j=1 q2
Zj . Given that qZj are

i.i.d. Gaussian variables [28], then the empirical variance

is distributed (up to rescaling) according to a χ -squared

distribution. Therefore, a confidence interval can be readily

obtained applying the cumulative distribution function of the

χ -squared distribution, or tail bounds for it.

Second, consider the estimation of the correlation 〈qZpZ〉.
We apply the identity

〈qZpZ〉 = 1
4
〈(qZ + pZ)2〉 − 1

4
〈(qZ − pZ)2〉, (20)

whose estimator

1

n

n
∑

j=1

qZjpZj =
1

4n

n
∑

j=1

(qZj + pZj )2 −
1

4n

n
∑

j=1

(qZj − pZj )2

(21)

is distributed as the sum of χ -squared variables. Therefore, for

each χ -squared variable, we can compute a confidence interval

and then obtain a confidence interval for the quantities x, y,

and z in Eq. (8) by error propagation.

An explicit calculation of the confidence intervals is pre-

sented in Appendix C.

IV. IMPROVED RATE ESTIMATION

The security proof against collective or Gaussian attacks

can be obtained along the lines of Ref. [10]. Here we present

an improved estimation of the conditional smooth min-entropy

obtained by applying a new entropic inequality.

We assume without loss of generality that the reconciliation

is on Bob’s variable Ȳ . The number of (approximately) secret

bits that can be extracted from the raw key is lower bounded

by the smooth min-entropy of Ȳ , conditioned on the quantum

state of the eavesdropper E′ as well as on the classical variable

Z [29]:

sǫ+ǫs+ǫEC

n � H
ǫs

min(Ȳ |E′Z)ρn − leakEC(n,ǫEC) + 2 log (2ǫ),

(22)

where we have also subtracted the information leakage

leakEC(n,ǫEC) due to error correction (EC). The security

parameter ǫ + ǫs + ǫEC comprises three terms: ǫ comes from

the leftover hash lemma, ǫs is the smoothing parameter entering

the smooth conditional min-entropy, and ǫEC is the error in the

error-correction routine. Since conditioning does not increase

the entropy, for any purification ρn
ABE of ρn

ABE′Z we have

H
ǫs

min(Ȳ |E′Z)ρn � H
ǫs

min(Ȳ |E)ρn , (23)
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which implies

sǫ+ǫs+ǫEC

n � H
ǫs

min(Ȳ |E)ρn − leakEC(n,ǫEC) + 2 log (2ǫ).

(24)

A crucial point of the security proof is the estimation of

the conditional smooth min-entropy H
ǫs

min(Ȳ |E)ρn . Here we

present an approach that yields a bound on the min-entropy

that is tighter than the one of Ref. [10]. For collective (or

collective Gaussian) attacks, the state ρn is a tensor power;

i.e., ρn = ρ⊗n. On the other hand, the state that is actually

used for key generation is the one conditioned upon error

correction being successful. Because error correction has a

nonzero failure probability, the conditional state is no longer

guaranteed to be a tensor power. Indeed, the conditioned state

has the form

τ n = p−1�ρ⊗n�, (25)

where � is a projector operator (projecting on the subspace in

which error correction does not abort), and p = Tr(�ρ⊗n�)

is the probability of successful error correction. Let us recall

that the security parameter ǫ can be interpreted as the probabil-

ity that the protocol is not secure (see Appendix A for a review).

Therefore, the probability that the protocol is not secure, given

that it does not abort, cannot be larger than ǫ/p. This suggests

a relation of the form

H ǫ
min(Ȳ |E)τ n ≃ H

pǫ

min(Ȳ |E)ρ⊗n . (26)

The following theorem holds:

Theorem 1. Given two n-qudit states τ n and ρ⊗n such

that τ n = p−1�ρ⊗n� for some projector operator � and

p = Tr(�ρ⊗n), then

H ǫ
min(Ȳ |E)τ n � H

2
3
pǫ

min (X̄|E)ρ⊗n + log

(

p −
2

3
pǫ

)

. (27)

The proof is presented in Appendix B.

