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Quantum inequality in spacetimes with small curvature

Eleni-Alexandra Kontou and Ken D. Olum

Institute of Cosmology, Department of Physics and Astronomy,

Tufts University, Medford, MA 02155, USA

Abstract
Quantum inequalities bound the extent to which weighted time averages of the renormalized

energy density of a quantum field can be negative. They have mostly been proved in flat spacetime,

but we need curved-spacetime inequalities to disprove the existence of exotic phenomena, such as

closed timelike curves. In this work we derive such an inequality for a minimally-coupled scalar

field on a geodesic in a spacetime with small curvature, working to first order in the Ricci tensor

and its derivatives. Since only the Ricci tensor enters, there are no first-order corrections to the

flat-space quantum inequalities on paths which do not encounter any matter or energy.

PACS numbers: 04.20.Gz 03.70.+k
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I. INTRODUCTION

In the context of General Relativity all kinds of exotic spacetimes are allowed. With
the appropriate stress-energy tensor Tµν , following Einstein’s equations, the spacetime can
contain wormholes and allow superluminal travel and the construction of “time machines”.
However, in quantum field theory, there are restrictions on Tµν . Two examples of these are
the energy conditions and the quantum inequalities. Pointwise energy conditions bound the
stress-energy tensor at each spacetime point, but they are easily violated, since quantum
field theory allows arbitrary negative energies (e.g., in the Casimir effect). On the other
hand, averaged energy conditions bound the stress-energy tensor integrated along a complete
geodesic and quantum inequalities bound a weighted time average of the total energy. These
have been proven to hold in a variety of spacetimes.

Ford [1] introduced quantum inequalities to prevent the violation of the second law of
thermodynamics. After that, quantum inequalities were derived for various spacetimes and
fields. The majority of these results are for free fields on flat spacetimes without boundaries,
while a few are for interacting fields in spacetimes with less than four dimensions [2, 3].
For spacetimes with boundaries there are difference quantum inequalities, which bound the
difference of Tµν between some state and a reference state. But these inequalities cannot be
used to rule out exotic spacetimes arising from vacuum energies.

Energy conditions have been used to address the possibility of exotic spacetimes. Specif-
ically, Ref. [4] showed that the achronal averaged null energy condition (achronal ANEC)
is sufficient to rule out most known spacetimes with exotic curvature. In previous work
[5], we proved achronal ANEC for spacetimes with a classical source. However, to do that
we assumed that with a timescale small compared to any curvature radius the quantum
inequality for flat spacetime still holds with small corrections. Ford, Pfenning and Roman
[6, 7] also have suggested that the flat-space quantum inequalities can be used in spacetimes
with small curvature. However none of these results have been explicitly proven.

Fewster and Smith [8] proved an absolute quantum inequality (i.e., one without depen-
dence on a reference state) that applies to spacetimes with curvature. Their bound involves
the Fourier transform of differentiated terms of the Hadamard series up to fifth order. In
recent work [9], we used their result to provide a bound for flat spacetimes with a back-
ground potential. In the same paper we also showed that is sufficient to consider only terms
up to first order, which makes Fewster and Smith’s result more practical. Using this result
we will now show, in accordance with our past conjecture and previous work, that in space-
times with small curvature, the quantum inequality is the same as in flat space with small
corrections that depend on the curvature.

The present paper closely follows Ref. [9]. We begin by stating the general absolute
quantum inequality of Fewster and Smith [8] in Sec. II. The inequality bounds the time
averaged, renormalized energy density using the Fourier transform of a point-split energy
operator applied to H̃, which is a combination of the Hadamard series and the advanced-
minus-retarded Green’s function. In Sec III we discuss and simplify this operator. In Sec. IV
we compute the Green’s function to first order for a spacetime with curvature, and in Sec. V
we use that result to calculate H̃. In section VI we apply the point-split energy operator
and compute H̃. Finally we perform the Fourier transform, and find the resulting quantum
inequality in Sec. VII. We conclude in Sec. VIII.

We use the sign convention (−,−,−) in the classification of Misner, Thorne and Wheeler
[10] . Indices a, b, c, . . . denote all spacetime coordinates while i, j, k . . . only spatial coordi-
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nates.

II. ABSOLUTE QUANTUM ENERGY INEQUALITY

We consider a massless, minimally-coupled scalar field with the usual classical stress-
energy tensor,

Tab = ∇aΦ∇bΦ− 1

2
gabg

cd∇cΦ∇dΦ . (1)

Let γ be any timelike geodesic parametrized by proper time t, and let g(t) be any any
smooth, positive, compactly-supported sampling function. In flat spacetime, Fewster and
Eveson [11] showed that

∫

∞

−∞

dt Ttt(γ(t))g(t)
2 ≥ − 1

16π2

∫

∞

−∞

dt g′′(t)2 . (2)

We will generalize Eq. (2) to geodesics in curved spacetime.
First we construct Fermi normal coordinates [12] in the usual way: We let the vector

e0(t) be the unit tangent to the geodesic γ, and construct a tetrad by choosing arbitrary
normalized vectors ei(0), i = 1, 2, 3, orthogonal to e0(0) and to each other, and define {ei(t)}
by parallel transport along γ. The point with coordinates (x0, x1, x2, x3) is found by traveling
unit distance along the geodesic given by xiei(x

0) from the point γ(x0).
We work only in first order in the curvature and its derivatives, but don’t otherwise

assume that it is small. We assume that the components of the Ricci tensor in any Fermi
coordinate system, and their derivatives, are bounded,

|Rab| ≤ Rmax |Rab,cd| ≤ R′′

max |Rab,cde| ≤ R′′′

max . (3)

Eqs. (3) are intended as universal bounds which hold without regard to the specific choice
of Fermi coordinate system above. We will not need a bound on the first derivative. The
reason that we bound the Ricci tensor and not the Riemann tensor is that, as we will prove,
the additional terms of the quantum inequality do not depend on any other components of
the Riemann tensor. We will discuss this result further in the conclusions.

Following Ref.[8], we define the renormalized energy density

〈T ren
tt 〉 ≡ lim

x→x′

T split (〈φ(x)φ(x′)〉 −H(x, x′))−Q+ Ctt , (4)

with quantities appearing in Eq. (4) defined as follows. T split is the point-split energy density
operator,

T split =
1

2

3
∑

a=0

eαa∇α ⊗ eβ
′

a ∇β′ =
1

2

3
∑

a=0

∂a∂a′ . (5)

where ∂af or f,a denotes the gradient of a function f with respect to x in the direction of
ea(x), and ∂a′f or f,a′ the same with x′ in place of x.

