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Abstract 

Driver distraction is one of the main causes of motor-vehicle accidents. However, the impact 
on traffic safety of tasks that impose cognitive (non-visual) distraction remains debated. One 

particularly intriguing finding is that cognitive load seems to improve lane keeping performance, 

most often quantified as reduced standard deviation of lateral position (SDLP). The main 

competing hypotheses, supported by current empirical evidence, suggest that cognitive load 

improves lane keeping via either increased physical arousal, or higher gaze concentration 
toward the road center, but views are mixed regarding if , and how, these possible mediators 

influence lane keeping performance. Hence, a simulator study was conducted, with participants 

driving on a straight city road section whilst completing a cognitive task at different levels of 

difficulty. In line with previous studies, cognitive load led to increased physical arousal, higher 

gaze concentration toward the road center, and higher levels of micro-steering activity, 
accompanied by improved lane keeping performance. More importantly, during the high 

cognitive task, both physical arousal and gaze concentration changed earlier in time than micro-

steering activity, which in turn changed earlier than lane keeping performance. In addition, our 

results did not show a significant correlation between gaze concentration and physical arousal 

on the level of individual task recordings. Based on these findings, various multilevel models 
for micro-steering activity and lane keeping performance were conducted and compared, and 

the results suggest that all of the mechanisms proposed by existing hypotheses could be 

simultaneously involved. In other words, it is suggested that cognitive load leads to: (i) an 

increase in arousal, causing increased micro-steering activity, which in turn improves lane 

keeping performance, and (ii) an increase in gaze concentration, causing lane keeping 
improvement through both (a) further increased micro-steering activity and (b) a tendency to 

steer toward the gaze target. 

Keywords: cognitive distraction; cognitive load; physical arousal; gaze concentration; lane 
keeping improvement; multilevel regression 

 

1. Introduction 
Driving is a highly complex task that requires continual integration of perception, cognition, 

and motor response (Salvucci and Liu, 2002). However, in recent years, with the extensive 

application of in-vehicle intelligent systems such as navigation devices and mobile/cell phones, 

driving is now regularly accompanied by engagement in other competing secondary tasks. For 
instance, a North American survey conducted in 2013, involving 6016 interviewees, showed 
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that 48% of drivers reported answering their cell phone when driving at least some of the time 

(Schroeder and Meyers et al., 2013). This induced driver distraction introduces many problems 

for driving safety (Ranney and Mazzae et al., 2000). According to a report by the National 
Highway Traffic Safety Administration (National Center for Statistics and Analysis, 2016), in 

the US, distraction-affected crashes contributed to 10% of fatal crashes, 18% of injury crashes, 

and 16% of all police-reported motor vehicle traffic crashes in 2014. More seriously, results 

from the 100-Car Naturalistic Driving Study reported that 78% of crashes, and 65% of near-

crashes involved driver inattention, including secondary task distraction, driving-related 
inattention to the forward roadway, drowsiness, and non-specific eye-glances away from the 

forward roadway (Klauer and Dingus et al., 2006). Hence, it is of importance to investigate the 

impact of driver distraction on driving performance and its causation. 

Driver distraction is commonly defined as ‘the diversion of attention away from activities 

critical for safe driving toward a competing activity’ (Regan and Lee et al., 2008). Two main 
components are cognitive and visual distraction, described as “mind off road” and “eyes off 

road” respectively (Victor, 2005). The effect of these activities on driving has been widely 

explored in recent years (Lamble and Kauranen et al., 1999; Ranney and Mazzae et al., 2000; 

Engström and Johansson et al., 2005; Jamson and Merat, 2005; Liang and Lee, 2010; Muhrer 

and Vollrath, 2011; Kountouriotis and Wilkie et al., 2015; Kountouriotis and Merat, 2016), 
where the consequences of visual distraction on lateral driving performance, and its causation 

are relatively clear. That is, compared to baseline conditions, visual distraction degrades lateral 

control (Angell and Auflick et al., 2006; Liang and Lee, 2010; Kountouriotis and Merat, 2016), 

leading to a significant increase in the standard deviation of lateral position (SDLP, Liang and 

Lee, 2010; Kountouriotis and Merat, 2016), higher risk of lane departure (Liang and Lee, 2010), 
and a reduction in time-to-line crossing (Engström and Johansson et al., 2005). These are 

considered to be due to increased eyes off-road glances during completion of visually 

distracting tasks (Liang and Lee, 2010; Kountouriotis and Merat, 2016).  

However, the effect of cognitive distraction on driving performance is currently unclear (He 

and McCarley et al., 2014; Kountouriotis and Merat, 2016). In the experimental/laboratory 
based studies, this kind of distraction is usually triggered by sound-based, cognitively loading, 

non-visual tasks. Although studies carried out on driving simulators generally suggest that 

cognitive load impairs driving performance due to the degeneration in drivers’ event detection 

performance (Patten and Kircher et al., 2006; Reyes and Lee, 2008; Haque and Washington, 

2014), Naturalistic Driving Studies (NDS) show a mix of unchanged (Olson and Hanowski et 
al., 2009) and reduced (Victor and Dozza et al., 2015) crash risk during (hands-free) listening 

or talking on a mobile phone, as reviewed by Carsten & Merat (2015).  