Theorem 1 implies that the state can still be assumed to be

a tensor power upon replacing ǫ → 2
3
pǫ and shortening the

secret key by log
(

p − 2
3
pǫ

)

bits, that is,

sǫ+ǫs+ǫEC

n �H
2
3
pǫs

min (Ȳ |E)ρ⊗n − leakEC(n,ǫEC)

+ log

(

p −
2

3
pǫs

)

+ 2 log (2ǫ). (28)

The conditional smooth min-entropy of the tensor-power

state ρ⊗n can be estimated using the asymptotic equipartition

property (AEP), which yields a bound in terms of the von

Neumann conditional entropy [30]:

H δ
min(Ȳ |E)ρ⊗n � nH (Ȳ |E)ρ −

√
n 
AEP(δ,d),

where


AEP(δ,d) � 4(d + 1)
√

log (2/δ2) (29)

is also a function of the dimensionality parameter d.

The next step in the security proof is to estimate the

conditional entropy

H (Ȳ |E)ρ = H (Ȳ )ρ − I (Ȳ ; E)ρ . (30)

Let us first consider the estimation of the mutual information

I (Ȳ ; E)ρ . We remark that the latter is upper bounded by

the mutual information with the variable Y , i.e., I (Ȳ ; E)ρ �

I (Y ; E)ρ , since the ADC algorithm cannot increase the mutual

information. In turn, the property of extremality of Gaus-

sian states [31,32] allows us to write the bound I (Y ; E)ρ �

I (Y ; E)ρG
≡ IBE , where ρG is a Gaussian state with same CM

as ρ.

To conclude, we notice that the quantity nH (Ȳ ) −
leakEC(n,ǫEC) is the number of (not necessarily secret) bits

of common information shared by Alice and Bob after the

error-correction routine. Ideally, in the limit of large block size,

ADC with arbitrarily large precision, and perfect operations,

this quantity is expected to be equal to nI (X; Y )ρ , where

I (X; Y ) is the mutual information between Alice and Bob.

Therefore, we can put

H (Ȳ ) −
1

n
leakEC(n,ǫEC) = βI (X; Y )ρ, (31)

where the efficiency parameter β ∈ (0,1) accounts for all

the sources of nonideality in the protocol. The inequality

βI (X; Y )ρ � βI (X; Y )ρG
≡ βIAB , where ρG is the Gaussian

state with same first and second moments, follows from

Ref. [32]. Notice that β is also a function of n and ǫEC.

In conclusion, the results presented in this section, com-

bined with the security proof of Ref. [10], yield the following

lower bound on the secret-key rate:

rǫ+ǫs+ǫEC+ǫPE

n =
1

n
sǫ+ǫs+ǫEC+ǫPE

n (32)

� βÎAB − ÎBE −
1

√
n


AEP

(

2

3
pǫs,d

)

+
1

n
log

(

p −
2

3
pǫs

)

+
1

n
2 log (2ǫ), (33)

where ÎAB and ÎBE are the empirical estimates for the mutual

informations, and ǫPE is the probability of error in parameter

estimation.

V. COMPARISON WITH PREVIOUS SECURITY PROOF

Our expression for the rate in Eq. (33) can be compared

to the analogous expression given in Theorem 1 of Ref. [10].

The first difference between the two expressions is in the term

proportional to 
AEP (that is the leading correction term in our

finite-size analysis), which in Ref. [10] is replaced by [33]



(1)
AEP = (d + 1)2 + 4(d + 1)

√

log
2

ǫ2
+ 2 log

2

p2ǫ
+4

ǫd

p
√

n
.

(34)

It is clear that 

(1)
AEP > 
AEP, where for small values of p and

ǫ the difference is dominated by the term 2 log 2
p2ǫ

. We empha-

size that the fact that with our approach we obtain a smaller

finite-size correction 
AEP follows from the application of the

min-entropy inequality of Theorem 1.

