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Multipliers and equivalences between Toeplitz

kernels

M. Cristina Câmara∗ and Jonathan R. Partington†‡

April 3, 2018

Abstract

Multipliers between kernels of Toeplitz operators are characterised
in terms of test functions (so-called maximal vectors for the kernels);
these maximal vectors may easily be parametrised in terms of inner
and outer factorizations. Immediate applications to model spaces are
derived. The case of surjective multipliers is also analysed. These
ideas are applied to describing equivalences between two Toeplitz ker-
nels.

Keywords: Toeplitz kernel, model space, multiplier, Carleson measure
MSC: 47B35, 30H10.

1 Introduction

The starting point for this work is a result of Fricain, Hartmann and Ross
[12], which gives a necessary and sufficient condition for a function g to
multiply a model space Kθ into another model space Kφ (all notation and
definitions will be given later in this section). This in turn was motivated by
a more restrictive version of this question due to Crofoot [9].
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The main result of [12] says that w multiplies Kθ into Kφ if and only if:
(i) w multiplies the function S∗θ into Kφ (here S∗ denotes the backward
shift), and
(ii) w multiplies Kθ into H2 (this may be expressed as a Carleson measure
condition).

Now model spaces are kernels of particular Toeplitz operators, indeed
Kθ = kerTθ, and thus the question may be posed more generally for kernels
of Toeplitz operators. We may also ask whether more general test functions
can be used, other than S∗θ.

In this paper we address these questions, obtaining the result above as
an immediate corollary. To do this we need to bring in some of the theory of
Toeplitz kernels, particularly ideas developed by the authors in [3, 6]. That
work was done in the context of Hardy spaces on the half-plane, and we
reformulate it for the disc, showing also how the multiplier problem is solved
for the half-plane.

In Section 2, we establish the notion of minimal kernels and maximal
vectors for kernels of Toeplitz operators on H2, and then use these to give a
characterization of multipliers from one Toeplitz kernel to another by using
the maximal vectors as test functions. From this we easily recover results on
model spaces as special cases.

We also use the theory of multipliers to obtain results on the structure
of Toeplitz kernels, linked to factorization results for their symbols, together
with theorems linking an equivalence between kernels with an equvalence
between their symbols.

In Section 3, we obtain necessary and sufficient conditions for surjective
multipliers between Toeplitz kernels, recovering Crofoot’s result as a very
special case.

In Section 4, we give a brief discussion of the situation for the upper
half-plane, which can be obtained independently or by using the unitary
equivalence of the corresponding Hardy spaces.

Notation

We use H2 to denote the standard Hardy space of the unit disc D, which
embeds isometrically into L2(T), where T denotes the unit circle with nor-

malized Lebesgue measure m. Its orthogonal complement is written H2
0 or

zH2. Here z denotes the independent variable. The space H∞ is the Banach
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algebra of bounded analytic functions on D, of which the set of invertible
elements will be denoted by GH∞. Moreover, Hol(D) denotes the space of
all analytic functions on D.

We refer the reader to [10, 14, 15, 19] for standard results on Hardy spaces
and the factorization of Hardy-class functions into inner and outer factors.

An observation that we shall use several times is that f ∈ H2 if and only
if zf ∈ H2

0 , and likewise f ∈ H2
0 if and only if zf ∈ H2.

The shift operator S : H2 → H2 is the operator of multiplication by the
independent variable z.

The Toeplitz operator Tg with symbol g ∈ L∞(T) is the operator on H2

defined by Tgf = PH2(gf), for f ∈ H2, where PH2 denotes the orthogonal
projection from L2(T) onto H2. If θ is an inner function, then kerTθ is the

model space Kθ = H2 ⊖ θH2 = H2 ∩ θH2
0 , which is invariant under the

backward shift S∗.
For g, h ∈ L∞ = L∞(T) we write M(kerTg, kerTh) for the space of

multipliers w ∈ Hol(D) such that wf ∈ kerTh for all f ∈ kerTg and
we use the notation M∞(kerTg, kerTh) = M(kerTg, kerTh) ∩ L∞(T) and
M2(kerTg, kerTh) = M(kerTg, kerTh) ∩ L

2(T).

In fact, as we shall see later (Remark 2.4), the multipliers between model
spaces are necessarily contained inH2; this is not the case for general Toeplitz
kernels, although they must lie in the Smirnov class.

2 Multipliers and maximal vectors

Definition 2.1. For a function k ∈ H2\{0} we write Kmin(k) for the minimal
Toeplitz kernel containing k; that is, Kmin(k) = kerTv for some v ∈ L∞, with
k ∈ Kmin(k), while kerTv ⊂ kerTw for every w ∈ L∞ such that k ∈ kerTw.

We say that k is a maximal vector for kerTg if kerTg = Kmin(k).

The existence of minimal kernels and maximal vectors was established
in [3, Thm 5.1 and Cor 5.1] in the context of the upper half-plane. Let us
sketch the corresponding argument for the disc.

Suppose that k = θp, where θ is inner and p is outer. Then we assert
that Kmin(k) = kerTv, where v = zθp/p. Since vk = zp, we have k ∈ kerTv.

Now suppose that k ∈ kerTw for some w ∈ L∞, and that g ∈ kerTv.
Thus gv ∈ H2

0 and kw ∈ H2
0 .