There is relatively consistent agreement across the majority of these studies in terms of lane 

keeping, showing an improvement in performance during cognitively loading tasks, based on 

reduced SDLP (Engström and Johansson et al., 2005; Jamson and Merat, 2005; Liang and Lee, 
2010; Kaber and Liang et al., 2012; He and McCarley et al., 2014; Kountouriotis and 

Spyridakos et al., 2016). Cognitive load has also been found to lead to increased micro-steering 

activity (Boer and Rakauskas et al., 2005; Markkula and Engström, 2006; Kountouriotis and 

Spyridakos et al., 2016; Li and Merat et al., 2017), higher gaze concentration to the forward 

road center (Victor and Harbluk et al., 2005; Reimer, 2009; Wang and Reimer et al., 2014), and 
higher physical arousal (Reimer and Mehler, 2011; Mehler and Reimer et al., 2012). 
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Different hypotheses have been put forward to explain this set of observations during 

cognitively loading tasks (He and McCarley et al., 2014). Engström et al. (2017) provide an 

overview in their review, and discuss which hypotheses remain compatible with the available 
empirical data. Here, we will only consider those hypotheses which remain unrefuted, as shown 

in Fig. 1.  

Engström et al. (2017) suggest the global arousal hypothesis: that improvement in lane 

keeping is a byproduct of increased cortical arousal during non-automatized tasks, such as those 

caused by a cognitively loading task. This increased arousal then allows the driver’s highly 
automatized lane keeping and steering behavior to be more responsive to visual stimuli which 

help support lane keeping in the driving environment, resulting in more frequent micro-steering 

corrections, in turn leading to reduced SDLP.  

Alternatively, the active gaze hypothesis (Wilkie and Wann et al., 2008), also termed the 

steer-where-you-look hypothesis (Wilson and Chattington et al., 2008; Medeiros-Ward and 
Seegmiller et al., 2010; He and McCarley et al., 2014), explains the lane keeping improvement 

as a side effect of task-induced gaze concentration, combined with drivers’ tendency to steer in 
the direction of their gaze. A related suggestion, the visual enhancement hypothesis (Engström 

and Johansson et al., 2005; He and McCarley et al., 2014; Boer and Spyridakos et al., 2016)  

suggests that cognitive load causes gaze concentration toward the road center, supporting a 
better perception of visual information in the road center, and thus resulting in a performance 

gain of steering which finally leads to lane keeping improvement. As discussed by Engström et 

al. (2017), if these gaze-mediated mechanisms are real, they are not likely to be solely 

responsible for SDLP reductions under cognitive load, since such reductions have been 

observed both without associated reductions in gaze concentration (He et al., 2014) and in 
conditions of experimentally controlled gaze direction (Cooper et al, 2013). However, these 

gaze-mediated mechanisms could still be in play, in combination with other non-gaze-mediated 

mechanisms, such as global arousal. 

Thus, the current understanding in this area is that cognitive load affects lane keeping 

performance via a mediating factor of either physical arousal, gaze concentration toward the 
road center, or both, with different predictions made by the three competing hypotheses, as 

shown in Fig. 1. This study presents the first direct tests of these predictions, to investigate the 

causal relationship suggested by the three hypotheses. 
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Fig. 1. The main hypotheses used to explain the improved lane keeping performance observed 

during cognitive load. All boxes are measurable metrics, and the arrows represent predictions. 

For example, the global arousal hypothesis predicts that increased physical arousal is associated 
with increased micro-steering activity, which in turn improves lane keeping performance. 

 

In an initial analysis step, a time course method was used to investigate the changes in lane 

keeping performance, micro-steering activity, gaze concentration, and physical arousal during 

cognitive task performance. This analysis of change over time provided a first insight into the 
possible causal relationships between these measures, by means of their temporal patterns of 

change. Second, pairwise associations between the measures were investigated by univariate 

multilevel regression, on a sample by sample level, to further constrain the possible causal 

relationships. Third, a series of multilevel models for micro-steering activity and lane keeping 

performance, with explanatory variables as proposed by the three competing hypotheses, were 
conducted and then compared, allowing a final conclusion regarding the possible causal 

relationships. 

 

2. Method  
2.1 Participants 

35 participants were recruited using an internet-based forum and by via poster advertisements 

distributed in Beijing, China. All of them held a valid driving license for a minimum of 2 years, 

and had normal or corrected-to-normal vision. A within-subjects design was used for the 

experiment. Our results are based on data from 27 participants (10 females and 17 males), since 

3 participants failed to complete the cognitive task experiment because of motion sickness, 3 
participants’ eye movement data were not adequately recorded, and 2 participants’ skin 

conductance data were also not adequately recorded. The remaining included participants were 

aged between 20 and 60 years old (mean=35 years, SD=13.5 years). 

 

2.2 Apparatus  
The experiment was conducted on a 6 degree-of-freedom motion-based driving simulator, 

recording data at 60 Hz, in the State Key Laboratory of Automotive Safety and Energy at 

Tsinghua University, China (see Fig. 2). It is surrounded by 5 screens, providing 200 degrees 

horizontal and 50 degrees vertical view of the forward road scene, and 36 degrees horizontal 

and 30 degrees vertical view of the rearward scene, through the rear-view mirror. SensoMotoric 
Instruments (SMI) eye tracking glasses collected eye movement data, including gaze position, 

pupil size, and gaze vector, at 30 Hz. A BIOPAC MP150 device was used to record participants’ 
skin conductance level at 100 Hz, at the tips of the left forefinger and mid finger. 
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Fig. 2́ Six degree-of-freedom motion-based driving Simulator 

 

2.3 Secondary tasks  
The n-back working memory task, first introduced in a similar driving experiment by 

researchers at MIT Agelab (Reimer, 2009; Reimer and Gulash et al., 2014), was used as a 

secondary task. This task requires participants to perform delayed verbal recall of a sequence 
of digits, which are played to them while driving. In this study, the task was presented at three 

levels of difficulty: 0-back (low) requires participants to immediately repeat the number they 

hear, 1-back (medium) requires participants to recall the number one back in the sequence, and 

2-back (high) requires participants to recall the number two back in the sequence. 

