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Let p ≥ 5 be a prime number. We generalize the results of E. 
de Shalit [4] about supersingular j-invariants in characteristic 
p. We consider supersingular elliptic curves with a basis of 
2-torsion over Fp, or equivalently supersingular Legendre 
λ-invariants. Let Fp(X, Y ) ∈ Z[X, Y ] be the p-th modular 
polynomial for λ-invariants. A simple generalization of Kro-
necker’s classical congruence shows that R(X) := Fp(X,Xp)

p
is 

in Z[X]. We give a formula for R(λ) if λ is supersingular. This 
formula is related to the Manin–Drinfeld pairing used in the 
p-adic uniformization of the modular curve X(Γ0(p) ∩ Γ(2)). 
This pairing was computed explicitly modulo principal units 
in a previous work of both authors. Furthermore, if λ is 
supersingular and is in Fp, then we also express R(λ) in terms 
of a CM lift (which is shown to exist) of the Legendre elliptic 
curve associated to λ.
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1. Introduction

Let p ≥ 5 be a prime number. We are interested in this article in the modular curve 

X(Γ(2) ∩ Γ0(p)). A plane equation of this curve is given by the classical p-th modular 

polynomial à la Legendre, which we denote by Fp(X, Y ). It is shown that it satisfies the 

same properties as the classical modular polynomials for the j-invariants, namely it is 

symmetric, has integer coefficients and we have the Kronecker congruence Fp(X, Y ) ≡
(Xp − Y )(X − Y p) modulo p.

This last congruence can be roughly interpreted by saying that the reduction modulo 

p of X(Γ(2) ∩ Γ0(2)) is a union of two irreducible components isomorphic to P1. In this 

work, we show a congruence formula for Fp(X, Xp) modulo p2, which intuitively gives us 

information about the reduction of our curve modulo p2. The tools that we use to study 

this reduction is the p-adic uniformization (due to Mumford and Manin–Drinfeld). We 

do a detailed study of some annuli in the supersingular residue disks of the rigid modular 

curve. This was already used by E. de Shalit in [4] (in the absence of level 2 structure), 

and we follow his method in our case.

By combining our previous work (cf. [1]) on the p-adic uniformization of our modular 

curve and the present results, we obtain an elementary formula for values taken by 

Fp(X, X) modulo p2 (which does not however give us a formula for the polynomial 

itself). We now give more details about ours results.

Let MΓ0(p)∩Γ(2) be the stack over Z[1/2] whose S-points are the isomorphism classes 

of generalized elliptic curves E/S, endowed with a locally free subgroup A of rank p

such that A +E[2] meets each irreducible component of any geometric fiber of E (E[2] is 

the subgroup of 2-torsion points of E) and a basis of the 2-torsion (i.e. an isomorphism 

α2 : E[2] ≃ (Z/2Z)2). Deligne and Rapoport proved in [3] that MΓ0(p)∩Γ(2) is a regular 

algebraic stack, proper, of pure dimension 2 and flat over Z[1/2].

Let MΓ0(p)∩Γ(2) be the coarse space of the algebraic stack MΓ0(p)∩Γ(2) over Z[1/2]. 

Deligne–Rapoport proved that MΓ0(p)∩Γ(2) is a normal scheme and proper flat of rela-

tive dimension one over Z[1/2]. Moreover, Deligne–Rapoport proved that MΓ0(p)∩Γ(2) is 

smooth over Z[1/2] outside the points associated to supersingular elliptic curves in char-

acteristic p and that MΓ0(p)∩Γ(2) is a regular scheme with semi-stable reduction (cf. [3, 

VI.6.9] and [1, Proposition 2.1] for more details).

Let K be the unique quadratic unramified extension of Qp, OK be the ring of integers 

of K and k be the residual field. Let X be the base change MΓ0(p)∩Γ(2) ⊗ OK ; it is the 

coarse moduli space of the base change MΓ0(p)∩Γ(2) ⊗ OK (because the formation of 

coarse moduli space commutes with flat base change).

Let MΓ(2) be the model over Z[1/2] of the modular curve X(2) introduced by Igusa 

[10]. The special fiber of the scheme X is the union of two copies of MΓ(2) ⊗ k meeting 

transversally at the supersingular points, and such that a supersingular point x of the 

first copy is identified with the point xp = Frobp(x) of the second copy (the supersingular 

points of the special fiber of X are k-rational). Moreover, we have MΓ(2) ⊗k ≃ P1
k (cf. [1, 

Proposition 2.1]).
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The cusps of MΓ0(p)∩Γ(2) correspond to Néron 2-gons or 2p-gons and are given by sec-

tions Spec Z[1/2] → MΓ0(p)∩Γ(2) composed with the coarse moduli map MΓ0(p)∩Γ(2) →
MΓ0(p)∩Γ(2).

Mumford’s theorem [14] implies that the rigid space Xrig attached to X is the quotient 

of a p-adic half plane HΓ = P1
K − L by a Schottky group Γ, where L is the set of the 

limits points of Γ. Manin and Drinfeld constructed a pairing Φ : Γab × Γab → K× in [13]

and explained how this pairing gives a p-adic uniformization of the Jacobian of XK .

Let Δ be the dual graph of the special fiber of X. Mumford’s construction shows that 

Γ is isomorphic to the fundamental group π1(Δ). The abelianization of Γ is isomorphic 

to the augmentation subgroup of the free Z-module with basis the isomorphism classes 

of supersingular elliptic curves over Fp. Let S := {ei} be the set of supersingular points 

of Xk. We proved in [1], using the ideas of [5], that the pairing Φ can be expressed, 

modulo the principal units, in terms of the modular invariant λ as follow.

i. The Manin–Drinfeld pairing Φ : Γab × Γab → K× takes values in Q×
p .

ii. Let Φ̄ be the residual pairing modulo the principal units U1(Qp) of Qp. Then, after 

the identification Γab ≃ H1(Δ, Z) ≃ Z[S]0, Φ̄ extends to a pairing Z[S] × Z[S] →
K×/U1(K) such that:

Φ̄(ei, ej) =

{

(λ(ei) − λ(ej))p+1 if i �= j;

±p ·
∏

k �=i(λ(ei) − λ(ek))−(p+1) if i = j,

where the sign ± is + except possibly if p ≡ 3 (modulo 4) and λ(ei) �∈ Fp.