3



Then gw = gvkw/(vk) = (gv)(kw)/(zp); that is, gw lies in L2, and
zgw = zgvzkw/p, which means that zgw is in the Smirnov class (the ratio
of an H1 function and an outer H2 function) as well as L2(T). By the
generalized maximum principle (e.g. [10, Thm. 2.11],[19, Thm. 4.4.5]) it is

therefore in H2 . Thus gw ∈ H2
0 and g ∈ kerTw, and so Kmin(k) = kerTv.

Moreover, by [21, Lemma 1], every Toeplitz kernelK is kerTzθp/p for some
inner function θ and outer function p and thus K = Kmin(θp).

In fact, we can characterise all the maximal vectors for a Toeplitz kernel,
as follows.

Theorem 2.2. Let g ∈ L∞ \ {0} be such that kerTg is non-trivial. Then k
is a maximal vector for kerTg if and only if k ∈ H2 and k = g−1z p, where p
is outer in H2.

Proof. Note first that if kerTg is non-trivial, then gf ∈ H2
0 for some nonzero

f ∈ H2, and so g 6= 0 almost everywhere and we can define g−1.
Now if Kmin(k) = kerTg, then we have gk = zp, where p ∈ H2. Also p

is outer, since if p = φq, where φ is inner and non-constant, and q is outer,
then k ∈ kerTφg ( kerTg, which contradicts the assumption.

Conversely, if k = g−1z p, where p is outer, then k ∈ kerTg. If also

k ∈ kerTh with h ∈ L∞, then zhk ∈ H2, and if f ∈ kerTg we have gf ∈ H2
0 ,

so zgf ∈ H2.
Then

zhf = zhk
f

k
= zhk

zgf

zgk
= zhk

zgf

p
,

which is in L2(T) and the Smirnov class, hence in H2. Thus hf ∈ H2
0 and

f ∈ kerTh; so kerTg ⊂ kerTh and kerTg = Kmin(k).

In the special case of a model space, we obtain immediately a disc version
of [6, Thm. 5.2].

Corollary 2.3. Let θ be inner. Then Kθ = Kmin(k) if and only if k ∈ H2

and k = θzp, where p is outer in H2.

Proof. Take g = θ and apply Theorem 2.2.
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We are now ready to state a theorem characterizing multipliers of Toeplitz
kernels. Recall that µ is a Carleson measure for a subspace X of H2 if there
is a constant C > 0 such that

∫

T

|f |2 dµ ≤ C‖f‖22 for all f ∈ X.

In fact the measures that arise here will be supported on T, not D, and be
absolutely continuous with respect to Lebesgue measure, but it is convenient
to see them in this more general perspective. The natural choices for X will
be Toeplitz kernels, including model spaces.

Carleson measures for kerTg may be better understood if we use the fact
that kerTg is nearly invariant, and thus by Hitt’s result [13] kerTg = FKθ

for some isometric multiplier F (which is outer) and θ inner.
We require w to satisfy

‖wFk‖2 ≤ C‖Fk‖2 = C‖k‖2

for each k ∈ Kθ. Thus the study of Carleson measures for Toeplitz kernels
reduces to that of the special case where the Toeplitz kernel is a model space.
There is information on how to find an appropriate θ in Sarason’s paper [21].

Descriptions of Carleson measures for certain model spaces were given in
[8, 22], with a complete answer in a recent preprint [16].

We say that w ∈ C(kerTv) whenever |w2|dm is a Carleson measure for
kerTg, that is w kerTg ⊂ L2(T).

Remark 2.4. Note that every nontrivial Toeplitz kernel contains an outer
function, because if θp ∈ kerTg, where θ is inner and p is outer, then p ∈

kerTg since gp = θ(gθp) ∈ H2
0 . Hence multipliers must be holomorphic in

D, and indeed lie in the Smirnov class N+. Moreover, a multiplier w from a
model space Kθ, where θ is an inner function, into another Toeplitz kernel
must be in H2, since we must have w (1 − θ(0) θ) ∈ H2, and 1 − θ(0) θ is
invertible in H∞.

Since Toeplitz kernels have the near-invariance property that θp ∈ kerTg
implies that p ∈ kerTg, it follows easily that the space of multipliers has a
similar property. Thus a non-zero multiplier space contains an outer function.

However, note that multipliers between two general Toeplitz kernels need
not lie in H2. For example, the function z 7→ (z−1)1/2 spans a 1-dimensional
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Toeplitz kernel kerTg, where g(z) = z−3/2 with arg z ∈ [0, 2π) on T. This
can be shown directly, or by using known results on the half-plane from [3]
together with the methods of Section 4 below. Hence the function w(z) =
(z−1)−1/2 multiplies kerTg onto the model space Kz = kerTz̄ consisting only
of the constant functions, although w is not an H2 function. It is easy to see
that in fact w satisfies conditions (ii) and (iii) in the following theorem.

Theorem 2.5. Let g, h ∈ L∞(T) \ {0} such that kerTg and kerTh are non-
trivial. Then the following are equivalent:
(i)w ∈ M(kerTg, kerTh);
(ii)w ∈ C(kerTg) and wk ∈ kerTh for some (and hence all) maximal vectors
k of kerTg;
(iii)w ∈ C(kerTg) and hg

−1w ∈ N+.