At the start of the task, a message announcing “0 (or 1, 2)-back task begins now” was 
presented, after which 10 numbers were presented in turn, at a rate of one every 2.25 s, 

producing a total task length of 34 s.  

 

2.4 Driving environment and experiment design 
The driving scenario was a car following task, on a straight section of urban road, which 

comprised of two motor-lanes, one bicycle-lane and one sidewalk, in each direction. The motor- 

lanes were 3.5 m wide, with a speed limit of 70 km/h. Several intersections were located on the 

road, with an interval of 3 km, separating the drive into 4 main experimental blocks. Participants 

were instructed to follow a lead vehicle, which was driving at a constant speed of 55 km/h, at a 

comfortable distance, as they usually would during their daily driving. The traffic lights for all 
intersections remained green at points where the lead vehicle and ego vehicle approached the 

crossing. The purpose of the light-controlled intersections was to increase the realism of the 

simulated driving, but the driving data from the intersections were not included in the analyses 

here. 

  As outlined above, there were three levels of cognitive task (driving with 0-back, 1-back, and 
2-back) and a baseline driving condition. As shown in Fig. 3, in each block (between two 

intersections), the distraction task was repeated three times, and the interval between every two 

neighboring tasks was longer than 1 km (30 s), so that participants had enough time to recover 

from the previous task. One drive, with the four blocks appearing in a random order, lasted 
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about 15 minutes.  

Random traffic

ST ET ST ET ST ET

intersectionintersection Task 
phase

Pre-task

Task 
phase

Task 
phase

3 repetitions of one task 

(baseline, 0-back, 1-back, or 2-back)
Total 180 s

Block1 Block2 Block3 Block4

1 drive

Post-task

 
Fig. 3. Experiment design. ST means task start, ET means task end. 

 

2.5 Procedure 
The whole experiment consisted of 4 drives, lasting 120 minutes for each participant. Only 

one drive was accompanied by the cognitive secondary task, which is the main focus of the 
present study. Half of the participants completed this drive first, and the remainder completed 

the task in their second drive, providing a counter-balanced study. Each participant’s other 

drives required concurrent completion of a visually distracting task – Arrow test (Engström and 

Johansson et al., 2005), which will not be reported here.  

After arriving at the laboratory, participants were told that their driving behavior would be 
examined in this experiment and they would complete a training session and four experiment 

drives. They then received training on the n-back task for 10 minutes, as well as on the other, 

visual, task. Here, participants were told that their main focus should be on ensuring safe 

completion of the driving task (as they would in a real driving condition), performing the 

secondary tasks when they felt safe to do so. Participants were then introduced to the simulator, 
and provided with about 15 minutes’ training. After a short break, participants were equipped 

with eye tracking glasses and the BIOPAC, and the study commenced. At the end of the 

experiment, participants completed a questionnaire about their basic personal information, and 

received 120 RMB for taking part in the study.  

 

2.6 Data analysis 
2.6.1 Metrics of driving performance, physical arousal, and gaze concentration 

Driving performance, physical arousal, and gaze concentration were measured and analyzed 

in the present study. The driving performance measures include lane keeping performance and 

micro-steering activity. Lane keeping performance is most often measured using SDLP, with 
lower SDLP interpreted as improved lane-keeping performance (He and McCarley et al., 2014). 
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Micro-steering activity is measured using steering reversal rate (SRR) with a relatively low 

threshold of 0.5o. An increased SRR0.5o signifies increased micro-steering activity (Markkula 

and Engström, 2006; Kountouriotis and Spyridakos et al., 2016). 
Driver physical arousal is usually measured by skin conductance (Reimer and Mehler, 2011; 

Braithwaite and Watson et al., 2013). The skin conductance signal can be separated into a 

background tonic component (Skin Conductance Level: SCL) and a rapid phasic component 

(Skin Conductance Responses: SCR), both of which result from sympathetic neuronal activity 

(Braithwaite and Watson et al., 2013). Specifically, SCL relates to the slower acting components 
and background characteristics of the signal in the absence of SCR, while SCR refers to the 

faster changing elements of the signal elicited by artifact or stimulus. Both SCL (Measured by 

the absolute value) and SCR (Measured by the number of SCRs in a given duration) have been 

widely used to estimate arousal (Roth and Dawson et al., 2012). In this study, SCL data were 

first resampled with a frequency of 10 Hz, then low-frequency movement artifacts were 
manually removed (Mehler and Reimer et al., 2012), using the SC analysis software Ledalab 

(www.ledalab.de).  

Here, the mean of a sliding-window standard deviation of skin conductance (MSDSCL) was 

used to represent driver physical arousal. The MSDSCL metric is obtained by, first, calculating 

the standard deviation of skin conductance in a sliding 2 s time window moved by 0.1 s steps, 
thus producing a time series of the standard deviation of skin conductance. Then, MSDSCL is 

obtained as the mean value of this time series in each task recording (34 s). A higher value of 

MSDSCL means that the driver was in a state of higher arousal. In this way, this index could 

capture both changes in the tonic component (SCL) and phasic changes (SCR). By testing the 

significance of distraction levels (within-subject design: baseline, 0-back, 1-back, and 2-back) 
on the three arousal metrics with repeated measures general linear model, MSDSCL (Ʉ௣ଶ=0.235) 

showed a larger effect size than both SCL (Ʉ௣ଶ=0.133) and SCRs (Ʉ௣ଶ=0.207). Therefore, it is 

more sensitive to cognitive load than both SCL and SCR, and also more continuous in nature. 