We renormalize the energy density according to the procedure of Wald [13], by taking
the difference between the two point function, 〈φ(x)φ(x′)〉, and the Hadamard series,

H(x, x′) =
1

4π2

[

∆1/2

σ+(x, x′)
+

∞
∑

j=0

vj(x, x
′)σj

+(x, x
′) ln(σ+(x, x

′)) +

∞
∑

j=0

wj(x, x
′)σj(x, x′)

]

,

(6)
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where σ is the squared invariant length of the geodesic between x and x′, negative for timelike
distance. In flat space

σ(x, x′) = −ηab(x− x′)a(x− x′)b . (7)

By F (σ+), for some function F , we mean the distributional limit

F (σ+) = lim
ǫ→0+

F (σǫ) , (8)

where
σǫ(x, x

′) = σ(x, x′) + 2iǫ(t(x)− t(x′)) + ǫ2 . (9)

In some parts of the calculation it is possible to assume that both points lie on the geodesic,
so we define

τ = t− t′ (10)

and write
F (σ+) = F (τ−) = lim

ǫ→0
F (τǫ) , (11)

where
τǫ = τ − iǫ . (12)

The function ∆ is the van Vleck-Morette determinant bi-scalar, given by

∆(x, x′) = −det(−∇a ⊗∇b′σ(x, x
′))

√

−g(x)
√

−g(x′)
. (13)

The term Q is the one introduced by Wald to preserve the conservation of the stress-energy
tensor. Wald [14] calculated this term in the coincidence limit,

Q =
1

12π2
w1(x, x) . (14)

The term Ctt handles the ambiguities in the definition of the stress-energy tensor T in curved
spacetime. We will adopt the axiomatic definition given by Wald [13], but there remains
the ambiguity of adding local curvature terms with arbitrary coefficients. From Ref. [15] we
find that these terms include

(1)Hab = 2R;ab − 2gab✷R − gabR
2/2 + 2RRab (15a)

(2)Hab = R;ab −✷Rab − gab✷R/2− gabR
cdRcd/2 + 2RcdRacbd . (15b)

Thus in Eq. (19) we must include a term given by a linear combination of Eqs. (15a) and
(15b) to first order in R,

Ctt = a (1)Htt + b (2)Htt = 2aR,ii −
b

2
(Rtt,tt +Rii,tt − 3Rtt,ii +Rii,jj) , (16)

where a and b are undetermined constants.1

1 There are also ambiguities corresponding to adding multiples of the metric and the Einstein tensor to the

stress tensor. The first can be considered renormalization of the cosmological constant and the second

renormalization of Newton’s constant. We will assume that these renormalization have been performed,

and that the cosmological constant is considered part of the gravitational sector, so neither of these affects

Tab.
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From Ref. [8] we have the definition

H̃(x, x′) =
1

2
[H(x, x′) +H(x′, x) + iE(x, x′)] , (17)

where iE is the antisymmetric part of the two-point function, which we calculate in Sec. IV.
We will use the Fourier transform convention

f̂(k) or f∧[k] =

∫

∞

−∞

dxf(x)eixk . (18)

We can now state the quantum inequality of Ref. [8],

∫

∞

−∞

dτ g(t)2〈T ren
tt 〉ω(t, 0) ≥ −

∫

∞

0

dξ

π

[

g ⊗ g(θ∗T splitH̃(5))(t, t
′)
]

∧

(−ξ, ξ)

+

∫

∞

−∞

dt g2(t)(−Q + Ctt) , (19)

where the operator θ∗ denotes the pullback of the function to the geodesic,

(θ∗T splitH̃(5))(t, t
′) ≡ (T splitH̃(5))(γ(t), γ(t

′)) , (20)

and the subscript (5) means that we include only terms through j = 5 in the sums of Eq. (6).
However, as we proved in Ref. [9], terms of order j > 1 make no contribution to Eq. (19).

Thus we can write Eq. (19) in our case as

∫

∞

−∞

dτ g(t)2〈T ren
tt 〉(t, 0) ≥ −B , (21)

where

B =

∫

∞

0

dξ

π
F̂ (−ξ, ξ) +

∫

∞

−∞

dt g2(t)

(

Q− 2aR,ii −
b

2
(Rtt,tt +Rii,tt − 3Rtt,ii +Rii,jj)

)

,

(22)
F (t, t′) = g(t)g(t′)T splitH̃(5)((t, 0), (t

′, 0)) , (23)

and F̂ denotes the Fourier transform in both arguments according to Eq. (18).

III. SIMPLIFICATION OF T
split

The T split operator, Eq. (5), can be written

T split =
1

2

[

∂t∂t′ +

3
∑

i=1

∂i∂i′

]

. (24)

To simplify it, we will define the following operator,

∇2
x̄ = ∇2

x + 2
3

∑

i=1

∂i∂i′ +∇2
x′ , (25)
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which in flat space would be the derivative with respect to the center point. Then Eqs. (24)
and (25) give

T split =
1

2

[

∂t∂t′ +
1

2

(

∇2
x̄ −∇2

x −∇2
x′

)

]

=
1

4

[

∇2
x̄ +✷x − ∂2

t +✷x′ − ∂2
t′ + 2∂t∂t′

]

, (26)

where ✷x and ✷x′ denote the D’Alembertian operator with respect to x and x′. Because
we are using Fermi coordinates and are on the generating geodesic, the D’Alembertian and
Laplacian operators have the same form with respect to Fermi coordinates as they do in flat
space. Then using

∂2
τ =

1

4

[

∂2
t − 2∂t∂t′ + ∂2

t′

]

, (27)

we can write

T splitH̃ =
1

4

[

✷xH̃ +✷x′H̃ +∇2
x̄H̃

]

− ∂2
τ H̃ . (28)

Consider the first term. The function H(x, x′) obeys the equation of motion in x and so
does E(x, x′). Thus

✷xH̃ =
1

2
✷xH(x′, x) . (29)