Proof. First we prove that (i)⇔(ii). Clearly, the two conditions in (ii) are
necessary for (i). So assume that (ii) holds, and write k = θp, where θ is
inner and p is outer. Now kerTg = kerTzθp/p, as detailed above, and thus

without loss of generality we may take g = zθp/p.

We have that wkh ∈ H2
0 , since wk ∈ kerTh. Suppose now that f ∈ kerTg,

so that fg ∈ H2
0 . Now

wfh = (wkh)
f

θp
= (wkh)

zfg

p
.

Then wfh ∈ L2(T), since wf ∈ L2(T) by the Carleson condition. Also wkh

and fg are in H2
0 so zwfh = zwkh zfg/p is in the Smirnov class of the disc

as well as L2(T). Once again, we deduce that zwfh ∈ H2 and so wfh ∈ H2
0 ,

and finally wf ∈ kerTh.
Let now w ∈ C(kerTg). To show that (ii)⇒(iii), assume that k is a maximal
vector for kerTg; then by Theorem 2.2 we have k = g−1z̄p̄ where p is outer
in H2. If w kerTg ⊂ kerTh, then

hwk = hwg−1z̄p̄ = ψ− ∈ H2
0

so hwg−1 = z ψ−

p̄
∈ N+.

Conversely, if hwg−1 ∈ N+ then, for any maximal function k of kerTg, for

which gk ∈ H2
0 , we have

h(wk) = hwg−1(gk) ∈ z̄N+ ∩ L2(T) = H2
0

so wk ∈ kerTh.
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When g = h and ḡ is an inner function θ, from Theorem 2.5 we get the
well-known result that M(Kθ, Kθ) = C.

Note that if k is not a maximal vector of kerTg, then k cannot be used
as a test function for multipliers from kerTg; for example in this case the
function w(z) ≡ 1 is not a multiplier from kerTg into Kmin(k), even though
wk ∈ Kmin(k).

Corollary 2.6. With the same assumptions as in Theorem 2.5, and assum-
ing moreover that hg−1 ∈ L∞(T),

w ∈ M2(kerTg, Th) ⇔ w ∈ C(kerTg) ∩ kerTz̄hg−1 .

Proof. Assume that w ∈ M2(kerTg, Th); then w ∈ H2 and from Theorem

2.5(iii) it follows that w ∈ C(kerTg) and z̄hg
−1w ∈ H2

0 , so that w ∈ kerTz̄hg−1 .

Conversely, if w ∈ kerTz̄hg−1 then hg−1w ∈ H2 ⊂ N+, and the result follows
from Theorem 2.5.

Regarding the assumption that hg−1 ∈ L∞(T) in the corollary above, note
that by [[21], Lemma 1], for every Toeplitz kernel K there exists g ∈ L∞(T)
with |g| = 1 a.e. such that K = kerTg.

By considering in particular g = θ̄, where θ is an inner function, we obtain
the following, which slightly generalises a result in [12].

Corollary 2.7. Let θ be inner and h ∈ L∞(T) \ {0} such that kerTh is
nontrivial. Then the following are equivalent:
(i) w ∈ M(Kθ, kerTh);
(ii) wS∗θ ∈ kerTh, and w ∈ C(Kθ);
(iii) w ∈ kerTz̄θh ∩ C(Kθ).

Proof. Since S∗θ = θzp, where p = 1 − θ(0)θ, which is outer, we see that
Kθ = Kmin(S

∗θ). Thus the equivalence of (i) and (ii) follows directly from
Theorem 2.5.

Finally, note that the first condition in (ii) asserts that hwS∗θ ∈ H2
0 and

w ∈ kerTz̄θh asserts that hwθz ∈ H2
0 . These conditions are equivalent since

S∗θ = θz(1− θ(0)θ), where the last factor is invertible in H∞.

Note that, unlike S∗θ, the reproducing kernel used as a test function in
many other contexts, beginning perhaps with [2], is not maximal for Kθ. For
with

ka(z) =
1− θ(a)θ(z)

1− az
,
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we have

θzka(z) =
θ(z)− θ(a)

z − a
,

which is not outer in general.
Corollaries 2.6 and 2.7 bring out a close connection between the existence

of non-zero multipliers in L2(T) and their description, on the one hand, and
the question of injectivity of an associated Toeplitz operator Tz̄ g−1h (or Tz̄θh)
and the characterisation of its kernel, on the other hand.

It is well known that various properties of Toeplitz operators, in particular
Toeplitz kernels, can be described in terms of a factorisation of their symbols.

Recall that a function f ∈ Hp \ {0} with 0 < p <∞ is said to be rigid, if
for any g ∈ Hp with g/f > 0 on T we have g = λf for some λ > 0. A rigid
function is outer, and every rigid function in Hp is the square of an outer
function in H2p. A function f ∈ H2 spans a 1-dimensional Toeplitz kernel if
and only if f 2 is rigid in H1 [21].

The following result generalises Theorems 3.7 and 3.10 in [4], see also [18].

Theorem 2.8. If g ∈ L∞(T) admits a factorisation

g = g− θ
−Ng−1

+ (2.1)

where g− and g+ are outer functions in H2, g2+ is rigid in H1, θ is an inner
function and N ∈ Z, then

kerTg 6= {0} ⇔ N > 0.