Remark 1. i) We have also proved an analogue of the above result for the congruence 

subgroup Γ(3) ∩ Γ0(p) when p ≡ 1 (mod 3), for a suitable model X of the modular curve 

of level Γ0(p) ∩ Γ(3) over Zp.

ii) The above formula was first conjectured by Oesterlé using the modular invariant 

j instead of the modular invariant λ for the modular curve X0(p) instead of X, and E. 

de Shalit proved this conjecture in [5] (up to a sign if p ≡ 3 (mod 4)).

We recall that the Lambda modular invariant λ : MΓ(2) ⊗Q → P1
Q is an isomorphism 

of curves. Let Fp(X, Y ) ∈ C[X, Y ] be the unique polynomial such that for all τ in the 

complex upper-half plane, we have:

Fp(λ, X) = (X − λ(pτ)) ·
∏

0≤a≤p−1

(X − λ((τ + a)/p)).

Note that this polynomial has much smaller coefficients than the corresponding poly-

nomial for the j-invariants. For example, we have:

F3(X, Y ) = X4 + X3(−256Y 3 + 384Y 2 − 132Y ) + X2(384Y 3 − 762Y 2 + 384Y )

+ X(−132Y 3 + 384Y 2 − 256Y ) + Y 4
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and

F5(X, Y ) = X6 + Y 6 − 65536 · X5Y 5 + 163840 · X5Y 4 + 163840 · X4Y 5

− 138240 · X5Y 3 − 133120 · X4Y 4 − 138240 · X3Y 5 + 43520 · X5 · Y 2

− 207360 · X4Y 3 − 207360 · X3Y 4 + 43520 · X2Y 5 − 3590 · X5Y

+ 133135 · X4Y 2 + 691180 · X3Y 3 + 133135 · X2Y 4 − 3590 · XY 5

+ 43520 · X4Y − 207360 · X3Y 2 − 207360 · X2Y 3 + 43520 · XY 4

− 138240 · X3Y − 133120 · X2Y 2 − 138240 · X · Y 3

+ 163840 · X2Y + 163840 · XY 2 − 65536 · XY

while the corresponding polynomials for j-invariant involve much larger coefficients (com-

pare with [16, p. 193]).

This agrees with the principle that adding a Γ(2) structure simplifies a lot the com-

putations. Another instance of this principle was applied in a paper of the second author 

about the Eisenstein ideal and the supersingular module (cf. [12]). Also, in the case of 

λ-invariants, there are no complications due to the elliptic points, so the formula are 

smoother. This principle is one of the motivations we had for generalizing E. de Shalit’s 

results to our case.

In this article, we prove that the affine scheme Spec Q[X, Y ]/(Fp(X, Y )) is a plane 

model of MΓ0(p)∩Γ(2) over Q (i.e. both curves are birational), and that the polynomial 

Fp(X, Y ) satisfies the same basic properties as Kronecker’s p-th modular polynomial for 

the modular curve X0(p). We derive another formula for the diagonal values of Φ̄, related 

to the polynomial Fp as follows.

Theorem 1.1.

i. We have Fp(λ, X) ∈ Z[λ, X] and Fp gives a planar model the modular curve 

MΓ0(p)∩Γ(2) ⊗ Q.

ii. For any lift βi of λ(ei) in K, we have

Φ̄(ei, ei) ≡ Fp(βi, βp
i ) (modulo U1(K)).

iii. Assume that λ(ei) ∈ Fp. Then p ≡ 3 (modulo 4). Let Ei be a lift of ei to a Legendre 

elliptic curve over Qp(
√−p) with complex multiplication by the maximal order of 

Qp(
√−p). Then

Φ̄(ei, ei) ≡ (λ(Ei) − λ(Ei)
p)2 (modulo U1(Qp)).

Our approach is based on the techniques of p-adic uniformization of [5] and [4], on a 

detailed analysis of the supersingular annuli in Xan and on the action of the Atkin–Lehner 
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involution wp : X ≃ X. The key point is to relate the diagonal elements of the extended 

period matrix Φ̄ to the polynomial Fp(X, Y ).

Corollary 1.2. Let R(X) = Fp(X, Xp)/p ∈ Z[X], and R̄(X) ∈ Fp be the reduction 

of R(X) mod p. Let λ(ei) ∈ Fp2 be the λ-invariant of a supersingular elliptic curve ei. 

Then, we have:

R̄(λ(ei)) = ±(−1)
p−1

2

∏

k �=i

(λ(ei) − λ(ek))−(p+1)

where the ± sign is + except possibly if p ≡ 3 (modulo 4) and λ(ei) �∈ Fp. On the other 

hand, if λ ∈ Fp2 is not a supersingular invariant, then R̄(λ) = 0.

Proof. The first assertion follows by comparing [1, Theorem 1] and Theorem 1.1.