The expression for the rate in Ref. [10] also includes

an additional error term 
ent, scaling as n−1/2 log n. In our

formulation this term does not appear and has been somehow

incorporated in the efficiency factor β. We believe that our

approach provides a better way to model what is done in

experimental implementations of the protocol. We remark that
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CONTINUOUS-VARIABLE MEASUREMENT-DEVICE- … PHYSICAL REVIEW A 97, 052327 (2018)

FIG. 2. As an example, in Sec. VI we consider the case of

independent entangling cloner attacks on the two communication

lines, where τA and τB are the beam-splitter transmissivities. The

attacks also introduce independent excess noises of variances ξA =
(1 − τA)(ωA − 1), ξB = (1 − τB )(ωB − 1). The relay applies Bell

detection on the incoming modes, whose result defines the variable

Z and is publicly announced.


ent is the leading finite-size correction term in the analysis of

Ref. [10].

Finally, we exploit the Gaussian assumption to compute the

confidence intervals for parameter estimation. The result (see

Appendix C) is that the elements of the CM can be estimated

up to a relative error of the order of
√

8 ln (8/ǫPR)

n
(35)

with a given overall probability of error smaller than ǫPR. This

result is comparable with that of Ref. [10]: the reason is that,

although Ref. [10] considers general collective attacks, the

analysis of the parameter estimation is effectively reduced to

the Gaussian setting by applying a randomization technique.

Although we obtain finite-size corrections related to parameter

estimation that are quantitatively similar to Ref. [10], our

statistical analysis is much simpler. This is due to the fact that

we exploit the assumption of a Gaussian attack which has been

proven to come without loss of generality even in the finite-size

setting [11].

VI. NUMERICAL EXAMPLES

The expression in Eq. (33), together with the parameter

estimation analysis of Sec. III, allows us to compute the

estimated secret key directly from experimental data for any

Gaussian attack (and then extend to general attacks using the

results of Ref. [11]). In this section, as an example, we compute

the rate as a function of loss and block size for the case of an

entangling cloner attack (depicted in Fig. 2). We consider two

settings: (1) symmetric attacks in which both communication

lines from Alice to the relay and from Bob to the relay are

wiretapped with a beam splitter with equal transmissivity

τA = τB = τ , and (2) asymmetric attacks where the relay is

assumed very close to Alice’s station, τA ≃ 1.

In both cases, following Ref. [6], the eavesdropper collects

all the loss from the communication lines, and the variable Z is

the outcome of a perfect Bell detection performed at the relay.

These kinds of attacks have been characterized thoroughly in

Ref. [6], where the asymptotic rate (in the limit of infinite block

size) has been computed as

r0
n = βÎAB − ÎBE, (36)

where the mutual informations are bounded by the results of

parameter estimation. In our example we choose the conserva-

tive value β = 0.95 [34–37]. (Notice that in principle the factor

β is a function of n and ǫEC, but for the sake of illustration we

assume it to be constant.)

Putting 〈q ′2
A 〉 = 〈p′2

A 〉 = 〈q ′2
B 〉 = 〈p′2

B 〉 = VM , we obtain

〈q ′
AqZ〉 = −

√

τA

2
VM , (37)

〈p′
ApZ〉 =

√

τA

2
VM , (38)

〈q ′
BqZ〉 = 〈p′

BqZ〉 =
√

τB

2
VM , (39)

and the covariances of mutually conjugate quadratures vanish.

We also have 〈qZpZ〉 = 0 and

〈

q2
Z

〉

=
〈

p2
Z

〉

=
τA + τB

2
VM + 1 +

ξA + ξB

2
=: ν, (40)

where ξA = (1 − τA)(ωA − 1), ξB = (1 − τB)(ωB − 1) are the

excess noise variances and ωA,B are the thermal noise that Eve

injects in the links, respectively (see Eq. (1) of Ref. [6]). The

only nonvanishing displacement coefficients are

uq ′
A

= −
√

τA

2

VM

ν
, (41)

vp′
A

=
√

τA

2

VM

ν
, (42)

uq ′
B

= vp′
B

=
√

τB

2

VM

ν
, (43)

that imply

w1 = w2 = −
√

τAτB

4

V 2
M

ν2
, (44)

and w3 = 0. Finally, applying Eq. (C9) we obtain

zmin =
√

τAτB

2(1 + t)

V 2
M

ν
, (45)

and similarly, from Eq. (C8),

xmax =
VM

1 − t

(

1 −
τA

2

VM

ν

)

, (46)

ymax =
VM

1 − t

(

1 −
τB

2

VM

ν

)

, (47)

with t =
√

n−1 8 ln (8/ǫPE) (see Appendix C).