If N > 0 and θ is a finite Blaschke product of degree n, then dimkerTg = nN ;
if θ is not a finite Blaschke product, then dimkerTg = ∞.

Proof. (i) For N < 0, it follows from Theorem 3.7 in [4] (proved in the
context of L2(R)) that kerTg = {0}.

(ii) If N = 0, we have g = g− g
−1
+ and kerTg consists of the functions

φ+ ∈ H2 such that gφ+ = z̄ ψ+ with ψ+ ∈ H2. We have

g− g
−1
+ φ+ = z̄ ψ+ ⇔ z̄

g−
g+

g+
g+
φ+ = z̄2 ψ+ ⇔ z̄

g+
g+
φ+ = z̄2

g+
g−

ψ+. (2.2)

The left-hand side of the last equality belongs to L2(T) while the right-hand

side belongs to z̄2N+, so we conclude that z̄2 g+
g
−

ψ+ ∈ z̄2H2 ⊂ H2
0 and,

therefore, φ+ ∈ kerT
z̄
g+
g+

. Since g2+ is rigid in H1, kerT
z̄
g+
g+

= span{g+} ([21]):
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thus φ+ = Ag+ with A ∈ C. Now from the last equality in (2.2) it follows
that Ag+ = z̄ψ+, so we cannot have g− outer in H2 unless A = 0, i.e., φ+ = 0.

(iii) let now N > 0. We have

gφ+ ∈ H2
0 ⇔ g− θ

−Ng−1
+ φ+ ∈ H2

0 ;

any function φ+ = g+ k
θ
a, with |a| < 1, satisfies that condition and therefore

belongs to kerTg. This shows that kerTg 6= {0} and dimkerTg = ∞ if θ is
not a finite Blaschke product. If θ is a finite Blaschke product of degree n,
then θ = h− z

nh+ with rational left and right factors h± ∈ GH∞; it then
follows from Theorem 3.7 in [4] that dim kerTg = nN .

Example 2.9. Let g = (z−1)8/15

z2
, h = (z−1)2(z+1)1/5

z4
where the branches of

(z − 1)8/15 and (z + 1)1/5 are analytic in D. We have

kerTg = span{(z − 1)7/15} , kerTh = span{(z + 1)4/5 , (z + 1)−1/5}

and
z̄g−1h = g−θ̄g

−1
+ .

where g− = 1 − z̄ is such that g− ∈ H2 is outer, g+ = (z−1)8/15

(z−1)(z+1)1/5
∈ H2 is

such that g2+ is rigid (because kerT
z̄
g+
g+

= span{g+}) and θ = z2. By solving

the Riemann-Hilbert problem

z̄ g−1hφ+ = z̄ψ+

with ψ+ ∈ H2, we obtain

kerTz̄ g−1h =

{

Az +B

(z − 1)7/15(z + 1)1/5
: A,B ∈ C

}

= span

{

(z − 1)8/15

(z + 1)1/5
,

1

(z − 1)7/15(z + 1)1/5

}

.

From Corollary 2.6 it follows that

M2(kerTg , kerTh) = span

{

(z − 1)8/15

(z + 1)1/5

}

.
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The representation (2.1) generalises the so called L2- factorisation, which
is a representation of g as a product

g = g− d g
−1
+ (2.3)

where g±1
+ ∈ H2 , g±1

− ∈ H2 and d = zk , k ∈ Z ([17]. If g is invertible
in L∞(T) and admits an L2-factorisation, then dimkerTg = |k| if k ≤ 0,
dim kerT ∗

g = k if k ≥ 0. The factorisation (2.3) is called a bounded fac-

torisation when g+
±1 , g±1

− ∈ H∞. In various subalgebras of L∞(T), every
invertible element admits a factorisation (2.3) where d is an inner function
([17]). This is the case of the algebra of functions continuous on T (including
all rational functions without zeroes or poles on T) and the algebra AP of
almost periodic functions on the real line. In the latter case d is a singular
inner function, d(ξ) = exp(−iλξ) with λ ∈ R ([7],[11]), and we have that if
g ∈ AP is invertible in L∞(R) then kerTg is either trivial or isomorphic to
an infinite dimensional model space Kθ with θ(ξ) = exp(iλξ), depending on
whether λ ≤ 0 or λ > 0.

Various results regarding the dimension of kerTz̄θh can also be found in
[4] and [6]. Namely, if θ is a finite Blaschke product, kerTz̄θh and kerTz̄h are
both finite dimensional or not and, for dim kerTz̄h <∞, we have

dim kerTz̄θh = max{0, dimkerTz̄h − k},

where k is the degree of θ ([6] Theorem 6.2).

Example 2.10. For θ(z) = exp( z+1
z−1

) , φ(z) = exp( z−1
z+1

), we have kerTz̄θφ̄ =
{0} ([6], Example 6.3); therefore M(Kθ, Kφ) = {0}.

For two inner functions φ, θ ∈ H∞ we write φ � θ if φ divides θ in H∞;
that is, θ = φψ for some ψ ∈ H∞. If we have strict inequality, that is, φ
divides θ but not conversely, then we write φ ≺ θ.