The only asymmetrical part of H comes from the wj, so

H(x′, x) = H(x, x′) +
1

π2

∑

j

(wj(x
′, x)− wj(x, x

′))σj(x, x′) . (30)

and so we have

✷xH̃ =
1

8π2
✷x

∑

j

(wj(x
′, x)− wj(x, x

′))σj(x, x′) . (31)

Similarly,

✷x′H̃ =
1

8π2
✷x′

∑

j

(wj(x, x
′)− wj(x

′, x))σj(x, x′) . (32)

Adding together Eqs. (31) and (32), we get something which is symmetric in x and x′ and
vanishes in the coincidence limit. Following the analysis of §3A of Ref. [9], such a term
makes no contribution to Eq. (22) and for our purposes we can take

T splitH̃ =

[

1

4
∇2

x̄ − ∂2
τ

]

H̃ . (33)

IV. GENERAL COMPUTATION OF E

The function E is the advanced minus the retarded Green’s function,

E(x, x′) = GA(x, x
′)−GR(x, x

′) , (34)
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and iE is the imaginary, antisymmetric part of the two-point function. The Green’s functions
satisfy

✷G(x, x′) =
δ(4)(x− x′)√−g

. (35)

Following Poisson, et al. [16] and adjusting for different sign and normalization conventions,

G(x, x′) =
1

4π
(2U(x, x′)δ(σ) + V (x, x′)Θ(−σ)) , (36)

where U(x, x′) = ∆1/2(x, x′) and V (x, x′) are smooth biscalars.
For points y null separated from x′, V is called V̌ [16] and satisfies

V̌,aσ
,a +

[

1

2
✷σ + 2

]

V̌ = −✷U , (37)

with all derivatives with respect to y. Now V̌ is first order in the curvature, so we will do the
rest of the calculation as though we were in flat space. Under this approximation, we will
neglect coefficients which depend on the curvature, and also evaluate curvature components
at locations that would be relevant if we were in flat space. The distance between these
locations and the proper locations is first order in the curvature, so the overall inaccuracy
will always be second order in the curvature and its derivatives.

Thus we use σ,a = −2(y − x′)a and ✷σ = −8 in Eq. (37) to get

(y − x′)aV̌,a(y) + V̌ (y) =
1

2
✷U(y) . (38)

Now suppose we want to compute V̌ at some point x′′. We need to integrate along the
geodesic going from x′ to x′′. So let y = x′ + λ(x′′ − x′) and observe that

d(λV̌ (y))

dλ
= λ

dV̌ (y)

dλ
+ V̌ (y) = λ(x′′−x′)aV̌,a+ V̌ (y) = (y−x′)aV̌,a+ V̌ (y) =

1

2
✷U(y) , (39)

so

V̌ (x′′, x′) =
1

2

∫ 1

0

dλ✷U(y) . (40)

The function V obeys [16]
✷V (x, x′) = 0 . (41)

Consider points x and x′ on the geodesic γ, which in the flat-space approximation means
they are separated only in time, and let x̄ = (x+x′)/2. Then V (x, x′) can be found in terms
of V and its derivatives evaluated at the time t̄ (the time component of x̄) using Kirchhoff’s
formula,

V (x, x′) =
1

4π

∫

dΩ

[

V̌ (x′′) +
τ

2

∂

∂r
V̌ (x′′) +

τ

2

∂

∂t
V̌ (x′′)

]

, (42)

where
∫

dΩ means to integrate over all unit vectors Ω̂, and we now set

x′′ = x̄+ (τ/2)Ω (43)

with the 4-vector Ω given by Ω̂ with unit time component.
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Let us establish null-spherical coordinates (u, v, θ, φ) with u = t + r, v = t − r, and the
origin at x′. Then x′′ has u = τ , v = 0. The derivative ∂/∂u can be written (∂/∂t+∂/∂r)/2
and so

V (x, x′) =
1

4π

∫

dΩ
d

du

[

uV̌ (uΩ/2, x′)
]

u=τ
. (44)

From Eq. (40),

uV̌
(u

2
Ω, x′

)

=
1

2

∫ u

0

du′(✷U)(u′Ω/2, x′) (45)

and so

V (x, x′) =
1

8π

∫

dΩ [(✷U)(τΩ/2, x′)] . (46)

We are only interested in the first order of curvature, so we can expand U, which is just
the square root of the Van Vleck determinant, to first order. From Ref. [17],

∆1/2(x, x′) = 1− 1

2

∫ 1

0

ds(1− s)sRab(sx+ (1− s)x′)(x− x′)a(x− x′)b +O(R2) , (47)

so in the case at hand we can use

U(x′′) = ∆1/2(x′′) = 1− 1

2

∫ 1

0

ds(1− s)sRab(y)X
aXb (48)

where y = sx′′ = (su′′, sv′′, θ′′, φ′′) is a point between 0 and x′′, and the tangent vector
X = dy/ds. We are interested in ✷x′′U(x′′, 0). To bring the ✷ inside the integral, we define
Y = sX = (su′′, sv′′, 0, 0), and

✷U(x′′, 0) = −1

2

∫ 1

0

ds(1−s)s✷x′′[Rab(y)X
aXb] = −1

2

∫ 1

0

ds(1−s)s✷y[Rab(y)Y
aY b] . (49)

For the rest of this section, all occurrences of u, v, θ, φ, and derivatives with respect to these
variables will refer to these components of y or Y .

Now we expand the D’Alembertian, in terms of angular derivatives, derivatives in u, and
derivatives in v,

✷ = 4
∂2

∂v∂u
− 4

u− v

(

∂

∂u
− ∂

∂v

)

−∇2
Ω , (50)

with

∇2
Ω =

4

(v − u)2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
4

(v − u)2 sin θ2
∂2

∂φ2
. (51)

The angular integration in Eq. (46) annihilates the results of ∇2
Ω, so we have

V (x, x′) = − 1

4π

∫

dΩ

∫ 1

0

dss(1− s)

[

∂u∂v −
1

u− v
(∂u − ∂v)

]

(Rab(y)Y
aY b) . (52)

Outside the derivatives, we can take v = 0 and change variables to u = sτ , giving

V (x, x′) = − 1

4πτ 3

∫

dΩ

∫ τ

0

du(τ − u) [u∂u∂v − ∂u + ∂v] (Rab(y)Y
aY b) (53)

= − 1

4πτ 3

∫

dΩ

∫ τ

0

du(τ − u)∂u[(u∂v − 1)(Rab(y)Y
aY b)] . (54)
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We can integrate by parts with no surface contribution, giving

V (x, x′) =
1

4πτ 3

∫

dΩ

∫ τ

0

du(1− u∂v)(Rab(y)Y
aY b) (55)

=
1

4πτ 3

∫

dΩ

∫ τ

0

duu2 [−uRuu,v(y)− 2Ruv(y) +Ruu(y)] .