Let λ ∈ Fp2 such that λ is not supersingular. Let X̃ be the scheme over OK defined 

by Fp(X, Y ) = 0. Let β ∈ OK be a lift of λ (this lift exists since MΓ(2) is proper over 

Z[1/2]). The closed point x of X̃ corresponding to the maximal ideal M = (p, X −β, Y −
βp) ⊂ OK [X, Y ] is regular on X̃ if and only if Fp(X, Y ) does not belong to M2. Using 

Taylor expansion of Fp at (β, βp), we get that Fp(X, Y ) = p.R(β) + FX(β, βp)(X − β) +

FY (β, βp)(Y − βp) mod M2. But it is clear from Kronecker’s congruence that FX(β, βp)

and FY (β, βp) are divisible by p. Thus, our regularity conditions is equivalent to the fact 

that R̄(λ) �= 0.

Corollary 2.3 shows that (λ, λp) is a singular point of the special fiber of X̃. But 

the elliptic curve E corresponding to x has ordinary reduction, so the corresponding 

point on the special fiber of X is non-singular. Since the minimal regular model of the 

normalization of X̃ is unique, it is X. Since any local regular ring is normal (since it is 

factorial), the point x is not regular in X̃ and R̄(λ(E)) = 0. �

Notation.

i. For any algebraic extension k of the field Z/pZ, we denote by k̄ the separable closure 

of k.

ii. For any congruence subgroup Γ of SL2(Z), we denote by MΓ the stack over Z whose 

S-points classify generalized elliptic curves over S with a Γ-level structure.

iii. For any congruence subgroup Γ of SL2(Z) and any c ∈ P1(Q), we denote by [c]Γ
the cusp of Γ\(H ∪ P1(Q)) corresponding to the class of c, where H is the (complex) 

upper-half plane.

iv. For two congruence subgroups Γ and L, we denote by mΓ∩L the fiber product of 

algebraic stacks MΓ ×M ML, where M is the stack over Z whose S-points classify 

generalized elliptic curves over the scheme S.

v. For any algebraic stack MΓ over a noetherian scheme S, we denote by MΓ the coarse 

moduli space attached to MΓ (MΓ is an algebraic space).
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vi. For any proper and flat scheme X over OK , we denote by Xan
K the rigid analytic 

space given by the generic fiber of the completion of X along its special fiber (in 

particular, we have XK(K̄) ≃ Xan
K (K̄)).

vii. Let | . |p be the normalized p-adic valuation on Q̄p, then for non-zero x, y we write 

x ∼ y if and only if |xy−1 − 1|p < 1.

Acknowledgments. The first named author’s research is supported by a EPSRC Grant 

EP/R006563/1 and the first author has received funding from the European Research 

Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-

gramme (grant agreement No. 682152). Both authors would like to thank the Université 

Paris 7, where most of our discussions took place, for its hospitality. The second named 

author (E.L.) has received funding from Université Paris 7 for his PhD thesis and would 

like to thank this institution.

2. Basic properties of coarse moduli spaces of moduli stacks of generalized elliptic 

curves with Γ(2)-level structure

Let MΓ(2) be the stack over Z[1/2] parametrizing generalized elliptic curves with 

Γ(2)-level structure (see [3, IV. Definition 2.4]). Deligne–Rapoport proved in [3, 

Théorème 2.7] that MΓ(2) is an algebraic stack proper smooth of relative dimension 

one over Z[1/2]. Let MΓ(2) be the coarse algebraic space associated to MΓ(2). Proposi-

tion [3, VI.6.7] implies that MΓ(2) is smooth over Z[1/2]; and hence MΓ(2) ⊗ OK is a 

scheme since it is a regular algebraic space of relative dimension one over OK .

By the universal property of the coarse moduli space attached to an algebraic stack 

over a noetherian scheme, we have a coarse moduli map

g : MΓ(2) → MΓ(2)

such that for any field L of characteristic different from two, g induces a bijection

MΓ(2)(L) ≃ MΓ(2)(L).

For any elliptic curve E with a basis of its 2-torsion over a field L of characteristic 

different from 2, E is isomorphic to a unique Legendre curve Eλ: Y 2 = X(X −1)(X −λ)

with basis of 2-torsion the points (0, 0) and (0, 1). Hence, we have a bijection

MΓ(2)(L) → P1
Z[1/2](L),

associating to an elliptic curve E its lambda invariant λ.

Proposition 2.1. There exists an isomorphism λ : MΓ(2) → P1
Z[1/2] inducing the previous 

map on L-points for every field L of characteristic different from 2.

Proof. We use similar arguments to those given in the proof of [3, VI. Théorème 1.1]. 

Let c = [1]Γ(2) be the cusp at which the complex modular invariant λ has a pole. Since 
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a cusp of MΓ(2) is given by a section Spec Z[1/2] → MΓ(2), then by composing with the 

coarse moduli map g, a cusp of MΓ(2) is also given by a section Spec Z[1/2] → MΓ(2). 

Since MΓ(2) is proper, there exists a section c : Spec Z[1/2] → MΓ(2) corresponding to 

[1]Γ(2) after base change to C.

Now, we obtain a section c : Spec Z[1/2] → MΓ(2) giving rise to a Cartier divisor 

D of MΓ(2). By [3, V. Proposition 5.5], the geometric fibers of MΓ(2) are absolutely 

irreducible. The genus is constant on the geometric fibers of MΓ(2) and equals the genus 

of the complex modular curves MΓ(2)(C), which is zero (see [7, Proposition 7.9]). Hence, 

by applying Riemann–Roch to each geometric fiber of MΓ(2) (see [9, III. Corollary 9.4]) 

we obtain:

H1(MΓ(2), OMΓ(2)
(D)) = 0.

