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Abstract—The main task of Functional Magnetic Resonance
Imaging (fMRI) is the localisation of brain activities, which
depends on the detection of hemodynamic responses in the Blood
Oxygenation-Level Dependent (BOLD) signal. While compressive
sensing has been widely applied to improve the quality and
resolution of MRI in general, its reconstruction noise overwhelms
the small magnitude of hemodynamic responses. We propose
a new reconstruction algorithm for the compressive sensing
fMRI that exploits the temporal redundancy of the data, called
Referenced Compressive Sensing, which works well in preserving
fMRI analytical features. We also propose the use of the baseline-
independent signal for analysis of reconstructed data. It is
shown that the baseline-independent reconstructed data from
Referenced Compressive Sensing is highly correlated to the
lossless data, thus preserving more of the analytical features.

I. INTRODUCTION

One big challenge of Functional Magnetic Resonance Imag-

ing (fMRI) studies is the time required for a subject to remain

inside a scanner. Unlike other applications of MRI, fMRI

requires a large amount of successive scans per study. The

subject is made to remain inside the scanner for a long time,

causing anxiety and claustrophobia in the process. To avoid

this, fMRI studies usually employ some rapid acquisition tech-

niques such as Echo Planar Imaging (EPI), which dramatically

reduces the acquisition time of each scan at the expense of

the spatial resolution of the data. One attempt to improve

this trade-off between acquisition time and resolution is to

incorporate Compressive Sensing (CS) into fMRI acquisition

scheme. It is well studied that MRI data is suitable with com-

pressive sensing framework [1], which allows the complete

data to be reconstructed from the smaller number compressed

measurements. Many works [2], [3], [4], [5] demonstrate the

successful application of compressive sensing with clinical

MRI and, especially, the dynamic MRI data.

However, even though compressive sensing can greatly

improve the trade-off between the acquisition time and res-

olution of MRI data, the reconstruction is not perfect and the

reconstructed data suffers from reconstruction noise. Unlike

other MRI techniques, the main analytical feature of fMRI is

the variation of the magnitude of voxel’s intensity along the

temporal axis which signifies the brain activity. This variation,

known as a Blood Oxygenation-level Dependent (BOLD) Sig-

nal, is due to the correlation between the volume of blood flow

and the brain activity. The feature of interest in fMRI is a spe-

cific pattern of BOLD signal, called Hemodynamic Response

Function (HRF). Because the magnitude of the hemodynamic

responses is very small compared to the magnitude of the

signal as a whole, the combination of the reconstruction noise

and acquisition noise—from environments—presents a tough

challenge for the accurate segmentation of the brain active

regions.

The most common compressive sensing reconstruction

method used to reconstruct the MRI data is the l1-norm

minimisation, which aims to promote the sparsity of the signal.

Another reconstruction method for imaging applications is the

Total Variation-norm (TV-norm) minimisation. The goal of

TV-norm minimisation method is to make the data as smooth

as possible rather than as sparse as possible [6], [7]. In prac-

tice, however, these methods suffer poor performance when

working with MRI data. Instead of doing the reconstruction

blindly, many works have shown that by incorporating a priori

information about the signal into the reconstruction method,

the accuracy can be improved greatly [8], [9], [10], [11]. In

the spacial case of spatio-temporal signals, such as the case

of MRI data, the temporal redundancy can be exploited.

In this work, we propose a novel compressive sensing recon-

struction framework for the reconstruction of fMRI data. This

reconstruction, referred to as Referenced Compressive Sensing

(Referenced CS), exploits the temporal redundancy between

each successive scan in order to improve the reconstruction

accuracy and to reduce the reconstruction noise. We show

that by using the Referenced CS, it is possible to preserve

and analyse the analytical features of the reconstructed data.

It is also possible to incorporate the Referenced CS with the

least squared approximation, giving a dramatic improvement

in terms of complexity over the commonly used iterative

methods. Moreover, we also show that the reconstruction

errors occur in the data reconstructed using Referenced CS

is concentrated on the baseline signal, the low frequency

variation that does not contain the hemodynamic responses,

and these effects can be reduced by using baseline-independent

(BI) data for analysis.



II. PROPOSED METHOD

A. fMRI Data Reconstruction using Referenced Compressive

Sensing

In this section we outline a framework to reconstruct the

fMRI data from compressive measurements, referred to as the

Referenced Compressed Sensing (Referenced CS).