Now
Rab = Gab − (1/2)gabG , (56)

where Gab is the Einstein tensor and G its trace. Thus

V (x, x′) =
1

4πτ 3

∫

dΩ

∫ τ

0

du u2 [−uGuu,v(y)− 2Guv(y) + (1/2)G(y) +Guu(y)] . (57)

Now define a vector field Qa(y) = Gab(y)Y
b. Then

Qa;c = Gab;c(y)Y
b +Gab(y)Y

b
;c . (58)

We write the covariant derivative only because we are working in null-spherical coordinates,
rather than because of spacetime curvature, which we are ignoring because we already have
first order quantities.

Since the covariant divergence of G vanishes,

gacQa;c = gacGab(y)Y
b
;c . (59)

In Cartesian coordinates, Y b = yb, and yb;c = δbc, which means that (in any coordinate
system).

gacQa;c = G . (60)

Explicit expansion gives

gacQa;c = 2(Qv,u+Qu,v)−
4

u − v
(Qu−Qv)−

4

(v − u)2

[

1

sin θ

∂

∂θ
(sin θQθ) +

1

sin θ2
Qφ,φ

]

, (61)

but the angular terms vanish on integration. Now we expand the derivatives in u and v and
set v = 0, giving

Qv,u = uGuv,u +Guv (62a)

Qu,v = uGuu,v +Guv , (62b)

so
∫

dΩ (2uGuv,u + 2uGuu,v + 8Guv − 4Guu) =

∫

dΩG . (63)

Substituting Eq. (63) into Eq. (57), we find

V (x, x′) =
1

4πτ 3

∫

dΩ

∫ τ

0

du u2 [uGuv,u(y) + 2Guv(y)−Guu(y)] (64)

and integration by parts yields

V (x, x′) =
1

4π

∫

dΩ

[

Guv(x
′′)− 1

τ 3

∫ τ

0

du u2 (Guv(y) +Guu(y))

]

. (65)
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Now
∫

dΩ

∫ τ

0

du u2 (Guv(y) +Guu(y)) =
1

2

∫

dΩ

∫ τ

0

du u2 (Gtt(y) +Gtr(y))

=
1

2

∫

dΩ

∫ τ

0

du u2
(

Gtt(y)−Gtr(y)
)

, (66)

which is 4 times the total flux of Gta crossing inward through the light cone. Since this
quantity is conserved, Gta

;a = 0, we can integrate instead over a ball at constant time t̄,
giving

4

∫

dΩ

∫ τ/2

0

dr r2Gtt(x̄+ rΩ) =
τ 3

2

∫

dΩ

∫ 1

0

ds s2Gtt(x̄+ s(τ/2)Ω) (67)

so

V (x, x′) =
1

8π

∫

dΩ

[

1

2
[Gtt(x

′′)−Grr(x
′′)]−

∫ 1

0

ds s2Gtt(x
′′

s)

]

, (68)

where x′′

s = x̄+ s(τ/2)Ω, and

GR(x, x
′) = ∆1/2(x, x′)

δ(σ)

2π
+

1

32π2

∫

dΩ

{

1

2
[Gtt(x

′′)−Grr(x
′′)]−

∫ 1

0

ds s2Gtt(x
′′

s)

}

,(69)

E(x, x′) = ∆1/2(x, x′)
δ(τ − |x− x′|)− δ(τ + |x− x′|)

4π|x− x′| +
1

32π2

∫

dΩ

{

1

2
[Gtt(x

′′)−Grr(x
′′)]

−
∫ 1

0

ds s2Gtt(x
′′

s)

}

sgn τ . (70)

V. COMPUTATION OF H̃

We now need to compute H̃(x, x′) and apply T split. First we consider the term in H̃(x, x′)
that has no dependence on the curvature. It has the same form as it would in flat space
[8, 9],

H̃−1(x, x
′) = H−1(x, x

′) =
1

4π2σ+(x, x′)
. (71)

In Sec. VI, we will apply the fully general T split from Eq. (33) with ∇x̄ defined in Eq. (25)
to H̃−1(x, x

′).
All the remaining terms that we need are first order in the curvature, so for these it is

sufficient to take ∇x̄ as the flat-space Laplacian with respect to the center point, x̄. For this
we only need to compute H̃ at positions given by time coordinates t and t′ but the same
spatial position.

As we discussed, we only need to keep terms in H̃ with powers of τ up to τ 2, but we
need E exactly. The terms from H alone give a function whose Fourier transform does
not decline fast enough for positive ξ for the integral in Eq. (22) to converge. Thus we
extract the leading order terms from iE and combine these with the terms from H . This
combination gives a result that has the appropriate behavior after the Fourier transform.
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Following the notation of Ref [9], we let Hj(t, t
′), j = 0, 1, . . ., denote the term in H

involving τ 2j (with or without ln τ), and H(j) denote the sum of all terms from H−1 through
Hj. We will split up E(x, x′) in similar fashion, define a “remainder term”

Rj = E −
j

∑

k=−1

Ek , (72)

and let

H̃j(x, x
′) =

1

2
[Hj(x, x

′) +Hj(x
′, x) + iEj(x, x

′)] (73a)

H̃(j)(x, x
′) =

1

2

[

H(j)(x, x
′) +H(j)(x

′, x) + iE(x, x′)
]

. (73b)

A. Terms with no powers of τ

First we want to calculate the zeroth order of the Hadamard series. The Hadamard
coefficients are given by the Hadamard recursion relations, which are the solutions to

✷H(x, x′) = 0, w0 = 0 . (74)

The recursion relations for the massless field in a curved background are [8]

✷∆1/2 + 2v0,aσ
,a + 4v0 + v0✷σ = 0 , (75)

✷vj + 2(j + 1)vj+1,aσ
,a − 4j(j + 1)vj+1 + (j + 1)vj+1✷σ = 0 . (76)