This metric as such will be the subject of more detailed analyses in a later paper (Li, 2017, in 

preparation). 
Driver visual attention toward the road center was measured by standard deviation of 

horizontal gaze position (SDGAZE), with a lower SDGAZE representing more visual attention 

concentrated on the road center, also known as increased gaze concentration (Wang and Reimer 

et al., 2014). For the gaze data, the SMI eye tracker automatically considered low-quality data 

as blanks, and classified high-quality data into fixations, saccades, and blinks. In the present 
study, raw gaze data during blanks and blinks, were treated as invalid data. Gaze concentration 

was calculated based on the remaining valid raw gaze data, when valid data occupied over 50 % 

of all data in that period, otherwise, gaze concentration was treated as missing data and would 

not be involved in the following analysis (Reimer, 2009). Finally, out of the 81 recordings per 

task, there was one excluded recording for baseline (1.2 %), two excluded for 1-back (2.5 %), 
and one excluded for 2-back (1.2 %). 

 

2.6.2 Time course analysis 
A time course method was used to investigate temporal patterns of change in the analyzed 

measures before, during, and after the cognitive tasks. Similar methods have been used 
previously for analyzing lane changing maneuvers (Van Winsum and de Waard et al., 1999; 
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Salvucci and Liu, 2002) and further for investigating the changing pattern of eye movements, 

and vehicle movements for a lane change (Salvucci and Liu, 2002). Here, only results from the 

2-back task are presented, since the demand from the 2-back cognitively loading task was high 
enough to illustrate significant changes in the four measures. The 0-back and 1-back tasks 

showed the same trends as the 2-back task, when compared to baseline (See supplementary Fig. 

S1), although this was weaker, as illustrated also in other such studies (Engström and Johansson 

et al., 2005; Reimer, 2009; Mehler and Reimer et al., 2012).  

Initially, we extracted aggregated data sequences of SDLP, SRR0.5o, MSDSCL, and 
SDGAZE, including pre-task (from 25 s in advance to start of the cognitive task), task (duration 

34 s), and post-task (from the end of cognitive task to 25 s later) data sequences, from the raw 

data set. Only the second repetition of each task was used, since the pre-task phase of the first 

task repetition and the post-task phase of the third task repetition involved driving across 

intersections, which may have influenced drivers’ behavior. Then, we computed the four 
metrics in a sliding 20 s time window, which was moved by 1 s step in the pre-task, task, and 

post-task data sequences separately. Finally, aggregate graphs of those data were produced, 

including both the mean and standard error of all drivers’ data, in each time window.  

 

2.6.3 Multilevel regression 
  To determine associations between the analyzed measures, as possible indicators of a causal 

relationship, we applied both univariate and multivariate multilevel regressions to the measures. 

Here, crucially, data from all tasks (baseline, 0-back, 1-back, and 2-back) were included, to 

cover as wide a range as possible of driver states, from low-intensity to high-intensity cognitive 

load, and the associated effects on other metrics. The data in this study are of a longitudinal 
format with multi-observations in individual, causing a heterogeneity problem, which makes 

the classical regression method unsuitable (Hox and Moerbeek et al., 2010; Snijders, 2011; 

Cohen and Cohen et al., 2013). Hence, regression analyses with a multilevel model (sometimes 

referred to as a hierarchical model, linear mixed model, or random effects model) with a random 

intercept was used to investigate relationships between the measures (Huang and Chin et al., 
2008; Huang and Abdel-Aty, 2010).  

A 2-level multilevel model with random intercept was used. In level 1, ௜ܺ௝ represents the 

explanatory variable of ݅th driver in the ݆ th driving situation, and the corresponding response 
variables ܻ ௜௝ is expressed as (Hox and Moerbeek et al., 2010; Snijders, 2011): ௜ܻ௝ ൌ Ⱦ଴௜ ൅ Ⱦ ௜ܺ௝ ൅ ܴ௜௝   (1) 

In level 2, the within-driver correlation was taken into consideration. That is, data from the 

same driver ݅ share the same intercept Ⱦ଴௜, while data from different drivers have different 
intercepts. The formulation is: Ⱦ଴௜ ൌ Ⱦ଴ ൅ ଴ܷ௜         (2) 

Specifically, this model has both fixed and random terms (Huang and Abdel-Aty, 2010). In 

the fixed term,  Ⱦ଴ is the average intercept, Ⱦ is the fixed-effect coefficient of covariates ܺ 

on the response variable. In the random term, ଴ܷ௜ is driver-dependent deviation, representing 
between-driver variation. ܴ ௜௝ represents within-driver variation, and is the disturbance term 

associated with level 1 analysis. The maximum likelihood method was used for model 

parameter estimation (Hox and Moerbeek et al., 2010), and the analyses were conducted using 
Matlab software.  
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To determine the best model for understanding lane keeping improvement, the model 

comparison method (Victor and Dozza et al., 2015) was used, with Akaike Information 

Criterion (AIC) as index. The model with lower AIC can be regarded as significantly better 
(Akaike, 1998), when AIC difference between two models over 2 (Burnham and Anderson, 

2004). For quantitative comparison of a set of nested models, the likelihood-ratio test was also 

used (Wilks, 1938), with the full model (larger model) preferable to the reduced model (simpler 

model) if the test reaches p < 0.05 significance-level.  