Thus, H0(MΓ(2), OMΓ(2)
(D)) has rank two over Z[1/2] and is generated by {1, λ}, so 

we have a morphism λ : MΓ(2) → P1
Z[1/2] (which we normalize so that it coincides with 

the Legendre lambda-invariant on L-points as above). On each geometric fiber MΓ(2) ⊗ k̄

away from characteristic 2, we see that the degree of the divisor Dk̄ corresponding to D

on MΓ(2) ⊗ k̄ is 1, hence Dk̄ is very ample (see [9, IV. corollary 3.2]). Thus, D is relatively 

very ample over Z[1/2] (see [8, 9.6.5]) and λ is an isomorphism. �

Let M ′
Γ(2) be the affine open of MΓ(2) corresponding to A1

Z[1/2] ⊂ P1
Z[1/2], ϕ :

MΓ0(p)∩Γ(2) → MΓ(2) be the map forgetting the Γ0(p)-level structure (cf. [3, IV Proposi-

tion 3.19]), and M ′
Γ0(p)∩Γ(2) be the inverse image of M ′

Γ(2) by ϕ, which is an affine scheme 

since ϕ is a finite morphism. Denote by wp the Atkin–Lehner involution on MΓ0(p)∩Γ(2); 

it preserves M ′
Γ0(p)∩Γ(2) by [1, Lemma 7.4]. Thus, we obtain finite maps

(ϕ, ϕ ◦ wp) : MΓ0(p)∩Γ(2) → MΓ(2) × MΓ(2)

and

(ϕ, ϕ ◦ wp) : M ′
Γ0(p)∩Γ(2) → M ′

Γ(2) × M ′
Γ(2).

Let R such that M ′
Γ0(p)∩Γ(2) = Spec R and Spec Z[1/2][λ, λ′] = MΓ(2) × MΓ(2). The 

image of the finite (hence proper) morphism (ϕ, ϕ ◦ wp) : M ′
Γ0(p)∩Γ(2) → M ′

Γ(2) × M ′
Γ(2)

is a reduced closed subset V (I), where I is an ideal of Spec Z[1/2][λ, λ′] and this 

ideal equals the kernel of the map Z[1/2][λ, λ′] → R. Thus, we have a finite injec-

tive morphism Z[1/2][λ, λ′]/I →֒ R. Using the going up theorem, we get a surjection 

Spec R → Spec Z[1/2][λ, λ′]/I and the fact that the ring Z[1/2][λ, λ′]/I is equidimen-

sional of dimension two. Hence, the ideal I has codimension one.

Moreover, the affine scheme M ′
Γ(2) × M ′

Γ(2) is isomorphic to A2
Z[1/2], hence it is a 

factorial scheme. The ideal I is generated by an element F (X, Y ) ∈ Z[1/2][X, Y ] since 

the Picard group of a factorial ring is trivial. Thus, V (I) is a principal Weil divisor.
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Since the degree of the two projections ϕ, ϕ ◦ wp : MΓ0(p)∩Γ(2) → MΓ(2) is equal to 

p + 1 = #P1(Z/pZ) and MΓ0(p)∩Γ(2) → MΓ(2) × MΓ(2) is injective outside CM-points 

and the special fiber at p, the degree of F as a polynomial in X equals to the degree of 

F as a polynomial in Y , equals to p + 1. Thus, we have F (X, Y ) = uXp+1 + vY p+1 +
∑

i+j≤p+1 ,i<p+1,j<p+1 ai,jXiY j , where u, v are invertible in Z[1/2]. Moreover, since wp

is an involution, we have F (X, Y ) = α · F (Y, X) where α is invertible in Z[1/2]. We 

must have α = 1 since else, we have F (X, X) = 0. This is impossible since this implies 

that every elliptic curve over C has CM by some quadratic order. Thus we can assume 

that F ∈ Z[1/2][X, Y ] is monic in X and Y . It is then clear that F = Fp (the p-th 

modular polynomial). Moreover, the coefficients of Fp are in some cyclotomic ring and 

thus are in Z. More precisely, the Fourier coefficients of λ(pτ) and λ((τ + a)/p) are in 

Z[ζp]. Consequently, any coefficient of Fp(X, λ) (as a polynomial in X) is a polynomial 

in λ with coefficients in Z[ζp] (cf. [11, Chapter 5, Theorem 2]).

We have thus proved the first part of the following result.

Proposition 2.2. We have Fp ∈ Z[X, Y ] and Fp(X, Y ) = Fp(Y, X). The curve 

MΓ0(p)∩Γ(2) ⊗ Q is birational to Spec Q[X, Y ]/(Fp(X, Y )).

Proof. Since M ′
Γ0(p)∩Γ(2) is irreducible, Spec Z[1/2][X, Y ]/(Fp(X, Y )) is irreducible (we 

have Z[1/2][X, Y ]/(Fp(X, Y )) ⊂ R where Spec(R) = M ′
Γ0(p)∩Γ(2) and R is an inte-

gral domain). Let K(MΓ0(p)∩Γ(2)) be the field of rational functions of MΓ0(p)∩Γ(2) and 

Q(X)[Y ]/(Fp(X, Y )) be the function field of Spec Z[1/2][X, Y ]/(Fp(X, Y )).

We have inclusions

Q(λ) ⊂ Q(X)[Y ]/(Fp(X, Y )) ⊂ K(MΓ0(p)∩Γ(2))

and by comparing degrees, we have Q(X)[Y ]/(Fp(X, Y )) = K(MΓ0(p)∩Γ(2)). Thus, the 

curve MΓ0(p)∩Γ(2)⊗Q is birational to Spec Q[X, Y ]/(Fp(X, Y )), since they have the same 

field of rational functions and Q(X)[Y ]/(Fp(X, Y )) ∩Q̄ = Q (the cusps of MΓ0(p)∩Γ(2)⊗Q

are Q-rational). �

If E is an elliptic curve over Fp and E → E(p) is the relative Frobenius, then E

is ordinary if and only if the kernel of Frobenius is isomorphic to the finite flat group 

scheme μp. The Atkin–Lehner involution wp sends the multiplicative component of the 

special fiber of MΓ0(p)∩Γ(2) to the étale component via λ �→ λp.

