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a b s t r a c t

This paper presents a record of the participation of the authors in a workshop on nonlinear

system identification held in 2016. It provides a summary of a keynote lecture by one of the

authors and also gives an account of how the authors developed identification strategies

and methods for a number of benchmark nonlinear systems presented as challenges,

before and during the workshop. It is argued here that more general frameworks are

now emerging for nonlinear system identification, which are capable of addressing sub-

stantial ranges of problems. One of these frameworks is based on evolutionary optimisa-

tion (EO); it is a framework developed by the authors in previous papers and extended

here. As one might expect from the ‘no-free-lunch’ theorem for optimisation, the method-

ology is not particularly sensitive to the particular (EO) algorithm used, and a number of

different variants are presented in this paper, some used for the first time in system iden-

tification problems, which show equal capability. In fact, the EO approach advocated in this

paper succeeded in finding the best solutions to two of the three benchmark problems

which motivated the workshop. The paper provides considerable discussion on the

approaches used and makes a number of suggestions regarding best practice; one of the

major new opportunities identified here concerns the application of grey-box models

which combine the insight of any prior physical-law based models (white box) with the

power of machine learners with universal approximation properties (black box).

� 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In March of 2016, an interesting meeting on the subject of nonlinear system identification (NLSI) took place at Vrije

Universiteit Brussel (VUB) in the Belgian capital. The meeting was interesting for two reasons; in the first case, it was organ-

ised with the intention of bringing together experts from the disciplines of electrical engineering, mechanical engineering

and machine learning, in order to draw out common elements of best practice for nonlinear systemmodelling/identification,

and also to exploit any potential synergies. The second feature of interest was that the meeting was organised around the

discussion of three benchmarks for NLSI, each designed in such a way as to challenge theory and practice in specific ways.

The three benchmark problems were as follows:
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� A Bouc-Wen Hysteretic System. The NLSI challenges of this benchmark were associated with the fact that the system of

interest had an unmeasurable state in its equations of motion, and the fact that the model form was not linear in the

parameters. The system equations were encoded in a Matlab p-file, which allowed participants complete freedom in

choosing the form of the excitation used for identification. The data were thus generated by computer simulation,

although noise was added to the response in the p-file to give an element of realism.

� A Wiener-Hammerstein System with Process Noise. The main challenge associated with this benchmark was that the

system was a block-structured system where significant noise was added to an internal state. The system was encoded in

an electronic circuit and was thus experimental (at least from an electrical engineering point of view). Although partic-

ipants did not have the freedom to completely experiment with excitation signals, they were allowed to propose signals,

which were then used in a number of measurement campaigns in order to collect data for the benchmark exercise.

� A Cascaded Tanks System. This was an experimental liquid level system, in which fluid passed between two tanks. The

main challengeswere that anunmeasuredstatewaspresent again, butmainly that the recordof data forNLSIwasvery short.

Further challenges arose due to the overflowof the tanks, which introduced a hard saturation nonlinearity and some uncer-

tainty in the form of process noise. Participants were not given any control of the experiment in this particular case.

This paper is a record of the participation of a team of University of Sheffield (UoS) academics and researchers. It com-

prises a summary of a keynote presentation by one of the authors, followed by detailed descriptions of how the team

attempted to solve the benchmark problems. It is argued here that general frameworks are beginning to emerge for NLSI,

which are capable of addressing ranges of disparate problems. Two of the main candidates for such a general framework

are those based on evolutionary optimisation (EO) and Bayesian inference. In fact, the algorithms applied here were taken

from the EO approach developed by the authors over a number of years and extended in order to address the benchmarks.

The power of the EO framework is clearly evidenced by the fact that it provided the best solutions to two out of the three

benchmark problems at the focus of the workshop. As one might expect from the ‘no-free-lunch’ theorem for optimisation

[1], it would be surprising if a single variant of the EO algorithm stood out as the overall best choice, so the viewpoint here

has been to present a number of possibilities (reflecting the slightly different tastes of the authors and illustrating the range).

Although the EO approach is favoured in this paper, the Bayesian framework for NLSI is also very powerful and is being pur-

sued by the authors; however, there is simply not room here to compare the two frameworks. If the reader is interested in

seeing how modern Bayesian methods can contribute to NLSI they can consult the references in the following section.

One of the main contributions of this paper is to highlight and develop the idea of using grey-box models for NLSI. Grey

box models combine the insight of a physics-based (white box) model with the explanatory power of machine learners

(black box) which have universal approximation/representation properties. In fact, the grey-box model presented here for

Benchmark Three also combines the power of the EO and Bayesian approaches by using a Gaussian process NARX (Nonlinear

AutoRegressive with eXogeneous inputs) model to capture behaviour missed by the physical model and to thus substantially

improve predictions.