 
3. Results 
3.1 Time course analysis of driving performance, physical arousal and gaze concentration 

Fig. 4 shows driver physical arousal, gaze concentration, micro-steering activity, and lane 

keeping performance as a function of time. MSDSCL and SDGAZE both showed notable 

changes (44.5% and -39.2%, respectively) from the very start of the 2-back task, and these 
levels remained relatively constant throughout task engagement. SRR0.5o showed a smaller 

increase (10.4%) at the beginning of the task, and then went on increasing until the end. SDLP 

had a minor decrease (-3.7%) at task start, then remained relatively constant for a few seconds, 

before showing a more notable decreasing trend until the end of the task. After the task, all 

values recovered to their initial, pre-task levels. 

Task Start Task End

 

Fig. 4. Generalized time course of physical arousal (mean of standard deviation of skin conductance 

level, MSDSCL), gaze concentration (standard deviation of gaze yaw angle, SDGAZE), micro-

steering activity (steering reversal rate at 0.5o level, SRR0.5o), and lane keeping performance 

(standard deviation of lane position, SDLP; mean and SE shown in all panels) before, during, and 

after the 2-back task. 
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Paired t-tests with 0.05 significance level were used to determine when the measures started 

showing a significant change during the task phase, compared to the pre-task phase. Since none 
of the four measures showed significant differences between the 6 time steps of the pre-task 

phase (all p>0.05), the last data points of the pre-task phase (at -10 s in Fig. 4) were used to 

represent data in the pre-task phase, and these were compared with the data in the ensuing 15 

time steps in the task phase, as shown in Fig. 5. The results illustrate that, both MSDSCL and 

SDGAZE showed a significant change from the start of the task phase, while a significant 
SRR0.5o change was observed 5 s after the start, and SDLP 12 s after task start. (Corrections 

for multiple comparisons have not been made here, since the main point is to illustrate the 

general order of changes, not any exact timings.) 

It can be noted that all three hypotheses mentioned in the Introduction suggest the following 

sequence of causation: 1) cognitive load, 2) increased arousal or gaze concentration, 3) possibly 
increased micro steering, and 4) improved lane keeping. In other words, the order of effects 

observed here is compatible for all three hypotheses. (If, for example, micro steering would 

have been visible before any changes to arousal or gaze concentration, this would have been 

problematic for the global arousal or visual enhancement hypotheses, respectively.)  

 
Fig. 5. Time course of p-values for paired t-tests during the 2-back task phase, compared to 

the pre-task phase (Time in x axis is the same as that in Fig. 4). 

 

It should be mentioned here that the choice of a 20 s time window of analysis moving in 1 s 
steps was made after we tried a series of time windows, starting from 30 s and narrowing until 

20 s. A 30 s (or more) window has been commonly used for these metrics in previous studies 

(Engström and Johansson et al., 2005; Kountouriotis and Spyridakos et al., 2016). We obtained 

similar results as previous studies when using 30 s time window. However, we found that this 

window was too wide to capture the temporal changes in the four variables. At shorter time 
windows than 20 s, the patterns of temporal change remain the same as in Figs. 4 and 5, except 
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for the SDLP and SRR0.5o metric for very short time windows (less than 10 s); this metric does 

not work well for time windows shorter than a typical period of vehicle movement in the lane 

(Östlund and Peters et al., 2005; Li and Merat et al., 2017).  
 

3.2 Pairwise association of driving performance measures and mediators 
To further study the possible causal relationships between driving performance measures and 

the hypothesized mediators, pairwise associations were conducted among SDLP, SRR0.5o, 

MSDSCL, and SDGAZE. Table 1 shows the descriptive statistics of variables in our data set. 
Here, we only considered the task phase, and not the pre and post phases, such that we could 

now include all three task repetitions per participant. One task phase produced one data point 

for each variable, and across the four driving conditions (baseline and three task difficulties) 

each participant thus produced 12 data points, for a total of 324 data points from the 27 

participants in this study. These were all included in the univariate multilevel regression. 
 

Table 1. 

Descriptive statistics of measures of task-driving data set for ML model 

Measures Description Min Max Average SD Count 

SDLP(m) 
Standard deviation of vehicle's 

lateral position 
0.028  0.525  0.150  0.077  324 

SRR0.5o(/min)  Steering reversal rate (level 0.5o) 0  86  23  12  324 

MSDSCL(ȝS) 
Mean of standard deviation of skin 

conductance level 
0.004  0.748  0.164  0.136  324 

SDGAZE(o) 
Standard deviation of horizontal 

gaze position 
0.400  14.663  3.836  3.005  324 

 

Based on the hypotheses investigated here (tentatively supported by the time course analysis), 

in the following pairwise association analyses, micro-steering activity should be the response 

variable for physical arousal and gaze concentration respectively. Similarly, lane keeping 

performance should be the response variable for physical arousal, gaze concentration, and 
micro-steering activity respectively. 

Table 2 shows results with slope and significance level of each univariate multilevel 

regression. The results showed that, improved lane keeping performance (reduced SDLP) was 

significantly associated with increased micro-steering activity (increased SRR 0.5o), increased 

physical arousal (increased MSDSCL), and increased gaze concentration (reduced SDGAZE). 
Meanwhile, increased micro-steering activity was significantly associated with increased 

physical arousal and gaze concentration. However, gaze concentration did not show a 

significant association with physical arousal. These results provide further support for the 

predictions provided for the three hypotheses. Perhaps most importantly, the lack of a 

significant association between physical arousal and gaze concentration suggests that the well-
documented effects of cognitive tasks on these measures are two at least partially separate 

phenomena, since, on a per-observation basis, physical arousal and gaze concentration varied 

independently of each other in our data. 