Example 2.11. Let θ , φ be two inner functions with φ � θ (the case θ ≺ φ
will be considered in Example 2.14). Then dimkerTz̄θφ̄ ≤ 1, since θφ̄ ∈ H∞

and kerTθφ̄ = 0 (see [1]). We have kerTz̄θφ̄ = C if φ = aθ with a ∈ C , |a| = 1,
and kerTz̄θφ̄ = {0} if φ ≺ θ. Therefore M(Kθ, Kφ) 6= {0} if and only if
Kθ = Kφ, in which case M(Kθ, Kφ) = C.

In [12] there is a supplementary theorem describing M∞(Kθ, Kφ) =
M(Kθ, Kφ) ∩ H∞. Starting with Theorem 2.5, we immediately have the
following general result on noting that the Carleson measure condition is
redundant for bounded w.
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Corollary 2.12. Let g, h ∈ L∞(T) \ {0} such that kerTg and kerTh are
nontrivial. Then the following conditions are equivalent.
(i) w ∈ M∞(kerTg, kerTh) = M(kerTg, kerTh) ∩H

∞;
(ii) w ∈ H∞ and wk ∈ kerTh for some maximal vector k ∈ kerTg;
(iii) w ∈ H∞ and whg−1 ∈ H∞ (assuming hg−1 ∈ L∞(T)).
If w ∈ H2,

w ∈ M∞(kerTg, kerTh) ⇔ w ∈ kerTz̄hg−1 ∩H∞

and if moreover kerTg contains a maximal vector k with k, k−1 ∈ L∞(T),
then

w ∈ M∞(kerTg, kerTh) ⇔ wk ∈ kerTh ∩H
∞.

For model spaces, we therefore recover the main theorem on bounded
multipliers from [12].

Corollary 2.13. [12] Let θ and φ be inner functions and let w ∈ H2. Then
the following are equivalent:
(i) w ∈ M∞(Kθ, Kφ);
(ii) w ∈ kerTφθz ∩H

∞;
(iii) wS∗θ ∈ Kφ ∩H

∞;
(iv) w ∈ H∞ and φ̄ θ w ∈ H∞.

Proof. The equivalence of (i) and (ii) is contained in Corollary 2.6. The
equivalence with (iii) follows since S∗θ is a maximal vector for Kθ that is
invertible in L∞(T) and the equivalence with (iv) follows from Corollary 2.12
(iii).

Example 2.14. Let θ ≺ φ; then kerTz̄θφ̄ = Kzθ̄φ and we haveM∞(Kθ, Kφ) =
Kzθ̄φ ∩H

∞. If φ is a finite Blaschke product, then

M2(Kθ, Kφ) = M∞(Kθ, Kφ) = Kzθ̄φ.

Example 2.15. It is easy to see that a function w+ ∈ H∞, with an inverse
in the same space, is a bounded multiplier for Toeplitz kernels. Namely,
w+ kerTg = kerTg w−1

+
⊂ kerTg w−1

+
f
−

for any g ∈ L∞(T) , f− ∈ H∞.

Applying the results of Corollary 2.12 to w = 1, we also have:
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Proposition 2.16. Let g, h ∈ L∞(T) \ {0}, such that kerTg and kerTh are
nontrivial. Then the following conditions are equivalent.
(i) kerTg ⊂ kerTh;
(ii) hg−1 ∈ N+;
(iii) there exists a maximal function for kerTg, k, such that k ∈ kerTh.

If moreover kerTg contains a maximal vector k with k, k−1 ∈ L∞(T), then
each of the above conditions is equivalent to
(iv) k ∈ kerTh ∩H

∞.

Corollary 2.17. With the same assumptions as in Proposition 2.16, if
hg−1 ∈ L∞(T), then

kerTg ⊂ kerTh ⇔ hg−1 ∈ H∞

Remark 2.18. Assuming without loss of generality that hg−1 ∈ L∞(T), we
see from the corollary above that if kerTg ⊂ kerTh then h = g f+ with f+ ∈
H∞. Let θ denote the inner factor of f+. Since kerTh = kerTgf+ = kerTg θ̄,

denoting gθ̄ = g̃ we conclude that a Toeplitz kernel is contained in another
Toeplitz kernel if and only they take the form kerTg̃ and kerTθ g̃ respectively,
for some inner θ and g̃ ∈ L∞(T).

Corollary 2.19. Let g, h ∈ L∞(T) \ {0}, such that kerTg and kerTh are
nontrivial. Then kerTg = kerTh if and only if there are outer functions

p, q ∈ H2 such that
g

h
=
p

q
.

If moreover hg−1 ∈ GL∞(T), we have

kerTg = kerTh ⇔ hg−1 ∈ GH∞.

It follows from Corollary 2.19, in particular, that if h ∈ L∞(T) then kerTh
is a model space Kθ if and only if h = θh− with h− ∈ GH∞.

In view of Corollary 2.19, one may also ask which Toeplitz kernels are
contained in a model space and vice-versa.

Regarding the first question, it is clear that if g ∈ GL∞(T) and θ is an
inner function, then kerTg ⊂ Kθ if and only if

g = θ(f+
−1) with f+ ∈ H∞. (2.4)

If f+ = αO is an inner-outer factorisation with α inner and O an outer
function, from (2.4) we see that Ō ∈ GH∞ because Ō−1 = gθᾱ ∈ N+ ∩
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L∞(T) = H∞ and therefore we must have kerTg = kerTθ̄α. In particular if
g = ᾱ where α is an inner function, we get the known relation Kα ⊂ Kθ ⇔
α � θ.