For collective Gaussian attacks, Eq. (33) is rewritten as

rǫ′

n � r0
n −

1
√

n

AEP

(

2

3
pǫs,d

)

+
1

n
log

(

p −
2

3
pǫs

)

+
1

n
2 log (2ǫ), (48)

where ǫ′ = ǫ + ǫs + ǫEC + ǫPE. In Figs. 3 and 4 this rate

is plotted vs the block size n, for different values of the

transmissivities and excess noise for error-correction efficiency

of β = 95%. The plots are obtained putting p = 0.99, ǫ =
ǫs = ǫEC = ǫPE = 10−21, hence obtaining an overall security

parameter ǫ′ < 10−20. We also put d = 5: with this choice of
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FIG. 3. Secret-key rate vs block size for asymmetric attacks: τA =
0.99 and different values of τB (from top to bottom the attenuation of

the communication line from Bob to the relay is of 1, 2, and 4 dB). The

excess noise is ξA = 0 and ξB = 0.01 (in shot noise units). Solid lines

are for collective Gaussian attacks, and dashed lines are for coherent

attacks. For both kinds of attack, the overall security parameter is

smaller than 10−20.

d the error in the Shannon entropy due to the ADC is less than

1%. The rate is then obtained by maximizing over the value of

modulation, VM .

For coherent attacks, by applying the results of Ref. [11]

we obtain

rǫ′′

n �
n − k

n
r0
n −

√
n − k

n

AEP

(

2

3
pǫs,d

)

+
1

n
log

(

p −
2

3
pǫs

)

+
1

n
2 log (2ǫ)

−
1

n
2 log

(

K + 4

4

)

, (49)
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FIG. 4. Secret-key rate vs block size for symmetric attacks and

different values of τA = τB (from top to bottom the symmetric

attenuation is of 0.1, 0.3, 0.5, and 0.55 dB). The excess noise is

ξA = ξB = 0.01 (in shot noise units). Solid lines are for collective

Gaussian attacks, and dashed lines are for coherent attacks. For both

kinds of attack, the overall security parameter is smaller than 10−20.

where k is the number of signals used for the energy test,

K ∼ n, and ǫ′′ = K4

50
ǫ′.

In Figs. 3 and 4 this rate is plotted vs the block size n for

different values of the transmissivities and excess noise, for

error-correction efficiency of β = 95%. The plots are obtained

for ǫ = ǫs = ǫEC = ǫPE chosen in such a way to obtain ǫ′′ <

10−20. The rate is then obtained by maximizing over k and the

modulation VM and for p = 0.99.

VII. DISCUSSION

In the case of coherent attacks, the major bottleneck

limiting the rate of secret bits generation per second comes

from the classical postprocessing, and in particular the active

symmetrization routine, due to the typically large size of the

data set. While it has been conjectured that such an active

symmetrization might not be actually needed [11], it remains

an open theoretical problem to find a security proof that does

not require one to perform such a computationally costly

operation.

Here we present two arguments supporting the conjecture

that the active symmetrization routine may not be actually

performed in any experimental realization of the protocol:

(1) The active symmetrization routine consists in Alice and

Bob multiplying their local raw keys by a random matrix. Since

the matrix is invertible and publicly known, such an operation

cannot by any means increase the secret-key length. Therefore,

we deduce that the same secret-key rate might be achieved even

without performing the symmetrization routine.

(2) The symmetrization routine is also instrumental for the

energy test. After the symmetrization operation, Alice and

Bob estimate the expectation value of the energy from only

a relatively small part of the raw key. We notice that Alice and

Bob can obtain an even better estimate of the mean energy

from the whole raw key. This suggests that the symmetrization

step might be avoided without affecting the energy test.

In summary, these two arguments suggest that the require-

ment of performing the symmetrization routine might be an

artifact of the particular technique used to prove the security

and therefore might not be strictly required in a practical

realization of the protocol.