Corollary 2.3. The reduction of Fp(X, Y ) modulo p is (Xp − Y )(X − Y p).

Proof. Let x be an element of X(k̄) corresponding to (E, α2, H) such that E is not 

supersingular. We have two cases:

If H is a multiplicative subgroup of order p, then from the discussion above, it is clear 

that λ(x)p = λ(wp(x)).

Otherwise, H is étale and λ(x) = λ(wp(wp(x))) = λ(wp(x))p.
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Moreover, since the open set given by the complementary of supersingular elliptic 

curves is dense in the special fiber of X, the zeros of the polynomial (Xp −Y )(Y p −X) ∈
Fp[X, Y ] are zeros of Fp modulo p. Furthermore, Z[1/2][X, Y ]/(Fp(X, Y )) is reduced 

(Spec Z[1/2][X, Y ]/(Fp(X, Y )) is the scheme theoretic image of (c, c ◦ wp)). Thus, in the 

ring Z[1/2][X, Y ]/(Fp(X, Y )), we have (Xp − Y )(Y p − X) = 0 and by comparing the 

degree we have the equality. �

Remark 2. This corollary could be proved in a more down-to-earth way, like in [11].

3. p-adic uniformization and the reduction map

Let X be the modular curve MΓ0(p)∩Γ(2) ⊗ OK . Since the singularities of the spe-

cial fiber of X are k-points where k = Fp2 , Mumford’s Theorem [14] shows the ex-

istence of a free discrete subgroup Γ ⊂ PGL2(K) (i.e. a Schottky group) and of a 

Gal(K̄/K)-equivariant morphism of rigid spaces:

τ : HΓ → Xan
K

inducing an isomorphism Xan
K ≃ HΓ/Γ, where HΓ = P1

K − L and L is the set of limit 

points of Γ. Note that HΓ is an admissible open of the rigid projective line P1
K .

Let TΓ be the subtree of the Bruhat–Tits tree for PGL2(K) generated by the axes 

whose ends correspond to the limit points of Γ. Mumford constructed in [14] a continuous 

map ρ : HΓ → TΓ called the reduction map.

The special fiber of X has two components, and each component has 3 cusps. One of 

these components, which we call the étale component, classifies elliptic curves or 2p-sided 

Néron polygons over k̄ with an étale subgroup of order p and a basis of the 2-torsion. The 

other component, which we call the multiplicative component, classifies elliptic curves 

or 2-sided Néron polygons over k̄ with a multiplicative subgroup of order p and a basis 

of the 2-torsion. The involution wp sends a 2p-gon to a 2-gon. Let c and c′ = wp(c) be 

two cusps of MΓ0(p)∩Γ(2)(C) such that c is above cΓ(2). By [1, Proposition 7.4], c′ is also 

above cΓ(2) (ξc corresponds to a 2p-gon and ξc′ = wp(ξc) corresponds to a 2-gon).

The dual graph Δ of the special fiber of X has two vertices vc′ and vc indexed 

respectively by the cusps ξc′ and ξc. There are g + 1 edges ei (i ∈ {0, ..., g}) corre-

sponding to supersingular elliptic curves with a Γ(2)-structure, where g is the genus of 

MΓ0(p)∩Γ(2)(C). We orient these edges so that they point out of vc′ .

The Atkin–Lehner involution wp exchanges the two vertices vc′ and vc and also acts 

on edges (reversing the orientation). More precisely, if Ei is a supersingular elliptic curve 

with Γ(2)-structure corresponding to ei, then wp(ei) = ej where ej is the isomorphism 

class of the elliptic curve (with Γ(2)-structure) associated to E
(p)
i = wp(Ei) (here wp is 

the Frobenius). Thanks to Lemma 3.1 below, one can identify the generators {γi}1≤i≤g

of Γ with (ei − e0)1≤i≤g.

Let ṽc and ṽc′ be two neighbor vertices of TΓ reducing to vc′ and vc respectively, such 

that the edge linking ṽc to ṽc′ reduces to e0 modulo Γ. For 0 ≤ i ≤ g, let ẽ′
i be an edge 



80 A. Betina, E. Lecouturier / Journal of Number Theory 188 (2018) 71–87

pointing out of ṽc′ and reducing to ei modulo Γ. Let ẽi be oriented edges of TΓ lifting ei

and pointing to ṽc. Note that ẽ0 = ẽ′
0.

Let A = ρ−1(ṽc) and A′ = ρ−1(ṽc′). Then A (resp. A′) is the complement of g + 1

open disks in P1
K , hence P1

K − A =
∐

0≤i≤g

Bi and P1
K − A′ =

∐

0≤i≤g

C ′
i. We index C ′

i and 

Bi such that A ⊂ C ′
0, A′ ⊂ B0, C ′

i and Bi are associated to ẽ′
i and ẽi respectively.

For all 0 ≤ i ≤ g, ρ−1(ẽ′
i) = ci is an annulus of C ′

i and Ci = C ′
i − ρ−1(ẽ′

i) is a closed 

disk; we also have P1
K − C0 = B0. We have

P1
K − ρ−1( ∪

0≤i≤g
ẽi

′ ∪ ṽc′) =
∐

0≤i≤g

Ci .

Note that ṽc ∪ ṽc′ ∪i {ẽ′
i} is a fundamental domain of TΓ, so

D = P1
K −

∐

1≤i≤g

Bi ∪
∐

1≤i≤g

Ci

is a fundamental domain of HΓ.