 

Table 2. 
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Results of univariate multilevel regression in the presence of cognitive task (Significance level: 

** p<0.001, * p<0.05) 

Slope & Significance 
Independent Variables 

SRR0.5o SDGAZE MSDSCL 

Response 

Variables 

SDLP -0.0015** 0.0045** -0.1002** 

SRR0.5o   -0.6527** 19.697** 

SDGAZE     -1.946 

MSDSCL   -0.0034  
  

3.3 Application of multiple multilevel regression to the driving measures 
To provide a further, more direct contrast between the three hypotheses, a series of multilevel 

models for micro-steering activity and lane keeping performance were constructed, based on 

the hypotheses, and compared. 

 
3.3.1 Micro-steering activity 

According to the global arousal hypothesis, increased micro-steering activity during 

cognitively loading tasks is caused by an enhanced physical arousal, whereas the visual 

enhancement hypothesis suggests that this rise in micro-steering activity is due to an increase 
in gaze concentration towards the road center. Our results thus far, from the temporal analyses 

and the pairwise regressions, are compatible with both hypotheses, but have suggested that 

there is no causal link between the two involved mediators, physical arousal and gaze 

concentration. To test whether both mechanisms coexist or not, we therefore constructed three 

multivariate models of micro-steering activity: (1) a univariate arousal-based model, suggested 
by the global arousal hypothesis, with only physical arousal as the explanatory variable, (2) a 

univariate gaze-based model, suggested by the visual enhancement hypothesis, with only gaze 

concentration as the explanatory variable, and (3) a bivariate arousal-gaze model, based on the 

hypothesis that both mechanisms are simultaneously active.  

 
Table 3. 

Multilevel model of SRR0.5o 

Model 1: Arousal-based model (Global arousal hypothesis) 

Variables Fixed Effects  Random Effects  AIC R2 

 Coefficient SE DF tStat P_value  Intercept variance Residual    
(Intercept) 19.2830  2.0448  321 9.43  0.0000  

 
9.6 (7.3, 12.7) 6.8 (6.2, 7.3) 2248 0.66 

MSDSCL 19.6970  4.7287  321 4.17  0.0000        
Model 2: Gaze-based model (Visual enhancement hypothesis) 

Variables Fixed Effects  Random Effects  AIC R2 

 Coefficient SE DF tStat P_value  Intercept variance Residual    
(Intercept) 25.0140  2.0565  321 12.16  0.0000  

 
9.7 (7.3, 12.8) 6.8 (6.3, 7.4) 2255 0.65 

SDGAZE -0.6527  0.2040  321 -3.20  0.0015  
      

Model 3: Arousal-gaze model (Global arousal hypothesis and Visual enhancement hypothesis) 

Variables Fixed Effects  Random Effects  AIC R2 

 Coefficient SE DF tStat P_value  Intercept variance Residual    
(Intercept) 21.7240  2.2781  320 9.54  0.0000  

 
10.1 (7.6, 13.4) 6.6 (6.1, 7.2) 2241 0.67 
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SDGAZE -0.6003  0.1996  320 -3.01  0.0028  
      

MSDSCL 18.7920  4.6790  320 4.02  0.0001            

Likelihood-ratio test: P(Model-3 vs. Model-1)=0.003; P(Model-3 vs. Model-2)<0.001 

 

As shown in Table 3, Model 1 and 2 are in fact the same as in the pairwise association tests 

in the Section 3.2. Notably, however, the analyses showed that Model 3 was preferable over 
model 1 and, both in terms of having the lowest AIC among the three models, and the 

likelihood-ratio test also showing this model to be significantly better than the other two. 

Critically, these results suggest two separate causation pathways between cognitive load and 

micro-steering activity, one involving arousal but not gaze concentration, and one involving 

gaze concentration but not arousal. Thus, both the global arousal and visual enhancement 
hypotheses could independently contribute to explaining the variability of micro-steering 

activity.  

 

3.3.2 Lane keeping performance  
As for the cause of reduction in SDLP, both the global arousal and visual enhancement 

hypotheses suggest that it is caused by increased micro-steering activity, while the active gaze 

hypothesis suggests a direct causal link from increased gaze concentration tom reduced SDLP. 

In Section 3.2, associations were provided between SDLP and both SRR 0.5o and SDGAZE, as 

illustrated by the univariate multilevel regressions. Here, we follow up with multiple multilevel 

regressions, considering all three hypotheses. 
Four main multilevel models of SDLP were constructed, as shown in Table 4: (1) A univariate 

steering-based model, suggested by both the global arousal and visual enhancement hypotheses, 

with only micro-steering activity as explanatory variable. (2) A univariate gaze- based model, 

suggested by the active gaze hypothesis, with only gaze concentration as the explanatory 

variable. (3) A bivariate steering-gaze model, suggested by the possibility of all three causal 
pathways being simultaneously active, with both micro-steering activity and gaze concentration 

as the explanatory variables. To test whether physical arousal contributes to explaining the 

variability of SDLP due to some other unknown mechanisms, we also tested (4) a trivariate 

steering-gaze-arousal SDLP model, with micro-steering activity, physical arousal, and gaze 

concentration as explanatory variables.  
Table 4 shows the results for these multilevel models of SDLP. Comparing the four nested 

multilevel models, AIC values and likelihood ratio tests all indicate that Model 3 is preferable 

over Models 1 and 2. However, Model 4 was not preferable over Model 3, neither based on 

AIC (Model 3: -868, Model 4: -869) or the likelihood-ratio test (p=0.051). This suggests that 

Model 3, the steering-gaze model, is preferable for explaining the variability of SDLP, i.e., that 
both increased micro-steering activity and gaze concentration contributed to the reduction in 

SDLP, but without a direct link from arousal to reduction in SDLP. 