It is important to note two facts. The first is that the paper has been formed in order to give an honest account of the

identification results, as presented at the workshop; it deliberately does not contain any results which exploit lessons

learned during or after the meeting, although those lessons have led to a great deal of progress for the participants since.

The second fact to note, is that four separate studies are presented here, each carried out by separate subgroups of the

UoS team; this means that the studies may reflect slightly different views on the practice of NLSI – the authors are all in gen-

eral agreement about the aims, objectives and importance of the subject. The amount of ground covered here also means that

the paper is rather lengthy; this is sadly unavoidable if it is to reflect properly the weight of the work conducted.

The layout of the paper is as follows: the following section summarises one of the workshop keynotes, and discusses the

question of whether NLSI can be reduced to a problem in machine learning. The three subsequent sections, outline in turn,

how the authors approached the three VUB benchmark problems.

2. Is system identification simply machine learning?

2.1. Introduction

The material of this section was originally the subject of a keynote at the VUB Workshop; as a result, its remit is broader

than the material which follows, which presents studies of the specific benchmark exercises. However, the discussion will

touch on various issues which surface during the detailed studies and will also attempt to capture aspects of current thinking

in terms of NLSI within the Engineering Dynamics community. In order to faithfully cover what was discussed in the keynote,

it will be necessary to go over a little previously-published ground; however, this will also help to make the paper more self-

contained.

Historically, one could argue that the main developments in the general theory of linear SI have come from the electrical

engineering and control communities. This work resulted in a comprehensive and rigorous body of material which is visible

through classic texts and monographs like [2,3]. Although general ideas from SI were certainly adopted by the Engineering

Dynamics community, the main developments there are associated with a specific method – modal analysis [4]. Modal anal-

ysis arose naturally as a result of the fact that linear engineering dynamics is concerned with a specific system of second-

order differential equations, derived from Newton’s second law, and usually expressed in the matrix form,
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M€yþ C _yþ Ky ¼ x ð1Þ

where xðtÞ is the excitation force and yðtÞ is the displacement response of the system of interest;M;C and K are, respectively,

the so-called system mass, damping and stiffness matrices. (Throughout this paper, capitals will denote matrices and under-

lines will denote vectors; overdots will indicate differentiation with respect to time.) Modal analysis works by using matrix

diagonalisation to reduce an N-Degree-of-Freedom system to N Single-Degree-of-Freedom (SDOF) systems; it has proved

overwhelmingly successful in the context of linear engineering dynamics.

The main limitations of the linear approaches discussed (and they are serious limitations) is that they do not adequately

address nonlinearity, nonstationarity and uncertainty. The issue of nonstationarity in SI deserves an article of its own (in fact,

a recent special issue of MSSP was dedicated to this matter1) and is not considered further here. In terms of nonlinearity, a great

deal of work has been carried out over the last fifty years in particular, but it is fair to say that no panacea has emerged. Instead,

at least as far as structural dynamics is concerned, a toolbox philosophy has evolved. Quite a wide variety of approaches to non-

linear SI (NLSI) have been developed, each with its own optimal domain of applicability, as summarised in [5–7]. At the

moment, there is the prospect of more generally applicable methods emerging, and this will be discussed in more detail a little

later.

In terms of uncertainty, there are a number of interesting matters to discuss. It is fair to say that Engineering Dynamics has

largely assumed throughout its history that deterministicmodels are appropriate for systemmodelling and prediction; recent

(and not so recent) developments suggest otherwise. For example, the detailed dynamical modelling of biomechanical sys-

tems is becoming more commonplace, and this faces the immediate problem that the mechanical properties of tissue vary

considerably from individual to individual and even within a single individual; this presents serious issues in terms of the

construction of predictive models able to generalise from person to person. Because of the problem of uncertainty, deeper

probabilistic reasoning is becoming much more common in the analysis of dynamical problems. (Of course, probability the-

ory is only one of a large range of possible uncertainty theories [8]; however it is by far the most highly developed and per-

vasive). Many of the lessons learned recently have come from the field of machine learning.

In some areas of engineering dynamics, uncertainty has been (at least partially), accommodated in theory and practice for

a long time, and it is interesting to note that SI is a good example of this – at least in the linear case. It has long been recog-

nised, that to identify a parametric model from measured data, one has to allow for the fact that noise may be present in any

measurements in order that the identified parameters for the model are meaningful. Here,meaningful has largely been taken

in the past to mean unbiased, which is to say that the parameters truly allowmodelling of the underlying structure or system

of interest, rather than capturing aspects of the noise inherent in the individual set of data used for learning the model. How-

ever, quite independently of Bayesian approaches, developments in regularised methods of linear SI have forced a re-

evaluation of the meaning and import of bias [9,10]. In general, the inclusion of noise models in the linear and nonlinear