Lemma 3.1. [1, Lemma 3.3] We can choose Γ such that there is a Schottky basis α1, ..., αg

of Γ, and a fundamental domain D satisfying:

i. Bi is the open residue disk in the closed unit disk of P1
K which reduces to λ(ei)

p, 

∀0 ≤ i ≤ g.

ii. For 1 ≤ i ≤ g, αi corresponds, under the identification Γab = Z[S]0, to ei − e0.

iii. αi sends P1
K − Bi bijectively to Ci and α−1

i sends P1
K − Ci bijectively to Bi.

iv. The annulus ci is isomorphic, as a rigid analytic space, to {z, |p| < |z| < 1}.

For a, b ∈ HΓ, define the meromorphic function θ(a, b; z) = θ((a) − (b); z) (z ∈ HΓ) by 

the convergent product

θ(a, b; z) =
∏

γ∈Γ

z − γa

z − γb
.

See [13] for the basic properties of these theta functions.

For all a, b ∈ HΓ, the theta series θ(a, b; .) converges and defines a rigid meromorphic 

function on HΓ (which is modified by a constant if we conjugate Γ). We extend θ to 

degree zero divisors D of HΓ. The series θ(D; .) is entire if and only if τ∗(D) = 0, where 

we recall that τ : HΓ → Xan
K is the uniformization.

The proposition below follows from [13] (see also [5]).

Proposition 3.2. [13]

i. θ(a, b; z) = c(a, b, α)θ(a, b; αz), where α ∈ Γ and c(a, b, αβ) = c(a, b, α)c(a, b, β).

ii. The function uα(z) = θ(a, αa; z) does not depend on a, and uαβ = uαuβ.
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iii. c(a, b, α) = uα(a)/uα(b).

iv. θ(a, b; z)/θ(a, b; z′) = θ(z, z′; a)/θ(z, z′; b).

We recall that Φ : Z[S]0 × Z[S]0 → K× is defined by:

Φ(α, β) = θ(a, αa; z)/θ(a, αa; βz) = uα(z)/uα(βz).

The results of Mumford [14] imply that we can identify Γab with Z[S]0 and that TΓ is 

the universal covering of the graph Δ. Moreover, Manin and Drinfeld proved that vK ◦Φ

is positive definite (vK is the p-adic valuation of K). According to [1, Lemma 4.2], the 

pairing Φ takes values in Q×
p .

We recall that we defined in [1] an extension Φ : Z[S] × Z[S] → K× as follow:

For all 0 ≤ i ≤ g, we chose ξ
(i)
c (resp. ξ

(i)
c′ ) in HΓ which reduces modulo Γ to the cusp 

ξc ⊗Qp (resp. ξc′ ⊗Qp), and such that ξ
(i)
c and ξ

(i)
c′ are separated by an annulus reducing 

to ei. Let ṽ
(i)
c and ṽ

(i)
c′ be two neighbor vertices of TΓ above vc and vc′ respectively, 

separated by an edge reducing to ei. We fix ṽ
(0)
c = ṽc and ṽ

(0)
c′ = ṽc′ . Thus, we chose ξ

(i)
c

(resp. ξ
(i)
c′ ) in ρ−1(ṽ

(i)
c ) (resp. ρ−1(ṽ

(i)
c′ )). Let for all 0 ≤ i ≤ g, ξ

(i)
c = z0 ∈ A. Then ξ

(i)
c′

satisfy

ξ
(i)
c′ = α−1

i (ξ
(0)
c′ ) ∈ Bi .

Therefore, we have ξ
(0)
c′ ∈ ρ−1(ṽc′) = A′ and α−1

i (A′) ⊂ α−1
i (P1 − C ′

i) ⊂ Bi. We can 

assume also without losing in generality that z0 �= ∞.

We defined an extension of Φ to a pairing on Z[S]0 × Z[S] (and taking values in K) 

as follows:

Fix a ∈ HΓ (the definition is independent of this choice). For all α ∈ Γ, we let:

Φ(α, ei) =
θ(a, α(a); ξ

(i)
c′ )

θ(a, α(a); ξ
(i)
c )

=
uα(ξ

(i)
c′ )

uα(ξ
(i)
c )

=
uα(ξ

(i)
c′ )

uα(z0)
(1)

Let λ′ : XK → P1
K be λ′ = λ ◦ wp. The Atkin–Lehner involution acts on Γ\TΓ and 

lifts to an orientation reversing involution wp of TΓ (by the universal covering property). 

By [6] ch. VII Sect. 1, there is a unique class in N(Γ)/Γ (where N(Γ) is the normalizer 

of Γ in PGL2(K)) inducing wp on TΓ. We denote by wp the induced map of HΓ (it is 

only unique modulo Γ).

Let z ∈ HΓ near ξ
(i)
c and z′ near ξ

(i)
c′ such that τ(z) = wp(τ(z′)). Recall that by 

hypothesis, ξ
(i)
c = z0 is independent of i.

For 0 ≤ i, j ≤ g, We bilinearly extend Φ to Z[S] × Z[S] in [1] as follow:

Φ(ei, ej) = lim λ′(τ(z))2 · θ(z′, z; ξ
(j)
c′ )

θ(z′, z; ξ
(j)
c )

(2)
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where z and z′ approach ξ
(i)
c et ξ

(i)
c′ respectively. Since at z = z0, λ′ ◦ τ has a simple pole 

and the numerator and denominator have a simple zero and simple pole respectively, 

Φ(ei, ej) is finite, and is in K× since K is complete (we may choose z and z′ in K to 

compute the limit).

4. Proof of the main theorem

4.1. Case where λ(e0) ∈ Fp

Assume that λ(e0) ∈ Fp. We can choose a lift of the involution wp to w̃p of N(Γ) ⊂
PGL2(K) preserving the edge e0 and reversing the orientation of this edge. Thus, wp

preserves the annulus ẽ0
′, so sends A to A′. Hence, w̃p is an involution (we have w̃2

p ∈ Γ

and the stabilizer of an edge in Γ is trivial, so w̃2
p = 1).