 

Table 4. 

Multilevel model of SDLP 

Model 1: Steering-based model (Global arousal hypothesis and Visual enhancement hypothesis) 

Variables Fixed Effects  Random Effects AIC R2 

 Coefficient SE DF tStat P_value  Intercept variance Residual   
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(Intercept) 0.1824  0.0136  320 13.42  0.0000  
 

0.05 (0.03, 0.06) 0.06 (0.05, 0.06) -865 0.41 

SRR0.5 o -0.0015  0.0004  320 -3.51  0.0005  
     

Model 2: Gaze-based model (Active gaze hypothesis) 

Variables Fixed Effects  Random Effects AIC R2 

 Coefficient SE DF tStat P_value  Intercept variance Residual   
(Intercept) 0.1314  0.0120  321 10.93  0.0000  

 
0.05 (0.04, 0.07) 0.06 (0.05, 0.06) -863 0.41 

SDGAZE 0.0045  0.0016  321 2.80  0.0055   
 

   
Model 3: Steering-gaze model (Global arousal hypothesis, Visual enhancement hypothesis and Active gaze hypothesis) 

Variables Fixed Effects  Random Effects AIC R2 

 Coefficient SE DF tStat P_value  Intercept variance Residual   
(Intercept) 0.1662  0.0158  319 10.55  0.0000  

 
0.05 (0.04, 0.07) 0.06 (0.05, 0.06) -868 0.42 

SRR0.5 o -0.0014  0.0004  319 -3.22  0.0014  
 

 
   

SDGAZE 0.0036  0.0016  319 2.20  0.0285  
     

Model 4: Steering-gaze-arousal model 

Variables Fixed Effects  Random Effects AIC R2 

 Coefficient SE DF tStat P_value  Intercept variance Residual   
(Intercept) 0.1755  0.0164  318 10.68  0.0000  

 
0.05 (0.04, 0.07) 0.06 (0.05, 0.06) -869 0.43 

SRR0.5 o -0.0012  0.0004  318 -2.82  0.0050  
 

 
   

SDGAZE 0.0034  0.0016  318 2.10  0.0368       
MSDSCL -0.0740  0.0377  318 -1.96  0.0507           

Likelihood-ratio test: P(Model-3 vs. Model-1)=0.031; P(Model-3 vs. Model-2)=0.009; P(Model-4 vs. Model-3)=0.051; P(Model-

4 vs. Model-1)=0.014; P(Model-4 vs. Model-2)=0.005 

 

4. Discussion 
The aim of the present study was to further clarify why drivers’ lane keeping performance is 

improved by a concurrent cognitively loading task. Various authors have suggested that 

cognitive load affects lane keeping performance via physical arousal or gaze concentration as 
mediators, but hold mixed ideas about whether, and how, those mediators influence lane 

keeping performance. Here, three difficulty levels of a cognitive task were presented to drivers 

in a simulator study, and the hypothesized relationships between driving performance measures 

(lane keeping performance, micro-steering activity) and the possible mediators (physical 

arousal and gaze concentration) were analyzed.  
In line with previous studies, during performance of the cognitive tasks, we observed 

improved lane keeping performance (Engström and Johansson et al., 2005; Jamson and Merat, 

2005; He and McCarley et al., 2014; Kountouriotis and Merat, 2016), increased micro-steering 

activity (Boer and Rakauskas et al., 2005; Kountouriotis and Spyridakos et al., 2016), increased 

gaze concentration to the forward road center (Victor and Harbluk et al., 2005; Reimer, 2009; 
Wang and Reimer et al., 2014), and increased physical arousal (Reimer and Mehler, 2011; 

Mehler and Reimer et al., 2012).  

In addition, a time course analysis, of the most demanding version of the cognitive task, 

showed, for the first time, the temporal dynamics of lane keeping performance, micro-steering 

activity, gaze concentration, and physical arousal. That is, before engaging in a cognitive task, 
driver lane keeping performance was more erratic, and micro-steering activity, gaze 
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concentration toward the road center, and physical arousal were at a relatively low level. The 

start of the cognitive task caused an immediate increase in gaze concentration and physical 

arousal, but the change in micro-steering activity and lane keeping performance was more 
gradual. Results of paired t-tests showed that, during a high cognitive task, gaze concentration 

and physical arousal changed earlier than micro-steering activity, which in turn changed earlier 

than lane keeping performance. This implies that the effect of cognitive load on gaze 

concentration and physical arousal precedes that of micro-steering activity which in turn affects 

lane keeping performance. This aligns nicely with the idea of gaze concentration and/or 
physical arousal being the cause of increased micro-steering activity, and some or all of gaze 

concentration, physical arousal, and micro-steering activity being the cause of lane keeping 

improvement, exactly as proposed by the three hypotheses investigated here: the global arousal, 

visual enhancement, and active gaze hypotheses, thus providing support for constraining our 

subsequent analyses to the specific causal relationships proposed by these hypotheses.  
Using univariate multilevel regression analyses, we then demonstrated the existence of all 

the pairwise associations between measures predicted by the three hypotheses. However, we 

did not find any association between the two mediating variables physical arousal and gaze 

concentration. This is interesting given that the classical cue utilization hypothesis (Easterbrook, 

1959) suggests that increased arousal reduces the range of cue utilization, which has led some 
authors to suggest that gaze concentration during cognitive load is caused by increased arousal 

(Monk and Yang et al., 2013). We did not find any evidence for such an association, and 

therefore suggest that arousal and gaze concentration are, at least to some extent, independently 

affected by cognitive load. Further research on the relationship between gaze concentration and 

arousal seems warranted. 
Based on these findings, and further supported by additional multilevel models, two 

independent pathways of cognitive load affecting lane keeping performance were identified 

here, as illustrated in Fig. 6: (1) An increase in arousal, causing increased micro-steering activity, 

which in turn improves lane keeping performance, as suggested by the global arousal 

hypothesis. (2) Gaze concentration, causing improved lane keeping performance both through 
(a) increased micro-steering activity, as suggested by the visual enhancement hypothesis, and 

(b) a tendency to steer toward the gaze target, as suggested by the active gaze hypothesis.  