Regarding the second question, we have Kθ ⊂ kerTg with g ∈ L∞(T) if
and only if g ∈ θH∞. In particular if g = φ̄ where φ is an inner function, we
get the known relation Kθ ⊂ Kφ ⇔ θ � φ.

Example 2.20. Let θ(z) = z2, so that Kθ = kerTz̄2 is the 2-dimensional
space spanned by 1 and z. The maximal vectors for this Toeplitz kernel have
the form k = a + bz, where θza+ bz is outer. That is, az + b is outer, so
0 ≤ |a| ≤ |b| (we should exclude the case a = b = 0).

In other words, the non-trivial Toeplitz kernels properly contained in Kθ

are 1-dimensional and spanned by functions 1 + bz with |b| < 1, of the form
(1 + bz)Kz = kerT

(z̄)2 z+b̄
1+bz

where z+b̄
1+bz

is an inner function. For b = 0 we

obtain the model space Kz.
Note that for the non-maximal vectors f(z) = 1 + bz for |b| < 1 the

function w(z) = 1/(1 + bz) satisfies wf ∈ Kθ, and |w|2 dm is a Carleson
measure for Kθ; however w does not multiply Kθ into itself.

Using Proposition 2.16 and the previous results, we can study in partic-
ular the multipliers for Toeplitz kernels related by inclusion.

Proposition 2.21. Let g, h ∈ L∞(T) \ {0}, with hg−1 ∈ L∞(T).
(i) If kerTg ⊂ kerTh, then

M2(kerTg, kerTh) = C(kerTg) ∩Kzα

where α is the inner factor in an inner-outer factorisation of hg−1 ∈ H∞.
(ii) If kerTh ⊂ kerTg, then M2(kerTg, kerTh) = {0} unless kerTg = kerTh.

Proof. (i) If kerTg ⊂ kerTh then, by Corollary 2.16, hg−1 = f+ ∈ H∞.
Let α and O denote the inner and outer factors of f+, respectively. Since
kerTz̄ f+ = kerTz̄ᾱ, we have from Corollary 2.6 that

w ∈ M2(kerTg, Th) ⇔ w ∈ C(kerTg) ∩Kzα.

(ii) If kerTh ⊂ kerTg, then hg
−1 = (f+)

−1 with f+ ∈ H∞. We have

w ∈ kerTz̄ (f+)−1 ⇔ w ∈ H2 , z̄ (f+)
−1w = f− ∈ H2

0 .
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Since f− f+ ∈ H2
0 , it follows that z̄w ∈ H2

0 , i.e. w ∈ Kz = C. If w = A ∈
C \ {0}, then f+ ∈ C \ {0} because

z̄A = f− f+ ⇒ A = f+(zf−) with zf− ∈ H2

and, from the uniqueness of the inner-outer factorisation (modulo constants)
it follows that f+ is a constant.

Example 2.22. Let α and θ be inner with α ≺ θ; then M2(Kθ, Kα) = {0}
and M2(Kα , Kθ) = C(Kα) ∩ Kz θ ᾱ. For instance, if θ = zm , α = zn with
n ≤ m, then M(Kzn , Kzm) = M2(Kzn , Kzm) = M∞(Kzn , Kzm) = Kzm−n+1.

We can generalise the results of Propositions 2.16 and 2.21 for Toeplitz
kernels that are equivalent in a certain sense ([6]).

Definition 2.23. If g1 , g2 ∈ L∞(T), we say that g1 ∼ g2 if and only if there
are functions h+ ∈ GH∞ , h− ∈ GH∞, such that

g1 = h−g2h+. (2.5)

It is easy to see that we have g1 = h−g2h+ and g1 = h̃−g2h̃+ with h+ , h̃+ ∈

GH∞ and h− , h̃− ∈ GH∞, if and only if h
−

h̃
−

= h̃+
h+

= c ∈ C \ {0}. If |g1| =

|g2| = 1 we can choose h± in (2.5) such that ‖h−‖∞ = ‖h+‖∞ = 1.

Definition 2.24. If g1 , g2 ∈ L∞(T) \ {0}, such that kerTg1 , kerTg2 are
nontrivial, we say that kerTg1 ∼ kerTg2 if and only if

kerTg1 = h+ kerTg2 with h+ ∈ GH∞. (2.6)

It is clear that g1 ∼ g2 ⇒ kerTg1 ∼ kerTg2 since

kerTg1 = kerTh
−
g2h+ = h−1

+ kerTg2 .

It follows from Corollary 2.19 that, if g1g2
−1 ∈ GL∞(T), the converse is true

since

kerTg1 = h−1
+ kerTg2 ⇔ kerTg1 = kerTg2h+ ⇔ g1 g2

−1h+
−1 ∈ GH∞.