To find the zeroth order of the Hadamard series we need only v0(x, x
′), which we find by

integrating Eq. (75) along the geodesic from x′ to x. Since we are computing a first-order
quantity, we can work in flat space by letting y′ = x′ + λ(x − x′) and using the first-order
formulas ✷σ = −8 and σ,a = −2(y′ − x′)a. From Eq. (75), we have

(y′ − x′)av0,a + v0 =
1

4
✷∆1/2(y′, x′) , (77)

and thus

v0(x, x
′) =

1

4

∫ 1

0

dλ(✷∆1/2)(x′ + λ(x− x′), x′) . (78)

by the same analysis as Eq. (40).
Using the expansion for ∆1/2 from Eq. (47) gives

v0(x, x
′) = −1

8

∫ 1

0

dλ

∫ 1

0

ds(1− s)s✷y′ [Rab(sy
′ + (1− s)x′)(y′ − x′)a(y′ − x′)b]

= −1

8

∫ 1

0

dλ

∫ 1

0

ds(1− s)s

[

(λs)2(✷Rab)(x
′ + sλ(x− x′))(x− x′)a(x− x′)b

+2λsR,b(x
′ + sλ(x− x′))(x− x′)b + 2R(x′ + sλ(x− x′))

]

. (79)
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We can combine the s and λ integrals by defining a new variable σ = sλ

∫ 1

0

dλ

∫ 1

0

ds(1− s)sf(λs) =

∫ 1

0

dλ

∫ λ

0

dσ

(

σ

λ2
− σ2

λ3

)

f(σ) (80)

=

∫ 1

0

dσ f(σ)

∫ 1

σ

dλ

(

σ

λ2
− σ2

λ3

)

=

∫ 1

0

dσ f(σ)

[

−σ

λ
+

σ2

2λ2

]1

σ

=
1

2

∫ 1

0

dσ f(σ)(1− σ)2 .

Then, changing σ to s, we find

v0(x, x
′) = − 1

16

∫ 1

0

ds(1− s)2
[

s2(✷Rab)(x
′ + s(x− x′))(x− x′)a(x− x′)b

+2sR,b(x
′ + s(x− x′))(x− x′)b + 2R(x′ + s(x− x′))

]

. (81)

or when the two points are on the geodesic,

v0(t, t
′) = − 1

16

∫ 1

0

ds(1−s)2
[

s2(✷Rtt)(x
′+sτ)τ 2+4sηcdRct,d(x

′+sτ)τ+2R(x′+sτ)

]

. (82)

In the second term we use the contracted Bianchi identity, ηcdRct,d = R,t/2, giving

2

∫ 1

0

ds(1− s)2sτR,t(x
′ + sτ) = 2

∫ 1

0

ds(1− s)2s
d

ds
R(x′ + sτ)

= −2

∫ 1

0

ds(1− s)(1− 3s)R(x′ + sτ) , (83)

so the final expression for v0 is

v0(t, t
′) = − 1

16

∫ 1

0

ds(1− s)

[

s2(1− s)✷Rtt(x̄+ (s− 1/2)τ)τ 2+4sR(x̄+ (s− 1/2)τ)

]

. (84)

To calculate H0 we only need the zeroth order in τ from v0, so the first term does not
contribute. In the second term, we make a Taylor series expansion,

R(x̄+ (s− 1/2)τ) = R(x̄) +R,t(x̄)τ(s− 1/2)τ +
1

2
R,tt(x̄)τ

2(s− 1/2)2 +O(τ 3) , (85)

but only the first term is relevant here. Thus

v0(t, t
′) = −1

4

∫ 1

0

ds(1− s)sR(x̄) = − 1

24
R(x̄) . (86)

We also need to expand the Van Vleck determinant appearing in the the Hadamard series.
From Eq. (47),

∆1/2(t, t′) = 1− 1

12
Rtt(x̄)τ

2 − 1

480
Rtt,tt(x̄)τ

4 +O(τ 6) . (87)

Keeping the first order term from Eq. (87) and using Eq. (86), we have

H0(x, x
′) =

1

48π2

[

Rtt(x̄)−
1

2
R(x̄) ln (−τ 2

−
)

]

. (88)
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Now we can add the H0(x
′, x) which is the same except that t and t′ interchange

H0(x, x
′) +H0(x

′, x) =
1

24π2
[Rtt(x̄)− R(x̄) ln |τ |] . (89)

Next we must include E from Eq. (70). We can expand the components of the Einstein
tensor around x̄,

Gab(x
′′) = Gab(x̄) +G

(1)
ab (x

′′) , (90)

where G
(1)
ab is the remainder of the Taylor series

G
(1)
ab (x

′′) = Gab(x
′′)−Gab(x̄) =

∫ τ/2

0

dr Gab,i(x̄+ rΩ)Ωi . (91)

Then from Eq. (70) and using
∫

dΩΩi = 0 and
∫

dΩΩiΩj = (4π/3)δij we have

E0(x, x
′) =

1

8π

{

1

2
Gtt(x̄)−

1

6
Gii(x̄)−

∫ 1

0

ds s2Gtt(x̄)

}

sgn τ

=
1

48π
G(x̄) sgn τ = − 1

48π
R(x̄) sgn τ (92)

and

R0(x, x
′) =

1

32π2

∫

dΩ

{

1

2

[

G
(1)
tt (x

′′)−G(1)
rr (x

′′)
]

−
∫ 1

0

ds s2G
(1)
tt (x

′′

s)

}

sgn τ . (93)

Using
2 ln |τ |+ πi sgn τ = ln (−τ 2

−
) , (94)

we combine Eqs. (89) and (92) to find

H̃0(t, t
′) =

1

48π2

[

Rtt(x̄)−
1

2
R(x̄) ln (−τ 2

−
)

]

. (95)

Combining all terms through order 0 gives

H̃(0)(t, t
′) = H̃−1(t, t

′) + H̃0(t, t
′) +

1

2
iR0(t, t

′) . (96)

B. Terms of order τ
2

Now we compute the terms of order τ 2 in H and E. To find v0 at this order we take
Eqs. (84) and (85) and include terms through second order in τ ,

v0(x, x
′) = − 1

24
R(x̄)− 1

16

∫ 1

0

ds(1− s)
[

s2(1− s)✷Rtt(x̄) + 2s(s− 1/2)2R,tt(x̄)
]

τ 2 + . . .