VIII. CONCLUSIONS

We have presented a rigorous assessment of the security of

continuous-variable measurement-device-independent quan-

tum key distribution (CV MDI QKD) in the finite-size regime.

Our results are obtained by applying and modifying the results

of Ref. [10], also exploiting the Gaussian de Finetti reduction

recently introduced in Ref. [11], together with our results

on parameter estimation and a new min-entropy inequality.

Because of this improvement, our estimate on the secret-key

rate is improved with respect to results of Refs. [10,11].

In doing this, we have shown that for our MDI protocol all

the raw data can be used for both parameter estimation and

secret-key extraction. Such a unique feature is a consequence

of the fact that correlations between Alice and Bob are encoded

in the variable that is publicly announced by the relay—even

though such a variable does not contain information about

the secret key (see Ref. [19]). It might be possible that for
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the same reason the security analysis of MDI QKD can be

further simplified, in particular the energy test and active

symmetrization routines. It is worth remarking that standard

one-way protocols, in both direct and reverse reconciliation,

can be simulated by an MDI one, simply by assigning the

relay to either Alice or Bob [6]. For this reason, this unique

property of MDI QKD can be readily extended to the one-way

setting [19].

Our statistical analysis of parameter estimation is fully

composable and does not rely on the central limit theorem

(and therefore is mathematically rigorous in the finite-size

setting). Notwithstanding, we do not expect that our approach

gives tight bounds on the statistical error induced by parameter

estimation. In fact, tighter bounds may be obtained following

a different approach, for example, by invoking the central limit

theorem as in Refs. [26,27].

We have shown that it is in principle possible to generate

a secret key against the most general class of coherent attacks

for block sizes of the order of 107–109, depending on loss

and noise, and on the required level of security. Therefore, our

results indicate that a field demonstration of CV MDI QKD

might be feasible with currently available technologies. In

particular, our composable security analysis confirms that CV

MDI protocols allow for high QKD rates on the metropolitan

scale, thus confirming the results of the asymptotic analysis

first discussed in Ref. [6].

Note added. After the completion of this work, other authors

have independently presented a security analysis of CV MDI

QKD obtained by exploiting entropic uncertainty relations

[38]. Although directly applicable to obtain security against

coherent attacks, this approach is known to provide bounds on

the secret-key rate that in general are not tight.
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APPENDIX A: OPERATIONAL INTERPRETATION

OF THE SECURITY PARAMETER

Ideally, in QKD one would like to obtain a shared key that

is truly random and secret to the eavesdropper. The final state

of a protocol that successfully distributes s perfectly secret bits

would be represented by a density operator of the form

ρ0 = 2−s

2s−1
∑

x=0

|x〉A〈x| ⊗ |x〉B〈x| ⊗ σE . (A1)

In reality, one can only hope to get as close as possible to such

an ideal scenario. Let ρ denote the final state of a given QKD

protocol. The extent to which the state ρ approximates the ideal

one ρ0 is often quantified in terms of the trace distance:

D(ρ,ρ0) = 1
2
‖ρ − ρ0‖1 = 1

2
Tr|ρ − ρ0| . (A2)

The trace distance has several desirable properties for a good

security quantifier [29,39,40]. In particular, here we discuss its

interpretation in terms of the probability that the generated

key is secret. It is well known that the operational meaning

of the trace distance is related to the problem of quantum

state discrimination [41]. Suppose one is given a black box

containing either ρ or ρ0, each with probability 1/2. Then

any measurement strategy, compatible with the principles of

quantum mechanics, allows one to distinguish between the two

states up to an error probability [42]

pe �
1 − D(ρ,ρ0)

2
. (A3)

Let us define a binary random variable U with probability

distribution PU = (pe,1 − pe). As a matter of fact U character-

izes the distinguishability of the states ρ andρ0, that is, between

the output of the given QKD protocol and an ideal, perfectly

secure one. For example, if the state happens to coincide with

the ideal one, we have PU = Psec = (1/2,1/2). On the other

hand, if the state can be perfectly distinguished from the ideal

one, PU = Pinsec = (0,1).