Let the raw data x ∈ R
n denote a frequency domain of a

spatial data u ∈ R
n, i.e., x = Ψu, where Ψ is the Fourier

transform basis. Here, to simplify the notations, the spatial

data u is represented as a 1-dimensional vector instead of 3-

dimensional matrix which is the actual representation of the

data. Given a random encoding operator Φ, the full-length

reconstruction x̂ of x can be obtained from the compressed

measurements y = Φx accurately such that ‖x̂− x‖2 ≤ ǫ for

a small ǫ.

Here, in Definition 1, we define the temporal redundancy

between a signal x and its correlated reference signal r.

Definition 1. A signal r is a correlated reference of x if

‖r− x‖2 ≤ δ, (1)

for a sufficiently small δ.

Using the correlated reference r, it is shown in Proposition 1

that the reconstructed signal x̂ can be obtained accurately.

Proposition 1. Given a correlated reference r ∈ R
n, a

solution x̂ of the problem

min ‖x̂− r‖1 subject to Φx̂ = y, (2)

where y = Φx is a measurement of x ∈ X(R), where

X(R) = {x : ‖x− r‖1 ≤ R,x ∈ R
n}, (3)

must satisfy

sup ‖x− x̂‖2 ≤ 2‖x− r|2. (4)

Proof. Consider a set of possible solution X̂(y) = {x :
y = Φx,x ∈ X(R)}. According to the theory of Optimal

Recovery, the central algorithm Ac yields the central solution

x̂∗ of the solution set. This makes

radius(X̂(y)) = sup(‖x− x̂∗‖2 : x ∈ X̂(y)). (5)

Because the least-norm solution x̂ ∈ X̂(y), therefore

‖x̂− x̂∗‖2 ≤ radius(X̂(y)). (6)

From the triangle inequality, ‖x−x̂‖2 ≤ ‖x−x̂∗‖2+‖x̂∗−x̂‖2.

This, together with Eq. (5) and Eq. (6), gives

‖x− x̂‖2 ≤ 2 sup(‖x− x̂∗‖2 : x ∈ X̂(y)). (7)

Because x̂∗ is at the centre of X(R), thus, x̂∗ = r. Therefore,

‖x− x̂‖2 ≤ 2‖x− r‖2.

It is shown in [12] that the accuracy of the Referenced CS

is inversely proportional to δ, with the worst case remains as

good as l1-norm minimisation. In fMRI, the reference r can be

easily obtained from the reconstructed data of its successive

volumes.

Fig. 1: Referenced CS framework to reconstruct fMRI data

Fig. 1 depicts a configuration that yields the best re-

construction results using the Referenced CS framework. In

this configuration, each volume is reconstructed using the

previously reconstructed volume as its correlated reference.

This ensures that the distance between two signals is kept

low and, following the Proposition 1, limits the size of the

reconstruction error. One drawback of the proposed configu-

ration is that the overall reconstruction quality depends largely

on the accuracy of the very first volume. From the practical

point-of-view, to maximise the reconstruction quality, the very

first volume should be obtained from lossless measurements

or using lossless measurements obtained during the scanner

calibration as its correlated reference.

It is also possible to incorporate the correlated reference r

into the least square approximation which results in a less com-

plex reconstruction method. In this approach—referred here

as Referenced CS with the Least Squares—the reconstructed

signal x̂ is obtained from

x̂ = r+ΦT(ΦΦT)−1(y −Φr). (8)

Even though this method yields less accurate reconstructed

data, its computation time is only a fraction of other iterative

methods, thus making it very suitable for many real-world

applications [13].

B. Baseline-independent fMRI data

An observed drawback of the Referenced CS is that the

reconstructed data suffers from the loss of dynamic range, due

to the use of the temporal information which slows down the

variation of the low frequency components of the data, known

as the baseline. While the hemodynamic response signal

directly corresponds to the stimuli presented to the brain,

the baseline is governed by other physical factors unrelated

to the stimuli. These hemodynamic responses are relatively

small in magnitude, commonly no bigger than 0.5% of the

baseline’s magnitude. Because the baseline signal does not

contain the hemodynamic responses, it is beneficial to separate

the baseline signal from the signal containing hemodynamic

responses.

In practice, the hemodynamic responses are detected by

locating the BOLD signal that shares the same characteristic

with the canonical HRF ([14], [15]). Assuming the only two



time-varying functions in the signal are the HRF and the

baseline, by removing the baseline function we can obtain

the baseline-independent data which contains only the hemo-

dynamic responses.

Let v denotes a signal of the voxel’s intensity on the

temporal axis. We can model signal v as

v = b+ h+ n, (9)

where b denotes the baseline signal, h denotes the hemody-

namic responses signal, and n denotes the acquisition noise.