approaches has often been considered sufficient for the removal of bias; possibly the most principled approach in the non-

linear case is the NARMAX approach pioneered by Billings and co-workers [11]. Despite some progress, one might argue that

the probabilistic reasoning that underlies SI was often hidden until recently. In particular, despite the fact that many least-

squares estimators used for SI are maximum-likelihood estimators under given assumptions, SI users in structural dynamics

would often implement algorithms in linear algebra and treat the resulting crisp parameters as constituting ‘the model’; the

main objective of noise models has been to ensure that there is no systematic bias in the estimated parameters. Furthermore,

even if a covariance matrix for the estimates was found, it was usually only used to provide confidence intervals or ‘error

bars’ on the parameters; predictions would still be made using crisp parameter estimates. Such approaches are powerful,

but do not fully accommodate the fact that the data may be consistent with a number of different parametric models,

and thus only go part way to recognising and accommodating general aspects of uncertainty.

Recent advances in machine learning [12,13] have not only offered more principled and holistic means of addressing the

issue of uncertainty, but have also offered the prospect of a more general paradigm for NLSI. In fact, another more general

approach has emerged in recent years which is also rooted in the broader discipline of soft or natural computing [14] – one

based on evolutionary optimisation. Both of these new developments for NLSI will be discussed in more detail here; however,

it is the evolutionary methods which will dominate the detailed investigation of the VUB benchmarks later in the paper.

Before discussing the general approaches in detail, it will prove useful to define a little terminology; it will be useful to divide

predictive models into two classes: white and black-box models.

� A white-boxmodel here is one where the equations of motion have been derived from the underlying physics of the prob-

lem and the model parameters have direct physical meanings; e.g. finite element models or the lumped-mass model rep-

resented by Eq. (1).

� A black-box model is formed by taking a class of models with some universal approximation property and learning the

parameters from data; in such a model, like a neural network, the parameters will not generally be physical.

SI or learning from data in machine learning terms, is essential to a black-box approach; for the white-box model, param-

eters may be estimated from data or fixed by physical laws.

1 Volume 47: issues 1 and 2.
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2.2. Evolutionary optimisation

As far as the current authors are concerned, the original motivation for developing optimisation-based methods for NLSI

was not so much rooted in uncertainty analysis, but with other technical problems associated with identifying nonlinear sys-

tems. These technical problems are most easily discussed with respect to specific systems; as the Bouc-Wen system was the

original system of interest [15] and also appears later as one of the VUB benchmarks, it makes good sense to introduce it

here.

The general Bouc-Wen (BW) model [16,17] is a nonlinear hysteretic restoring force model, where the total restoring force

is composed of a polynomial non-hysteretic and a hysteretic component based on the displacement yðtÞ and velocity _yðtÞ
time-histories. The general Single-Degree-of-Freedom (SDOF) hysteretic system described in the terms of Wen [17] is,

m€yþ rðy; _yÞ þ zðy; _yÞ ¼ xðtÞ ð2Þ

where rðy; _yÞ is the polynomial part of the restoring force and zðy; _yÞ the hysteretic;m is the mass of the system and xðtÞ is the
excitation force. The polynomial component may be assumed linear if desired (and justified), but is essentially a static non-

linear function of y and _y. In contrast, the hysteretic component is defined via an additional equation of motion [17],

_z ¼ A _y� aj _yjzn � b _yjznj ð3Þ

for n odd, or,

_z ¼ A _y� aj _yjzn�1jzj � b _yzn ð4Þ

for n even.

The parameters a; b and n govern the shape and smoothness of the hysteresis loop (this will be elaborated later). As a

system identification problem, this set of equations presents a number of difficulties, foremost are:

� The variables available from measurement will generally be the input x and some form of response: displacement, veloc-

ity or acceleration. Even if all the response variables mentioned are available, the state z is not measurable and therefore it

is not possible to use Eqs. (3) or (4) directly in a least-squares formulation.

� The parameter n enters the state Eqs. (3) and (4) in a nonlinear way; this means that a linear least-squares approach is not

applicable to the estimation of the full parameter set; at the least, some iterative nonlinear least-squares approach is

needed as in [18].

Both of these difficulties can be addressed by adopting an (evolutionary) optimisation approach. The SI problem is simply

framed as a minimisation problem with the objective/cost function defined as a normalised mean-square error between the

‘measured’ data and that predicted using a given parameter estimate, i.e.,

Jðm; c; k;a;bÞ ¼ 1

N

XN

i¼1

ðyi � ŷiðm; c; k;a;b;nÞÞ2 ð5Þ

where the error is framed in terms of displacement response, N is the number of measured points and the caret denotes a

quantity predicted by the model. In general, any metric measuring the ‘distance’ between measured data and predictions can

be used; the authors usually use a normalised version of (5),

Jðm; c; k;a;bÞ ¼ 100

Nr2
y

XN

i¼1

ðyi � ŷiðm; c; k;a;b;nÞÞ2 ð6Þ

where r2
y is the variance of the measured displacements. This cost function has the following useful property; if the mean of

the output signal is used as the model i.e. ŷi ¼ y for all i, the cost function is 100.0 (and can be thought of as a percentage).