Let ζ = wp(∞) (i.e. wp(ζ) = ∞). Then our choice of the fundamental domain of HΓ

implies that B0 = {z ∈ P1
K , |z − ζ|p < 1}, P1

K\C ′
0 = B0\c0 = {z ∈ P1

K , |z − ζ|p < |p|p}, 

and B0 mod p = λ(e0).

Any involution of P1
K exchanging 0 and ∞ has the form

z → π

z
,

where π is an uniformizer of OK . Thus, we have:

wp(z) − ζ =
π

z − ζ
(3)

Lemma 4.1. We have Φ(e0, e0) ∼ π.

Proof. Recall the definition:

Φ(e0, e0) = lim λ′(τ(z))2 · θ(z′, z; ξ
(0)
c′ )

θ(z′, z; ξ
(0)
c )

where z approaches z0 ∈ A and z′ = wp(z). We now do a similar analysis as in [1, Section 

6.1]. By [1, Proposition 6.3],

lim
λ′(τ(z)) · (z0 − z)

z2
0

= 1 .

Recall also that

θ(z′, z; ξ
(0)
c′ )

θ(z′, z; ξ
(0)
c )

=
∏

γ∈Γ

(z′ − γ(ξ
(0)
c′ )) · (z − γ(z0))

(z − γ(ξ
(0)
c′ )) · (z′ − γ(z0))

.

The only term in this infinite product which is not a priori a principal unit is the one 

corresponding to γ = 1, which is equivalent modulo principal units to
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(z′ − ξ
(0)
c′ ) · (z − z0)

−z2
0

.

Indeed, if γ �= 1, γ sends the fundamental domain to some Bi or to some Ci. If it is 

some Bi, the term is seen to be a principal unit. Else, if it is some Ci, we apply the 

Atkin–Lehner involution and use the invariance of the cross ratio by the Atkin–Lehner 

involution. Thus, we have:

Φ(e0, e0) ∼ z2
0

z0 − z
· (z′ − ξ

(0)
c′ ) .

To conclude the proof of the Lemma, note that

z′ − ξ
(0)
c′ = (z′ − ζ) − (ξ

(0)
c′ − ζ) =

π

z − ζ
− π

z0 − ζ
∼ π · (z0 − z)

z2
0

. �

4.1.1. Conclusion of the proof of point (ii) of Theorem 1.1 in the case where λ(e0) ∈ Fp

To conclude the proof of point (ii) of Theorem 1.1, it remains to show that

π ∼ Fp(β0, βp
0 )

for any lift β0 of λ(ei) in K.

The proof is really the same as [4, 3.1–3.3], using our analogous fundamental domain 

for Γ, and replacing j by λ′. Thus, we shall be really sketchy and refer the reader to de 

Shalit’s paper for details.

We recall that ordp(π) = 1. By slight abuse of notation we shall write λ for λ ◦ ϕ and 

λ′ for λ ◦ ϕ ◦ wp.

Let y = z − ζ; it identifies the annulus a = ρ−1(ẽ0) with

A(p, 1) := {x ∈ P1
K , |p|p < |x|p < 1} .

Consider the map Ψ : a → B0 defined by

Ψ(z) = λ′ ◦ τ(z) (4)

This is a covering of B0 by a since a is the intersection of our fundamental domain D

with B0 (although it might seem surprising compared to the classical complex situation, 

such a covering indeed exists).

There exists β0 ∈ B0, such that

Ψ(z) = β0 +
∑

n≥1

anyn +
∑

n≥1

bn(π/y)n (5)

where all the coefficients an, bn are in K (since Ψ is K-rational by Proposition 2.1).

Using [1, Lemma 6.2] and similar computations as in [4, p. 143-144], we get:
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Lemma 4.2. We have a1 ∼ 1, bp ∼ 1 and for n < p, |bn|p < |p|p.

For t ∈ C×
p such that

|p|p < |t|p < 1,

let a(t, 1) be the open annulus where |t|p < |y|p < 1.

For t close enough to 1 and y ∈ a(t, 1), we set

u = λ′ − λp = Ψ(π/y) − Ψ(y)p .

We have, by definition:

Fp(λ, λp + u) = 0 .

This gives us, using partial derivatives and Corollary 2.3:

u · (λp2 − λ + up) = −pR(λ) − p · h(u, λ)

where R(X) =
Fp(X,Xp)

p ∈ Z[X] and h(X, Y ) ∈ Z[X, Y ] is some integer coefficients 

polynomial.

We work modulo the ideal I(t) generated by rigid analytic functions on a(t, 1) which 

are strictly smaller than |p|p in absolute value. The term −pR(λ) −p ·h(u, λ) is congruent 

to −pR(λ) modulo I(t). A simple computation using Lemma 4.2 shows that we must 

have u ≡ π/y modulo I(t) and

λp2 − λ = Ψ(y)p2 − Ψ(y) ≡ −y + O(y2) (modulo p).

This shows what we needed to conclude the proof of point (ii) of Theorem 1.1:

(π/y) · y ∼ pR(λ) .

4.1.2. Existence of CM lifts

In this section, we prove part (iii) of Theorem 1.1 in the case λ(e0) ∈ Fp.

Proposition 4.3. Let λ ∈ Fp be a supersingular λ-invariant. Then p ≡ 3 (modulo 4) and 

there exists precisely two λ-invariants in Qp(
√−p) lifting λ, such that the associated 

Legendre elliptic curve has complex multiplication by Z[ 1+
√−p
2 ].

Furthermore, when p ≡ 3 (modulo 4) (and p ≥ 5 as usual), the number of supersin-

gular λ-invariants in Fp is 3 · h(−p) where h(−p) is the class number of Q(
√−p).