Also let v(t), b(t), h(t), and n(t) denote a point each signal

v,b,h, and n at the time instance t, respectively. Because

the only signal of interest in fMRI is the responses h, it is

desirable to minimise the effects of the baseline b and the

noise n. To remove the effect of the baseline, here we consider

strategies for the baseline estimation. Once estimated, the

baseline-independent voxel intensity signal v′ can be obtained

by

v′ = v − b. (10)

1) Low-pass filtering: A straightforward way to estimate

the baseline is to view it as a low-passed signal of v. This

approach is especially captivating if we assume that the

distribution of h and n is identical and independent. Under this

assumption, the baseline can be estimated using various low-

pass filtering methods. The most direct method is to convolve

a low-pass window function, such as Gaussian, Hamming,

Blackman, to the signal [16]. Because the window is applied

globally, this method of estimation does not perform well with

signals containing multi-scale features.

The more localised low-pass filtering can be archived using

spatial filtering such as moving average filter [17]. The k-point

weighted moving average can compute as

b(t) =
∑

i

w(i)v(i), (11)

where t− k−1

2
≤ i ≤ t+ k−1

2
, i ∈ I, k is an odd integer, and

w(i) is the weight function.

2) Curve fitting estimation: A more sophisticated way to

estimate the baseline is to fit a baseline function b to the

intensity signal v such that the error between b and v is

minimised [18]. Specifically, given that the baseline b is a

degree n polynomial in the form of

b(t) = anx(t)
n + an−1 + x(t)n−1...a1x(t) + a0, (12)

where A = {a0, ..., an} are the coefficients of b,the baseline

is obtained from

b = argmin
A

‖b− v‖2. (13)

Eq. (13) can be solved using any optimisation methods. The

baseline estimated in this way is a more “whole picture” ap-

proach than the filtering method. It works well with the slowly

changing nature of the baseline signal, without compromising

the high frequency nature of the hemodynamic responses.

III. EXPERIMENTAL RESULTS

In this section, we compare the similarity between the

BOLD signal from the reconstructed data and the signal from

the lossless data. While the common practice to analyse the

effects of compressed sensing to the analytical features of

fMRI is to compare the final activity maps created from the

lossless and reconstructed data, in this work, the analysis of the

performance will be done directly on the raw spatio-temporal

data. It is with the intention to avoid the effect of the analy-

sis toolboxes, such as Statistical Parametric Mapping (SPM)

and FMRIB Software Library (FSL), which normally apply

several preprocessing techniques that can dilute the actual

effectiveness of the reconstruction methods. The normalised

cross-correlation (NCC) is chosen as the similarity metric in

this work. NCC provides a relative similarity metric which

is consistent with the presence of analytical features. The

normalised cross-correlation C between two signal x1 and x2

is defined as

C(x1,x2) =
1

n

(x1 − µ11)
T(x2 − µ21)

σ1σ2

, (14)

where n is the length of the signal x1 and x2, µ1,µ2 and

σ1,σ2 are the mean and the standard deviation of x1 and x2

respectively. The vector 1 is the length n vector of all 1s.

The experiment data is reconstructed from the real fMRI

data from OpenfMRI project [19] using several reconstruction

methods; namely, the naive pseudo-inverse (inverse), the l1-

minimisation (l1-min), the Total Variation-minimisaiton (TV-

min), the proposed Referenced CS (Ref. CS), and the proposed

Referenced CS with the Least Squares (Ref. CS/LS). The com-

pressed measurements for these reconstructions are obtained

at the under-sampling rate of 0.1, 0.3, and 0.5.

Fig. 2 shows the examples of the reconstructed data using

both the Referenced CS and the Referenced CS with the

Least Squares, compared to the conventional l1-minimisation.

It can be seen clearly that both the proposed methods preserve

far greater details in the reconstructed data than the l1-

minimisation. Objectively, Table I shows the NCC coefficients

of each reconstructed data. The reconstruction accuracy of

both methods outperforms the l1-minimisation by a large

margin. Considering the sampling rate of 50% for example,

the average NCC coefficient of the Referenced CS is 61.89

against 37.97 of the l1-minimisation, an improvement of 63%.

On the other hand, the Referenced CS with the Least Squares

has the average NCC coefficient of 59.16, an improvement

of 55.8%. While the Referenced CS with the Least Squares

cannot outperform the Referenced CS (using l1-norm objective

function), Table II shows that the Referenced CS with the

Least Squares can reconstruct the data in just a fraction of the

other iterative method.