= − 1

24
R(x̄)− 1

480

(

✷Rtt(x̄) +
1

2
R,tt(x̄)

)

τ 2 + . . . . (97)

Next we need v1 but since it is multiplied by τ 2 in H we need only the τ independent
term. From Eq. (76)

✷v0 + 2v1,aσ
,a + v1✷σ = 0 , (98)
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At x = x′, σ,a = 0 so

v1(x, x) =
1

8
lim
x→x′

✷xv0(x, x
′) . (99)

Using Eq. (81) in Eq. (99), the only terms that survive in the coincidence limit are those
that have no powers of x− x′ after differentiation, so

v1(x, x) = − 1

16

∫ 1

0

ds(1− s)2s2✷R(x̄) = − 1

480
✷R(x̄) . (100)

Equations (84), (97) and (100) agree with Ref. [18] if we note that their expansions are
around x instead of x̄.

The w1 at coincidence is given by Ref. [14],

w1(x, x) = −3

2
v1(x, x) =

1

320
✷R(x̄) . (101)

Combining Eqs. (97), (100), and (101), and the fourth order term from the Van Vleck
determinant of Eq. (87), and keeping in mind that σ = −τ 2 when both points are on the
geodesic, we find

H1(x, x
′) =

1

640π2

[

1

3
Rtt,tt(x̄)−

1

2
✷R(x̄)− 1

3

(

✷Rii(x̄) +
1

2
R,tt(x̄)

)

ln (−τ 2
−
)

]

τ 2 . (102)

Then H1(x
′, x) is given by symmetry so

H1(x, x
′) +H1(x

′, x) =
1

160π2

[

1

6
Rtt,tt(x̄)−

1

4
✷R(x̄)− 1

3

(

✷Rii(x̄) +
1

2
R,tt(x̄)

)

ln |τ |
]

τ 2 .

(103)
The calculation of E1 is similar to E0, but now we have to include more terms to the

Taylor expansion,

Gab(x
′′) = Gab(x̄) +

τ

2
Gab,i(x̄)Ω

i +
τ 2

8
Gab,ijΩ

iΩj(x̄) +G
(3)
ab (x

′′) , (104)

where the remainder of the Taylor series is

G
(3)
ab (x

′′) =
1

2

∫ τ/2

0

drGab,ijk(x̄+ rΩ)
(τ

2
− r

)2

ΩiΩjΩk . (105)

Then from Eq. (70) and using that
∫

dΩΩi =
∫

dΩΩiΩjΩk = 0,
∫

dΩΩiΩj = 4π/3δij and
∫

dΩΩiΩjΩkΩl = (4π/15)(δijδkl + δikδjl + δilδjk) we have

E1(x, x
′) = − 1

192π

[

1

10
Gii,jj(x̄) +

1

5
Gij,ij(x̄)−

1

2
Gtt,ii(x̄) +

∫ 1

0

ds s4Gtt,ii(x̄)

]

τ 2 sgn τ

= − 1

320π

[

1

6
Gii,jj(x̄) +

1

3
Gij,ij(x̄)−

1

2
Gtt,ii(x̄)

]

τ 2 sgn τ . (106)

Using the conservation of the Einstein tensor, 0 = ηabGia,b = Git,t −Gij,j and 0 = ηabGta,b =
Gtt,t −Git,i we can write

Gij,ij(x̄) = Gtt,tt(x̄) . (107)
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So

E1(x, x
′) = − 1

960π

(

1

2
Gii,jj(x̄) +Gtt,tt(x̄)−

3

2
Gtt,ii(x̄)

)

τ 2 sgn τ

= − 1

960π

(

✷Rii(x̄) +
1

2
R,tt(x̄)

)

τ 2 sgn τ (108)

and

R1(x, x
′) =

1

32π2

∫

dΩ

{

1

2

[

G
(3)
tt (x

′′)−G(3)
rr (x

′′)
]

−
∫ 1

0

ds s2G
(3)
tt (x

′′

s)

}

sgn τ . (109)

To calculate H̃1, we combine Eqs. (103) and (108) and use Eq. (94) to get

H̃1(x, x
′) =

τ 2

640π2

[

1

3
Rtt,tt(x̄)−

1

2
✷R(x̄)− 1

3

(

✷Rii(x̄) +
1

2
R,tt(x̄)

)

ln (−τ 2
−
)

]

. (110)

All terms through order 1 are then given by

H̃(1)(t, t
′) = H̃−1(t, t

′) + H̃0(t, t
′) + H̃1(t, t

′) +
1

2
iR1(t, t

′) . (111)

VI. THE T
split

H̃

We can easily take the derivatives of H̃0 and H̃1 using Eq. (33), because they are already
first order in R. However in the case of the term ∇2

x̄H̃−1 we have to proceed more carefully.
From Eqs. (25) and (71) we have

∇2
x̄H̃−1 =

1

4π2

3
∑

i=1

(

∂2

∂(xi)2
+ 2

∂

∂xi

∂

∂x′i
+

∂2

∂(x′i)2

)(

1

σ+

)

= − 1

4π2σ2
+

3
∑

i=1

(

∂2σ

∂(xi)2
+ 2

∂2σ

∂xi∂x′i
+

∂2σ

∂(x′i)2

)

, (112)

where we used ∂σ/∂xi = ∂σ/∂x′i = 0 when the two points are on the geodesic. From [18],
after we shift the Taylor series so that the Riemann tensor is evaluated at x̄, we have

∂2σ

∂(xi)2
= = −2ηii −

2

3
Ritit(x̄)τ

2 − 1

2
Ritit,t(x̄)τ

3 − 1

5
Ritit,ttτ

4 +O(τ 5) (113a)

∂2σ

∂(x′i)2
= = −2ηii −

2

3
Ritit(x̄)τ

2 +
1

2
Ritit,t(x̄)τ

3 − 1

5
Ritit,ttτ

4 +O(τ 5) (113b)

∂2σ

∂xi∂x′i
= 2ηii −

1

3
Ritit(x̄)τ

2 − 7

40
Ritit,ttτ

4 +O(τ 5) . (113c)

From Eqs. (112) and (113), and using Ritit = −Rtt we have

∇2
x̄H̃−1 = − 1

4π2

[

2

τ 2
Rtt(x̄) +

3

4
Rtt,tt(x̄)

]

. (114)
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From Eqs. (23) and (33), we need to compute