 

Increased gaze 
concentration

Increased 
micro-steering 

activityCognitive 
load

Active gaze hypothesis

Global arousal 
hypothesisIncreased arousal

Improved 
lane 

keeping
Visual enhancement 

hypothesis

 

Fig. 6. Structure of causation of lane keeping improvement during cognitive load 

 

To further test this conclusion, some additional tests were carried out. First, if the causation 

structure proposed in Fig. 6 is correct, our best multivariate model, the steering-gaze model for 

SDLP, should perform at least as well or better as a model predicting SDLP from cognitive task 
difficulty. Therefore, we also constructed such a task-level based model, with 0-back, 1-back, 
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and 2-back as nominal variables (the same as the well-known repeated measures general linear 

model), and baseline driving as a constant variable (model intercept). As shown in Table 5, this 

model produces a similar but slightly higher (worse) AIC than the steering-gaze model (-867 
and -868, respectively). This difference in AIC is not considered to be statistically significant 

(Burnham and Anderson, 2004). In other words, the steering-gaze mixed model does not 

explain the variability of SDLP significantly better than the task-level-based model, but it does 

explain it in a way that sheds more light on the involved mechanisms and mediators.  

 
Table 5. 

Task-level-based model of SDLP 

Variables Fixed Effects  Random Effects AIC R2 

 Coefficient SE DF tStat P_value  Intercept variance Residual   
(Intercept) 0.1674  0.0111  319 15.05  0.0000  

 
0.05 (0.04, 0.06) 0.06 (0.05, 0.06) -867 0.42 

0back -0.0173  0.0089  319 -1.94  0.0527  
     

1back -0.0227  0.0089  319 -2.55  0.0113       
2back -0.0349  0.0089  319 -3.91  0.0001           

 

Second, we also applied Structural Equation Modelling (SEM) to further test the proposed 
structure in Fig. 6. The reader may note that in practice, the comparison of multiple multivariate 

regressions is in fact very similar to an SEM analysis. The reason we did not perform SEM 

from the outset is that, we were not able to find any existing SEM software that would permit 

our combination of discrete variables (cognitive load) and continuous variables (the various 

metrics). Therefore, the SEM included the full structure in Fig. 6, except the cognitive load 
variable, i.e., it started from gaze concentration and arousal (in practice, since in our case all 

variables were directly measured, this was a special case of SEM referred to as Path Analysis). 

The fit indices of this SEM model showed that it was acceptable, supporting the proposed 

structure for understanding lane keeping improvement in the present study. 

In summary, this study has provided evidence suggesting that the phenomenon of reduced 
lane position variability during cognitively loading tasks is highly complex and multifaceted, 

with all of the mechanisms shown in Fig. 6 being simultaneously active. In other words, our 

results suggest that all three of the main hypotheses considered in this paper are true.  

However, it should be emphasized that our time course and regression analyses do not 

provide conclusive proof of causation. The reason we have nevertheless discussed our findings 
in causal terms is because we departed from three well-defined causal hypotheses, which could 

each in theory have been refuted by our data and analyses. What we have shown in practice is 

that our data were compatible with the idea of all three tested causal hypotheses being true at 

the same time. This does not, however, preclude the possible existence of other mechanisms or 

hidden mediating factors. To further test whether the proposed causal structure in Fig. 6 is 
sufficient, one path forward would be to conduct more targeted experiments; e.g., manipulating 

arousal and gaze concentration directly, to see if this, in itself, leads to improvements in lane 

keeping. In such studies one could also consider investigating the time course of the involved 

behaviors in even more detail than what has been done here. For example, the difference in time 

of onset between micro-steering increases and improved lane keeping observed here (Fig. 5) is 
relatively large. Further research is warranted to establish if this is because it takes a long time 
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for these small steering actions to translate into an actual impact on the vehicle’s path, or  
because the putative parallel effect of gaze concentration on the lane keeping builds up 

relatively slowly over time.  
Also, with respect to the time course analysis, even though the overall pattern in 0- and 1-

back tasks were similar to those in the 2-back task (i.e., the overall effects in the task phase are 

pointing in same direction- but with smaller effect sizes - See supplementary Fig. S1), there 

were indications of possible time course patterns that were not present in the 2-back data, such 

as MSDSCL falling over time during 0-back, and SRR0.5o seemingly not increasing over time 
in the 0- and 1-back task (but still with indications of a small increase from the start of the task, 

as in the 2-back data). 

From a more applied perspective, our finding that physical arousal and gaze concentration 

change earlier than driving performance measures (micro-steering activity, and lane keeping 

performance) during a cognitive task, suggests that both physical arousal and gaze 
concentration could be used for early detection of cognitive load effects on driving, before 

driving measures have started to change. The finding from (Reimer and Mehler et al., 2011) 

that physiological measures such as physical arousal and gaze concentration are more sensitive 

to changes in driver workload than driving performance measure also aligns with this idea.  
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