The results shown so far still contain the baseline signal. We

proceed with the comparison between the baseline-dependent

(as shown previously) with the baseline-independent data. The

estimations of the baseline are done using Blackman window

(low-pass filter method), 5-point moving-average (moving



(a) Lossless data

(b) Data reconstructed using l1-minimisation

(c) Data reconstructed using Referenced CS

(d) Data reconstructed using Referenced CS with the Least Squares

Fig. 2: Examples of the compressed sensing fMRI data obtained from (a) lossless measurements, (b) reconstructed using the

l1-minimisation, (c) reconstructed using the Referenced CS, and (d) reconstructed suing the Referenced CS with the Least

Squares. All examples here are sampled at 50%.

average method), and degree 2 curve fitting (curve fitting

method).

Table III compares the NCC coefficients between the

baseline-dependent and the baseline-independent data from

each reconstruction method. While the data obtained using

the conventional l1-minimisation does not show any benefits

from using the baseline-independent analysis, the improve-

ment is noticeable in both the proposed methods. Clearly,

the by removing the baseline from the reconstructed data,

the correlation between the hemonynamic response signals

extracted from the lossless data and the reconstructed data

increases in both the Referenced CS and Referenced CS with

the Least Squares data. In the case of the Referenced CS,

at the sampling rate of 50%, the BI-data has 8.47% higher

correlation compared to its baseline-dependent counterpart.

The best improvement comes from the use of 5-point moving

average. Another interesting observation is that, in baseline-

independent analysis, the Referenced CS with the Least

Squares performs nearly as good as the iterative Referenced

CS.



TABLE I: Normalised Cross-correlation coefficient of fMRI

data reconstructed suing different methods

Sampling rate
NCC cooefficient (%)

Data 1 Data 2 Data 3 Data 4 Average

l1-minimisation

0.1 14.52 11.52 8.57 8.24 10.71
0.3 26.13 24.09 19.36 22.09 22.92
0.5 35.24 36.77 46.10 33.75 37.97

Referenced CS

0.1 31.10 29.37 32.28 28.35 30.23
0.3 54.19 45.09 45.02 43.47 46.94
0.5 70.48 59.99 58.14 58.96 61.89

Referenced CS with the Least Squares

0.1 28.68 28.35 32.84 29.90 29.94
0.3 40.51 45.29 47.57 46.15 44.88
0.5 52.14 61.25 61.53 61.72 59.16

TABLE II: Average reconstruction time per volume in seconds

Sampling rate
Time (seconds)

Data 1 Data 2 Data 3 Data 4

l1-minimisation

0.1 218.91 374.28 206.66 194.34
0.3 391.42 602.31 380.46 310.78
0.5 641.68 874.00 662.47 513.71

Referenced CS

0.1 214.32 373.63 208.13 194.93
0.3 383.95 579.32 385.86 310.87
0.5 636.43 872.67 660.37 496.87

Referenced CS with the Least Squares

0.1 0.41 0.53 0.35 0.27
0.3 0.92 1.22 0.77 0.72
0.5 1.21 1.71 1.15 1.08

IV. CONCLUSIONS

In this paper, we proposed the Referenced Compressive

Sensing reconstruction method, which enables better recon-

struction of fMRI data compared to l1-minimisation. We also

propose a solution to the issue of reduced dynamic range

of the Referenced CS by removing the baseline from the

reconstructed data leading to the baseline-independent analysis

of fMRI data. The proposed solution was evaluated against

traditional l1-minimisation method and has shown a great im-

TABLE III: Average Normalised Cross-correlation coeffi-

cients (NCC) between the baseline-dependent and baseline-

independent data from each reconstruction method. The

baseline-independent data are extracted using a) Blackman

window, b) 5-pt moving average, and c) curve-fitting.

Sampling rate
Baseline- Baseline-independent
dependent Blackman 5-pt MA Curve fitting

l1-minimisation

0.1 10.71 10.15 10.68 10.44
0.3 22.92 11.50 22.56 22.17
0.5 37.97 36.71 37.23 36.98

Referenced CS

0.1 30.23 31.03 31.38 30.37
0.3 46.94 52.32 52.41 51.98
0.5 61.89 67.05 67.13 66.02

Referenced CS with the Least Squares

0.1 29.94 30.82 31.37 30.99
0.3 44.88 48.40 51.85 51.69
0.5 59.16 62.24 66.15 65.30

provement in terms of the higher normalised cross-correlation

to the lossless data.
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