∫

∞

0

dξ

π
F̂ (−ξ, ξ′) , (115)

where

F (t, t′) = g(t)g(t′)

[

1

4
∇2

x̄H̃(0)(t, t
′)− ∂2

τ H̃(1)(t, t
′)

]

. (116)

Using Eqs. (71), (93), (95), (96), (109), (110), (111) and (114) we can combine all terms in
F to write

F (t, t′) = g(t)g(t′)
6

∑

i=1

fi(t, t
′) , (117)

with

f1 =
3

2π2τ 4
−

(118a)

f2 =
1

48π2τ 2
−

[Rii(x̄)− 7Rtt(x̄)] (118b)

f3 =
1

384π2

[

1

5
Rtt,tt(x̄) +

1

5
Rii,tt(x̄)− Rtt,ii(x̄) +

3

5
Rii,jj(x̄)

]

ln (−τ 2
−
) (118c)

f4 =
1

320π2

[

− 43

3
Rtt,tt(x̄) +

7

6
Rtt,ii(x̄)−

1

2
Rii,jj(x̄)

]

(118d)

f5 =
1

256π2

∫

dΩ∇2
x̄

{

1

2

[

G
(1)
tt (x

′′)−G(1)
rr (x

′′)
]

−
∫ 1

0

dss2G
(1)
tt (x

′′

s)

}

i sgn τ (118e)

f6 = − 1

64π2

∫

dΩ ∂2
τ

{

1

2

[

G
(3)
tt (x

′′)−G(3)
rr (x

′′)
]

−
∫ 1

0

dss2G
(3)
tt (x

′′

s)

}

i sgn τ . (118f)

VII. THE QUANTUM INEQUALITY

We want to calculate the quantum inequality bound B, given by Eq. (22). We can write
it

B =

8
∑

i=1

Bi , (119)

where

Bi =

∫

∞

0

dξ

π

∫

∞

−∞

dt

∫

∞

−∞

dt′g(t)g(t′)fi(t, t
′)eiξ(t

′
−t)

=

∫

∞

0

dξ

π

∫

∞

−∞

dτ

∫

∞

−∞

dt̄ g(t̄− τ

2
)g(t̄+

τ

2
)fi(t̄, τ)e

−iξτ i = 1 . . . 6 (120a)

B7 =

∫

∞

−∞

dt g2(t)Q(t) =
1

3840π2

∫

∞

−∞

dt g2(t)✷R(t̄) (120b)

B8 = −
∫

∞

−∞

dt g2(t)

[

2aR,ii(x̄)−
b

2
(Rtt,tt(x̄) +Rii,tt(x̄)− 3Rtt,ii(x̄) +Rii,jj(x̄))

]

(120c)
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using Eqs. (14), (16), (22) and (101). The first 6 terms have exactly the same τ dependence
as the corresponding terms in Ref. [9]. So the Fourier transform proceeds in the same way,
except that instead of dependence on the potential and its derivatives, we have dependence
on the Ricci tensor and its derivatives. After the Fourier transform, we see that B4 and B7

have exactly the same form so we merge them in one term. Thus

B =
1

16π2

[

I1 +
1

12
I2 −

1

12
I3 +

1

240
I4 +

1

16π
I5 −

1

4π
I6

]

− I7 , (121)

where

I1 =

∫

∞

−∞

dt g′′(t)2 (122a)

I2 =

∫

∞

−∞

dt̄ [Rii(x̄)− 7Rtt(x̄)](g(t̄)g
′′(t̄)− g′(t̄)g′(t̄)) (122b)

I3 =

∫

∞

−∞

dτ ln |τ | sgn τ
∫

∞

−∞

dt̄

[

1

5
Rtt,tt(x̄) +

1

5
Rii,tt(x̄)− Rtt,ii(x̄)

+
3

5
Rii,jj(x̄)

]

g(t̄− τ

2
)g′(t̄+

τ

2
) (122c)

I4 =

∫

∞

−∞

dt̄ g(t̄)2
[

− 171Rtt,tt(x̄)−Rii,tt(x̄) + 13Rtt,ii(x̄)− 5Rii,jj(x̄)

]

(122d)

I5 =

∫

∞

−∞

dτ
1

τ

∫

∞

−∞

dt̄ g(t̄− τ/2)g(t̄+ τ/2)

∫

dΩ∇2
x̄

{

1

2

[

G
(1)
tt (x

′′)−G(1)
rr (x

′′)
]

−
∫ 1

0

ds s2
[

G
(1)
tt (x

′′

s)
]

}

sgn τ (122e)

I6 =

∫

∞

−∞

dτ

∫

∞

−∞

dt̄ ∂2
τ

[

1

τ
g(t̄− τ/2)g(t̄+ τ/2)

]
∫

dΩ

{

1

2

[

G
(3)
tt (x

′′)−G(3)
rr (x

′′)
]

−
∫ 1

0

ds s2G
(3)
tt (x

′′

s)

}

sgn τ (122f)

I7 =

∫

∞

−∞

dt g2(t)

[

2aR,ii(x̄)−
b

2
(Rtt,tt(x̄) +Rii,tt(x̄)− 3Rtt,ii(x̄) +Rii,jj(x̄))

]

. (122g)

If we only know that the Ricci tensor and its derivatives are bounded, as in Eq. (3), we can
restrict the magnitude of each term of Eq. (121). We start with the second term

|I2| ≤
∫

∞

−∞

dt̄ |Rii(x̄)− 7Rtt(x̄)| |g(t̄)g′′(t̄)− g′(t̄)g′(t̄)|

≤ 10Rmax

∫

∞

−∞

dt̄[g(t̄)|g′′(t̄)|+ g′(t̄)2] . (123)

Terms I3, I4 and I7 are similar. Since Eq. (3) holds regardless of rotation, we can write Grr

in terms of radial and as azimuthal components of R to find |Grr| < 2Rmax, and similarly
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|Gtt| < 2Rmax. Using these results and Eq. (91) for the remainder we have

∣

∣

∣

∣

∫

dΩ∇2
x̄

{

1

2

[

G(1)
rr (x

′′)−G
(1)
tt (x

′′)
]

+

∫ 1

0

ds s2G
(1)
tt (x

′′

s)

}∣

∣

∣

∣

≤ |τ |
2

∫

dΩ

{

1

2

[

|∇2Grr,i(x̄)|+ |∇2Gtt,i(x̄)|
]