Therefore, if h+ ∈ GH∞,

kerTg1 = h−1
+ kerTg2 ⇔ g1 = h− g2 h+ with h− ∈ GH∞. (2.7)
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If θ1 is a finite Blaschke product, then it is easy to see that θ1 = h− z
N1h+

where h+ ∈ GH∞ , h− ∈ GH∞ are rational and N1 is the degree of θ1. Thus
θ1 ∼ z−N1 . We have Kθ1 ∼ Kθ2 if and only if θ2 is also a finite Blaschke prod-
uct of the same degree. Moreover, if θ1 and θ2 are finite Blaschke products
with θ1 ∼ z−N1 and θ2 ∼ z−N2 , then θ1 θ2 ∼ zN1−N2 and we have

kerTθ1 θ2 = {0} if N2 ≤ N1 , kerTθ1 θ2 ∼ KzN1−N2 if N1 > N2.

Proposition 2.25. Let g, h ∈ L∞(T) \ {0}, with hg−1 ∈ L∞(T).
(i) kerTg ∼ kerTg̃ ⊂ kerTh for some g̃ ∈ L∞(T) if and only if there exists
h+ ∈ GH∞ such that hg−1h+ ∈ H∞.
(ii) If kerTg ∼ kerTg̃ ⊂ kerTh for some g̃ ∈ L∞(T), with kerTg = h+

−1 kerTg̃
where h+ ∈ GH∞, then

M2(kerTg, Th) = h−1
+ M2(kerTg̃, kerTh) = C(kerTg) ∩ h+Kzα

where α is the inner factor of an inner-outer factorisation of hg−1h+ ∈ H∞.

Proof. (i) If kerTg ∼ kerTg̃ then by Definition 2.24 and (2.7) there exist
h+ ∈ GH∞ , h− ∈ GH∞, such that g = h−g̃h+; on the other hand, by
Corollary 2.19

kerTg̃ ⊂ kerTh ⇔ hg̃−1 ∈ H∞ ⇔ hh−g
−1h+ ∈ H∞ ⇔ hg−1h+ ∈ H∞.

Conversely, if there exists h+ ∈ GH∞ such that hg−1h+ ∈ H∞, then kerTgh−1

+
⊂

kerTh and taking g̃ = gh−1
+ we conclude that kerTg ∼ kerTg̃ ⊂ kerTh.

(ii) If kerTg = h+
−1 kerTg̃, we haveM(kerTg, kerTh) = h+

−1M(kerTg̃,kerTh)
and by Proposition 2.21

M2(kerTg̃, kerTh) = C(kerTg̃) ∩Kzα

where α is the inner factor of hg̃−1 ∈ H∞, which is equal to the inner factor
of hg−1h+ ∈ H∞.

3 Surjective multipliers

The original context of Crofoot’s work [9] is where the multiplication operator
between two model spaces is surjective. We may obtain similar results in the
more general context of Toeplitz kernels.
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Lemma 3.1. Let g ∈ L∞(T), let k be a maximal vector for kerTg, and
suppose that w kerTg is a Toeplitz kernel. Then w kerTg = Kmin(wk).

Proof. Let h ∈ L∞(T) be such that w kerTg = kerTh. We have wk ∈
kerTh and kerTh = w kerTg ⊂ Kmin(wk) by Theorem 2.5. Hence kerTh =
Kmin(wk).

Theorem 3.2. Let g, h ∈ L∞(T) such that kerTg and kerTh are nontrivial.
Then a function w ∈ Hol(D) satisfies w kerTg = kerTh if and only if
(i) w ∈ C(kerTg) and w

−1 ∈ C(kerTh);
(ii) for some (or indeed, for every) maximal vector k ∈ kerTg, the function
wk is a maximal vector for kerTh.

Proof. Suppose that the conditions are satisfied. Then by Theorem 2.5 w is
a multiplier from kerTg into kerTh and w−1 is a multiplier from kerTh into
kerTg. Since the multiplication operator is injective, we see that we have
w kerTg = kerTh.

Conversely, if w kerTg = kerTh, then condition (i) is clearly satisfied, and
(ii) follows from Lemma 3.1.

We also have the following necessary and sufficient condition:

Theorem 3.3. Let g, h ∈ L∞(T) such that kerTg and kerTh are nontrivial.
Then w kerTg = kerTh if and only if w ∈ C(kerTg) , w

−1 ∈ C(kerTh) and

h = g
w

w

q

p
(3.1)

for some outer functions p, q ∈ H2.

Proof. Note that w must be outer, as functions in a Toeplitz kernel cannot
share a common inner factor, since if f ∈ kerTg and θ is inner with f/θ ∈ H2,
then f/θ ∈ kerTg.

Now let k = θu be a maximal vector for kerTg, where θ is inner and u is
outer. Then kerTg = kerTzθu/u. We write g0 = zθu/u. Also the inner–outer
factorization of wk, which is a maximal vector for kerTh, is wk = θ(wu), so
we have kerTh = kerTzθwu/(wu). We write h0 = zθwu/(wu).

By Corollary 2.19 we have outer functions r and s such that g = g0r/s.
So

kerTh = kerTh0 = kerTg0w/w = kerTg0wr/(ws) = kerTgw/w.
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Finally, by Corollary 2.19 we have (3.1).
For the converse, we see that (3.1) implies that kerTh = kerTgw/w. Then if

f ∈ kerTg we have (fw)(gw/w) = fgw ∈ H2
0 and so fw ∈ kerTgw/w = kerTh.

Also if f ∈ kerTh then fg/w = (fgw/w)/w ∈ H2
0 , and so f/w ∈ kerTg.