Proof. The fact that p ≡ 3 (modulo 4) follows from [2, Theorem 1 a]. Let O = Z[ 1+
√−p
2 ]

and let F be the fraction field of O. Let a an element of the ideal class group of O. We 

denote by j(a) the j-invariant of the isomorphism class of the elliptic curve C/a. It is 



A. Betina, E. Lecouturier / Journal of Number Theory 188 (2018) 71–87 85

classical (cf. for instance [15, Theorem 5.6]) that if λ is any λ-invariant above j(a), then 

F (λ) is an extension of F (j) contained in the ray class field of F of conductor 2 · O.

Lemma 4.4. The ideal above p in O is totally split in F (λ).

Proof. If p ≡ −1 (modulo 8), then 2 splits in F , so 
√−p − 1 ∈ p2 if p2 is any prime ideal 

of O above (2). Thus, by class field theory, since (
√−p) is principal, it splits in the ray 

class field of conductor 2 · O and we are done.

If p ≡ 3 (modulo 8), then 2 is inert in F . The prime ideal above 2 in O is P2 =

(2, α2 +α+1) where α = 1+
√−p
2 . Since α2 = α− p+1

4 , we have P2 = (2, 3−p
4 +

√−p+1). 

Thus we have 
√−p − 1 ∈ P2. As above, class field theory shows that (

√−p) splits in the 

ray class field of F of conductor P2, which concludes the proof of the lemma. �

Lemma 4.5. Let λ ∈ Zp such that the Legendre curve Eλ : y2 = x(x − 1)(x − λ) has 

supersingular reduction. Then λ is a root of Fp(X, X) if and only if Eλ has CM by 

Z[ 1+
√−p
2 ]. Furthermore in this case λ is a simple root of Fp(X, X).

Proof. It is clear that if Fp(λ, λ) = 0, the elliptic curve Eλ has CM by a quadratic 

order O such that p either splits or ramifies in the fraction field. But p has to ramify 

since the reduction of Eλ is supersingular (this comes from the standard description of 

the local Galois representation attached to a supersingular elliptic curve). Furthermore, 

there is an endomorphism of E whose square is −p. Thus, 
√−p ∈ O. But in fact we have √−p ∈ 1 + 2O since the endomorphism 

√−p has to preserve the Γ(2)-structure. Thus 

we have O = Z[ 1+
√−p
2 ]. �

Corollary 2.3 shows that

Fp(X, X) ≡ −(Xp − X)2 (modulo p).

Thus, any supersingular λ-invariant in Fp is a double root of Fp(X, X). Using the pre-

vious lemma, we get:
∏

λ supersingular in Fp

(X − λ)2 ≡
∏

[a]∈Cl(Z[ 1+
√

−p

2 ]), λ such that j(λ)=j(a)

(X − λ) .

This shows that for any supersingular λ-invariant in Fp, λ has two CM lifts in character-

istic 0 which have CM by Z[ 1+
√

−p
2 ], and by Lemma 4.4, these lifts can be seen as living 

in Qp(
√−p). This formula also shows the last assertion of the Proposition on the number 

of supersingular λ-invariants in Fp (there are 6 λ-invariants above each j-invariant since 

j(a) �= 0, 1728 because p ≥ 5). �

We now finish the proof of point (iii) of Theorem 1.1. This is done in a similar way as 

[4, p. 146]. Let λ1 and λ2 be the two CM values of lambda invariants in Qp(
√−p) which 

lift λ(ei) (which exist by Proposition 4.3). It is clear that λ1 and λ2 are not in Qp, so 
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they must be conjugate. Write λ1 = a + b
√−p and λ2 = a − b

√−p for some a, b ∈ Zp. 

By point (ii) of 1.1, it suffices to prove:

Fp(λ1, λp
1) ≡ (λ1 − λp

1)2 (modulo p
√−p).

We know that Fp(λ1, λ1) = 0. Therefore, we have:

0 = Fp(λ1, λ1) = Fp(λ1, λp
1+(λ1−λp

1)) ≡ Fp(λ1, λp
1)+(λ1−λp

1)·(λp2

1 −λ1) (modulo p
√−p)

where the last congruence follows from Corollary 2.3 (which gives ∂Y Fp(X, Y ) ≡
−(X − Y p) (modulo p)). Since λp2

1 ≡ λp
1 ≡ a (modulo p) and λ1 ≡ λp

1 (modulo
√−p), 

we get:

Fp(λ1, λp
1) ≡ (b · √−p)2 (modulo p

√−p)

which concludes the proof of Theorem 1.1 if λ(e0) ∈ Fp.

4.2. Case λ(e0) ∈ Fp2\Fp

Assume now that λ(e0) ∈ Fp2\Fp, and without loss of generality that λ(e0)p = λ(eg). 

In this case, we choose wp such that wp(ẽ′
0) = ẽ′

g. Since w2
p ∈ Γ, we have w2

p = αg (see 

[1, p. 14] for more details).

Let z+
g ∈ Cg (resp. z−

g ∈ Bg) be the attractive (resp. repulsive) fixed point of αg. As 

in the case λ(e0) ∈ Fp, the idea is to compute wp. Let

σ(z) =
z − z+

g

z − z−
g

.

Then σ ◦ αg ◦ σ−1 fixes 0 and ∞, and we get

σ ◦ wp ◦ σ−1 = κ · z

for some κ ∈ Cp of absolute value |p|p. We let

π := −κ · (z+
g − zg).

Similar arguments as in the case λ(e0) ∈ Fp give:

Lemma 4.6. We have

Φ(e0, e0) ∼ π

and
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π ∼ Fp(β0, βp
0 )

for any lift β0 of λ(e0) in K.

We refer as before to [4, Sections 4.1–4.2] for details in the j-invariant case.
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