Putting D(ρ,ρ0) = ǫ we can write

PU =
(

1 − ǫ

2
,
1 + ǫ

2

)

= (1 − ǫ)Psec + ǫPinsec. (A4)

Therefore, the probability distribution of the variable U char-

acterizing the output of the QKD protocol is the convex sum

of the probability distribution Psec associated to the ideal

output state and the probability Pinsec associated to a state

that can be perfectly distinguished from the ideal one. In

conclusion, such a convex sum decomposition of PU allows us

to interpret 1 − ǫ as the probability that the output of the QKD

protocol is indistinguishable from the ideal one, and thus for

all practical purposes is itself perfectly secure. In other words,

the probability that the output of the protocol is not perfectly

secure is smaller than ǫ. Assuming the worst-case scenario,

below we put ǫ equal to the probability that the key is not

secret.

Taking abstraction on the state and focusing on the protocol

itself, this same reasoning is extended to the direct comparison

of two protocols E and E0, formally represented as completely

positive maps, via the diamond norm

‖E − E0‖⋄ = sup
σ

‖(E ⊗ I − E0 ⊗ I )σ‖1, (A5)

where the supremum is over all input states and the maps are

extended to include an ancillary system.

APPENDIX B: SOME PROPERTIES OF

SMOOTH ENTROPY

One of the main tools for quantifying the security of

QKD is the conditional smooth min-entropy. In this Appendix

we review some of the main definitions and properties (see

Refs. [29,30] for the proofs) and derive a useful inequality in

Proposition 6 that is applied for our security proof.

Definition 2: Conditional min-entropy. The min-entropy of

A conditioned on B of the bipartite state ρAB is

Hmin(A|B)ρ := max
σ

sup{λ : ρAB � 2−λIA ⊗ σB}, (B1)

where I is the identity operator and σ is a subnormalized state.
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Here we are interested in the conditional min-entropy

of classical-quantum (CQ) states of the form ρXB =
∑

x∈X P (x)|x〉〈x| ⊗ ω(x). In this case the conditional min-

entropy can be written in terms of the maximum guessing

probability:

2−Hmin(X|B)ρ = max
E

∑

x∈X

P (x)〈x|E(ω(x))|x〉, (B2)

where E is a quantum channel.

The following holds:

Lemma 1. Let ρ =
∑

x∈X P (x)|x〉〈x| ⊗ ω(x) be a CQ state

and S a subset of X . We define the projector operator � =
∑

x∈S |x〉〈x|, and the state p−1�ρ�, with p = Tr(�ρ�). The

following inequality holds:

Hmin(X|B)p−1�ρ� � Hmin(X|B)ρ + log p. (B3)

Proof. By applying the characterization of the min-entropy

in terms of the guessing probability, we obtain

2−Hmin(X|B)p−1�ρ� = max
E

∑

x∈S

p−1P (x)〈x|E(ω(x))|x〉 (B4)

� p−1 max
E

∑

x∈X

P (x)〈x|E(ω(x))|x〉 (B5)

= p−12−Hmin(X|B)ρ (B6)

= 2−Hmin(X|B)ρ−log p. (B7)

�

The smooth conditional min-entropy of ρ is defined as the

maximum min-entropy in a neighborhood of ρ:

Definition 3: Smooth conditional min-entropy. The smooth

conditional min-entropy of A conditioned on B of the state

ρAB is

H ǫ
min(A|B)ρ := max

ρ̃
Hmin(A|B)ρ̃, (B8)

where ρ̃ is a “smoothing state” such that D(ρ̃,ρ) � ǫ, with

D(ρ̃,ρ) denoting the trace distance.

Remark 4. Here we have defined the entropy smoothing

using the trace distance as in Ref. [29] instead of the purified

distance as done in Ref. [30].