+

∫ 1

0

ds s3|∇2Gtt,i(x̄)|
}

|Ωi|

≤ R′′′

max

15|τ |
4

∑

i

∫

dΩ|Ωi| = 45π

2
|τ |R′′′

max . (124)

For I6 we use Eq. (105) for the remainder

∣

∣

∣

∣

∫

dΩ

{

1

2

[

G(3)
rr (x

′′)−G
(3)
tt (x

′′)
]

+

∫ 1

0

ds s2G
(3)
tt (x

′′

s)

}
∣

∣

∣

∣

≤ |τ |3
48

∫

dΩ

{

1

2
[|Grr,ijk(x̄)|+ |Gtt,ijk(x̄)|] +

∫ 1

0

ds s5|Gtt,ijk(x̄)|
}

|Ωi||Ωj||Ωk|

≤ R′′′

max

7|τ |3
144

∑

i,j,k

∫

dΩ|Ωi||Ωj||Ωk| = 7(2π + 1)

24
|τ |3R′′′

max . (125)

After we bound all the terms and calculate the derivatives in I6 we can define

J2 =

∫

∞

−∞

dt
[

g(t)|g′′(t)|+ g′(t)2
]

(126a)

J3 =

∫

∞

−∞

dt

∫

∞

−∞

dt′|g′(t′)|g(t)|ln |t′ − t|| (126b)

J4 =

∫

∞

−∞

dt g(t)2 (126c)

J5 =

∫

∞

−∞

dt

∫

∞

−∞

dt′g(t)g(t′) (126d)

J6 =

∫

∞

−∞

dt

∫

∞

−∞

dt′|g′(t′)|g(t)|t′ − t| (126e)

J7 =

∫

∞

−∞

dt

∫

∞

−∞

dt′ [g(t)|g′′(t′)|+ g′(t)g′(t′)] (t′ − t)2 (126f)

and find

|I2| ≤ 10RmaxJ2 (127a)

|I3| ≤ 46

5
R′′

maxJ3 (127b)

|I4| ≤ 258R′′

maxJ4 (127c)

|I5| ≤ 45π

2
R′′′

maxJ5 (127d)

|I6| ≤ 7(2π + 1)

48
R′′′

max (4J5 + 4J6 + J7) (127e)

|I7| ≤ (24|a|+ 11|b|)R′′

maxJ4 . (127f)
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Thus the final form of the inequality is

∫

R

dτ g(t)2〈T ren
tt 〉ω(t, 0) ≥ − 1

16π2

{

I1 +
5

6
RmaxJ2 (128)

+ R′′

max

[

23

30
J3 +

(

43

40
+ 16π2(24|a|+ 11|b|)

)

J4

]

+ R′′′

max

[

163π + 14

96π
J5 +

7(2π + 1)

192π
(4J6 + J7)

]}

.

Once we have a specific sampling function g, we can compute the integrals of Eqs. (126)
to get a specific bound. In the case of a Gaussian sampling function,

g(t) = e−t2/t20 , (129)

we computed these integrals numerically in Ref. [9]. Using those results the right hand side
of Eq. (128) becomes

− 1

16π2t30

{

3.76 + 2.63Rmaxt
2
0 + [3.42 + 197.9(24|a|+ 11|b|)]R′′

maxt
4
0 + 6.99R′′′

maxt
5
0

}

. (130)

The leading term is just the flat spacetime bound of Ref. [11] for g given by Eq. (129). The
possibility of curvature weakens the bound by introducing additional terms, which have the
same dependance on t0 as in Ref. [9], with the Ricci tensor bounds in place of the bounds
on the potential.

VIII. CONCLUSION

In this work, using a general quantum inequality of Fewster and Smith [8] we derived an
inequality for a minimally-coupled quantum scalar field on spacetimes with small curvature.
We calculated the necessary Hadamard series terms and the Green’s function for this problem
to first order in the curvature. Combining these terms gives H̃ and taking the Fourier
transform gives a bound in terms of the Ricci tensor and its derivatives.

If we know the spacetime explicitly, Eqs. (21), (121), and (122) give an explicit bound
on the weighted average of the energy density along the geodesic. This bound depends on
integrals of the Ricci tensor and its derivatives combined with the weighting function g.

If we do not know the spacetime explicitly but we know that the Ricci tensor and its first
3 derivatives are bounded, Eqs. (126) and (128) give a quantum inequality depending on
the bounds and the weighting function. If we take a Gaussian weighting function, Eq. (130)
gives a bound depending on the Ricci tensor bounds and the width of the Gaussian, t0.

As expected, the result shows that the corrections due to curvature are small if the
quantities Rmaxt

2
0, R

′′

maxt
4
0, and R′′′

maxt
5
0 are all much less than 1. That will be true if the

curvature is small when we consider its effect over a distance equal to the characteristic
sampling time t0 (or equivalently if t0 is much smaller than any curvature radius), and if the
scale of variation of the curvature is also small compared to t0.

In all bounds, there is unfortunately an ambiguity resulting from the unknown coefficients
of local curvature terms in the gravitational Lagrangian. This ambiguity is parametrized by
the quantities a and b.
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Ford and Roman [6] have argued that flat-space quantum inequalities can be applied in
curved spacetime, so long as the radius of curvature is small as compared to the sampling
time. The present paper explicitly confirms this claim and calculates the magnitude of the
deviation. The curvature must be small not only on the path where the quantum inequality
is to be applied but also at any point that is in both the causal future of some point of
this path and the causal past of another. All such points are included in the integrals in
Eq. (122e) and (122f).

Is is interesting to consider vacuum spacetimes, i.e., those whose Ricci tensor vanishes.
These include, for example, the Schwarzschild and Kerr spacetimes, and those consisting
only of gravitational waves. In such spacetimes, the flat-space quantum inequality will hold
to first order without modification. There are, of course, second-order corrections. For the
Schwarzschild spacetime, for example, these were calculated explicitly by Visser [19–21].

In Ref. [5] we proved a theorem ruling out achronal ANEC violation, given a conjecture
that paths with small acceleration in spacetimes with small curvature obey the same null-
projected timelike-averaged quantum inequality as in flat space [22], with corrections of the
form discussed here. The present result is a step toward proving that conjecture. In future
work we intend to extend the present result to null-projected instead of timelike-projected
quantum inequalities and to handle slightly non-geodesic curves.
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