Remark 3.4. In the case of model spaces, suppose that wKθ = Kφ; then
we apply the above results to g = θ and h = φ, so we have Kφ = kerTθw/w.
Now θw/w ∈ L∞(T) (indeed it is unimodular), but it also equals φp/q from
(3.1), and this is in the Smirnov class; so it lies in H∞ and is inner.

Thus Kφ = Kθw/w, and so φ = αθw/w, with α ∈ C and |α| = 1, which is
Crofoot’s result.

The equivalence relation of Definition 2.24 is closely related to the ques-
tion of existence of surjective multipliers between two Toeplitz kernels. In-
deed, any w = w+ ∈ GH∞ is a surjective multiplier from any given kerTg
onto another Toeplitz kernel kerTw+

−1g = w+ kerTg. One may ask if the
same is true for model spaces, i.e., given w+ ∈ GH∞ and an inner function
θ, is there always another inner function φ such that w+Kθ ⊂ Kφ?

The answer to this question is negative. In fact, if θ is a finite Blaschke
product then Kθ = kerTθ̄ and w+Kθ = kerTw+

−1θ̄ must both be finite di-
mensional, with the same dimension. If w+Kθ = Kφ with φ inner, then we
must have, on the one hand, w+θφ̄ ∈ GH∞ and on the other hand, since
θ ∼ z−N , φ ∼ z−N for some N ∈ N, we must have h−w+h+ = f− for
some rational h− ∈ GH∞ , h+ ∈ GH∞ and f− ∈ GH∞. It follows that
w+h+ = A ∈ C and therefore w+Kθ = Kφ only if w+ is a rational function
in GH∞.

4 The upper half-plane

The results on Toeplitz kernels in [3, 6] were originally derived for the Hardy
spaceH2(C+) of the upper half-plane. There are additional motivations here,
in that Paley–Wiener spaces appear naturally in the context of model spaces
corresponding to the inner functions θ(s) = eiλs for λ > 0: for this and other
motivations we refer to the introduction of [5].

Recall that we have the relation H2(C−) = L2(R) ⊖ H2(C+), and f ∈
H2(C−) if and only if f ∈ H2(C+).
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Moreover it is well known (see, e.g. [20, pp. 23–24]) that g ∈ Lp(R) for
some 1 ≤ p <∞ if and only if the function Vpg defined by

Vpg(z) = 22/pπ1/p(1 + z)−2/pg(i(1− z)/(1 + z)) (4.1)

lies in Lp(T). Indeed, Vp is an isometric map which preserves the correspond-
ing Hardy spaces, with Hp(C+) mapping to Hp(D).

The analogue of Theorem 2.5 is the following. We now use m to refer
to Lebesgue measure on R, and Tg etc. to refer to Toeplitz operators on
H2(C+).

Theorem 4.1. Let g, h ∈ L∞(R) such that kerTg and kerTh are nontrivial.
Then a function w ∈ Hol(C+) lies in M(kerTg, kerTh) if and only if
(i) wk ∈ kerTh for some (and hence all) maximal vectors k of kerTg;
(ii) w kerTg ⊂ L2(R); that is |w|2 dm is a Carleson measure for kerTg.

Proof. Clearly, the two conditions are necessary. So assume that (i) and
(ii) hold, and write k = θp, where θ is inner and p is outer. Now kerTg =
kerTθp/p, as detailed above, and thus without loss of generality we may take

g = θp/p.
We have that wkh ∈ H2(C−), since wk ∈ kerTh. Suppose now that

f ∈ kerTg, so that fg ∈ H2(C−). Now

wfh = (wkh)
f

θp
= (wkh)

fg

p
.

Then wfh ∈ L2(R), since wf ∈ L2(R) by the Carleson condition.
Also wkh and fg are in H2(C−) so wfh = wkh fg/p is in the Smirnov

class of the half-plane (the ratio of an H1(C+) function and an outer H2

function) as well as L2(R). The generalized maximum principle applies also
to the half-plane, as can be seen using the isometric equivalences in (4.1).
We conclude that wfh ∈ H2(C+) and so wfh ∈ H2(C−), and finally wf ∈
kerTh.

The method of proof of Theorem 2.2 shows that the maximal vectors for
a nontrivial Toeplitz kernel kerTg ⊂ H2(C+) are functions of the form g−1p,
where p ∈ H2(C+) outer. Maximal vectors for model spaces Kθ = kerTθ
have already been characterized in [6, Thm 5.2] as functions in H2(C+) of
the form θp with p outer. One such is k(s) = (θ(s) − θ(i))/(s − i), the
backward shift of the function θ, although θ itself is not in H2(C+). Since
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k(s) = θ(s)(1−θ(i)θ(s))/(s− i) for s ∈ R we see that this k is an appropriate
test function to use.

One special case of interest is when kerTg consists entirely of bounded
functions, since then any H2 function w automatically satisfies the Carleson
condition in Theorems 2.5 and 4.1: this property is discussed for model spaces
in [6]. For the disc, Kθ ⊂ H∞ if and only if Kθ is finite-dimensional, that is,
θ is rational, but for the half-plane there are other possibilities, for example
θ(s) = eiλs with λ > 0. We refer to [6] for further details.

Finally, we remark that Theorems 3.2 and 3.3 hold in the case of the
half-plane with obvious modifications.
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