Remark 5. For a CQ state ρ it is sufficient to consider

smoothing states that are classical on the same support as ρ

[30]. Therefore, there exists a CQ state ρ⋆ such that D(ρ⋆,ρ) �

ǫ and

H ǫ
min(X|B)ρ = Hmin(X|B)ρ⋆

. (B9)

Lemma 2. Let us consider two CQ states ρ =
∑

x∈X P (x)|x〉〈x| ⊗ ω(x) and ρ⋆ =
∑

x∈X P⋆(x)|x〉〈x| ⊗
ω⋆(x) such that D(ρ,ρ⋆) � ǫ, and a projector operator

� =
∑

x∈S |x〉〈x|. Then D(p−1�ρ�,p−1
⋆ �ρ⋆�) � 3

2
p−1ǫ ,

where p = Tr(�ρ�) =
∑

x∈S P (x) and p⋆ = Tr(�ρ⋆�) =
∑

x∈S P⋆(x).

Proof. First notice that the trace distance between the two

CQ states reads

D(ρ,ρ⋆) =
∑

x∈X

D(P (x)ω(x),P⋆(x)ω⋆(x)), (B10)

and that D(ρ,ρ⋆) � ǫ implies

|p − p⋆| � ǫ. (B11)

We then have

D
(

p−1�ρ�,p−1
⋆ �ρ⋆�

)

=
∑

x∈S

D(p−1P (x)ω(x),p−1
⋆ P⋆(x)ω⋆(x)) (B12)

�
∑

x∈S

D(p−1P (x)ω(x),p−1P⋆(x)ω⋆(x))

+D(p−1P⋆(x)ω⋆(x),p−1
⋆ P⋆(x)ω⋆(x)) (B13)

=
∑

x∈S

p−1D (P (x)ω(x),P⋆(x)ω⋆(x))

+
1

2
|p−1 − p−1

⋆ |P⋆(x)‖ω⋆(x)‖1 (B14)

=
∑

x∈S

p−1D (P (x)ω(x),P⋆(x)ω⋆(x))

+
1

2
p−1p−1

⋆ |p − p⋆| P⋆(x) (B15)

� p−1ǫ +
1

2
p−1ǫ (B16)

=
3

2
p−1ǫ, (B17)

where in the first inequality we have applied the triangular

inequality and in the last one we have applied Eqs. (B10) and

(B11). �

We are now ready to present a “smoothed” version of

Lemma 1:

Proposition 6. Let ρ =
∑

x∈X P (x)|x〉〈x| ⊗ ω(x) be a CQ

state and S a subset of X . We define the projector � =
∑

x∈S |x〉〈x|, and the (normalized) state τ = p−1�ρ�, where

p = Tr(�ρ�). The following inequality relates the condi-

tional smooth min-entropies of ρ and τ :

H ǫ
min(X|B)p−1�ρ� � H

2
3
pǫ

min (X|B)ρ + log

(

p −
2

3
pǫ

)

.

(B18)

Proof. Let ρ⋆ be a CQ state such that D(ρ,ρ⋆) � 2
3
pǫ.

Lemma 2 implies that D(p−1�ρ�,p−1
⋆ �ρ⋆�) � ǫ. We then

upper-bound the conditional smooth min-entropy of τ =
p−1�ρ� as follows:

H ǫ
min(X|B)p−1�ρ� � Hmin(X|B)p−1

⋆ �ρ⋆�
(B19)

� Hmin(X|B)ρ⋆
+ log p⋆ (B20)

= H ǫ′

min(X|B)ρ + log p⋆ (B21)

� H ǫ′

min(X|B)ρ + log (p − ǫ′), (B22)

where in the first inequality we have applied the fact that

p−1
⋆ �ρ⋆� is ǫ-close to p−1�ρ�, in the second inequality we

have applied Lemma 1, the first equality is obtained choosing a

ρ⋆ that verifies Eq. (B9) with ǫ′ = 2
3
pǫ, and the last inequality

is obtained from Eq. (B11). �
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1. Dealing with the nonzero probability that the protocol aborts

The assumption that the state ρ⊗n is a tensor product is

justified for collective attacks. However, since error correction

has a nonzero probability of aborting, one should consider

the conditional probability of obtaining a secret key given the

protocol did not abort. Unfortunately, the state conditioned on

the protocol not aborting is no longer guaranteed to have a

tensor product structure.

The state ρ⊗n, which describes the correlations between

Bob’s output measurement and Eve, is a CQ state of the form

ρ⊗n =
∑

xnyn

P (xn,yn)|xn〉〈xn| ⊗ |yn〉〈yn| ⊗ ωE(xnyn),

(B23)

where P (xn,yn) is the probability of a sequence of symbols

xn,yn and ωE(xnyn) is the corresponding conditional state of

Eve. The protocol does not abort only on a given subsetS of the

sequences xnyn; therefore, the state for a nonaborting protocol

reads

τ n = p−1�ρ⊗n�, (B24)

where � =
∑

xnyn∈S |xn〉〈xn| ⊗ |yn〉〈yn| is a projector opera-

tor, and p = Tr(�ρ⊗n�) is the normalization factor.

Proposition 6 yields a simple relation between the condi-

tional smooth min-entropies of ρ⊗n and τ n, namely,

H ǫ
min(X|E)τ n � H

2
3
pǫ

min (X|E)ρ⊗n + log

(

p −
2

3
pǫ

)

, (B25)

where p is interpreted as the probability that the protocol does

not abort.

APPENDIX C: TAIL BOUNDS

The cumulative distribution function of the χ -squared vari-

able χ2(k) with k degrees of freedom is F (x; k) = Ŵ[k/2,x/2]

Ŵ[k/2]
,

where Ŵ[k/2] is the Euler gamma function, and Ŵ[k/2,x/2] is

the lower incomplete gamma function.

To bound the cumulative distribution function we can use,

for example, the tail bounds:

Pr

{

k <
χ

1 + t

}

< e−nt2/8, (C1)

Pr

{

k >
χ

1 − t

}

< e−nt2/8. (C2)

(These bounds are derived from the Chernoff bound using

the fact that the distribution of χ2(k) is subexponential with

parameters (2
√

k,4)).

A direct application of these bounds yields

Pr

{

〈

q2
Z

〉

<
n−1

∑

j q2
Zj

1 + t

}

� e−nt2/8, (C3)

Pr

{

〈

q2
Z

〉

>
n−1

∑

j q2
Zj

1 − t

}

� e−nt2/8, (C4)

together with similar bounds for the quantities 〈p2
Z〉, 〈q2

A〉,
〈p2

A〉, 〈q2
B〉, and 〈p2

B〉.

We also obtain

Pr

{

〈qZpZ〉 >
n−1

∑

j (qZj + pZj )2

4(1 − t)
−

n−1
∑

j (qZj − pZj )2

4(1 + t)

}

� Pr

{

〈(qZ + pZ)2〉 >
n−1

∑

j (qZj + pZj )2

(1 − t)

}

+ Pr

{

〈(qZ − pZ)2〉 <
n−1

∑

j (qZj − pZj )2

(1 + t)

}

� 2e−nt2/8, (C5)

and analogously

Pr

{

〈qZpZ〉 <
n−1

∑

j (qZj + pZj )2

4(1 + t)
−

n−1
∑

j (qZj − pZj )2

4(1 − t)

}

� 2e−nt2/8. (C6)

This implies

Pr {x > xmax} � 2e−nt2/8, Pr {y > ymax} � 2e−nt2/8, Pr {z < zmin} � 4e−nt2/8, (C7)

with

xmax =
1

1 − t

∑

j

q2
Aj + p2

Aj

2n
, ymax =

1

1 − t

∑

j

q2
Bj + p2

Bj

2n
, (C8)

and

zmin = min
s1,s2,s3∈{−1,1}

∣

∣

∣

∣

∣

w1

n−1
∑

j q2
Zj

1 + s1t
+ w2

n−1
∑

j p2
Zj

1 + s2t
+ w3

(

n−1
∑

j (qZj + pZj )2

4(1 + s3t)
−

n−1
∑

j (qZj − pZj )2

4(1 − s3t)

)∣

∣

∣

∣

∣

, (C9)

where w1, w2, and w3 are defined in Eqs. (17)–(19).
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For example, putting

t =
√

8 ln (8/ǫPE)

n
, (C10)

we finally obtain

Pr {x > xmax ∨ y > ymax ∨ z < zmin} � ǫPE. (C11)
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