This definition of cost could just as easily be used with velocity or acceleration data. The clear advantage of the optimisation

approach is that it does not require measurements of the latent variable z and is insensitive to whether the model is linear in

the parameters.

So far, this type of problem could be approached using any optimisation method e.g. a Gauss-Newton approach was

adopted in [18]. However, evolutionary approaches offer various advantages, and in order to show this, it is useful to give

a concrete example. As variants on the Differential Evolution (DE) algorithmwere used to analyse two of the VUB benchmarks,

it makes sense to describe the basic DE algorithm here.

The standard DE algorithm of [19] attempts to transform a randomly-generated initial population of parameter vectors

into an optimal solution through repeated cycles of evolutionary operations, in this case: mutation, crossover and selection.

In order to assess the suitability of a certain solution, a cost or fitness function is needed; the cost function in Eq. (6) is

the one used here. Fig. 1 shows a schematic for the DE procedure for evolving between populations. The following process

is repeated with each vector within the current population being taken as a target vector; each of these vectors has an asso-

ciated cost taken from Eq. (6). Each target vector is pitted against a trial vector in a competition which results in the vector

with lowest cost advancing to the next generation.
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The mutation procedure used in basic DE proceeds as follows. Two vectors A and B are randomly chosen from the current

population to form a vector differential A� B. A mutated vector is then obtained by adding this differential, multiplied by a

scaling factor F, to a further randomly chosen vector C to give the overall expression for the mutated vector: C þ FðA� BÞ. The
scaling factor, F, is often found to have an optimal value between 0.4 and 1.0.

The trial vector is the child of two vectors: the target vector and the mutated vector, and is obtained via a crossover pro-

cess; in this work uniform crossover is used. Uniform crossover decides which of the two parent vectors contributes to each

chromosome of the trial vector by a series of D� 1 binomial experiments. Each experiment is mediated by a crossover

parameter Cr (where 0 6 Cr 6 1). If a random number generated from the uniform distribution on [0, 1] is greater than

Cr , the trial vector takes its parameter from the target vector, otherwise the parameter comes from the mutated vector.

In order to ensure that all trial vectors differ from their associated target vector, even if Cr ¼ 0, a single chromosome in

the trial vector is randomly chosen to take the corresponding value from the mutated vector.

This process of evolving through the generations is repeated until the population becomes dominated by only a few low

cost solutions, any of which would be suitable. Like the vast majority of optimisation algorithms, convergence to the global

minimum is not guaranteed; however, one of the benefits of the evolutionary approach is that it is more resistant to finding a

local minimum. In fact, this usually proves to be the main benefit. The other advantage of the approach is that the algorithm

does not need estimates of the gradients or Hessians of the parameters.

As discussed above, evolutionary optimisation provides a useful framework for NLSI that overcomes a number of techni-

cal problems that one encounters in trying to use standard least-squares methods; in fact, some variant or other has been

used in order to address each of the benchmark studies discussed later. Where the evolutionary approaches can be found

wanting, is in their accommodation of uncertainty. In fact, it is possible to estimate confidence intervals for parameters

[20], but this does not amount to a comprehensive treatment of uncertainty, as observed earlier. One aspect of the evolution-

ary approaches which is almost never exploited, is that they return a population of solutions at every generation – all the

information obtained throughout this process could be used to account for uncertainty and could result in more robust

predictions.

Fig. 1. Schematic for the standard DE algorithm.

198 K. Worden et al. /Mechanical Systems and Signal Processing 112 (2018) 194–232



Generally speaking, the evolutionary approaches are probably best applied for white-box models. This is because the size

of the population required is a function of the number of parameters estimated; one usually chooses the number of individ-

uals to be five or ten times the number of model parameters. Larger populations will lead to more computational cost, and if

evaluation of the objective function is not fast, the cost may be prohibitive. As white-box models are almost always more

parsimonious in terms of parameters, they are singled out for evolutionary modelling. This observation has not stopped var-

ious people attempting to use evolutionary algorithms to train neural networks, for example, but the evidence shows clearly

that this is not usually a good idea.

Unlike the evolutionary approaches, the other general framework for NLSI which is emerging, is almost entirely moti-

vated by a desire to understand and account for uncertainty, and this will be discussed next.

2.3. Bayesian inference

As supported by recent work in the machine learning community, a more robust approach to parameter estimation, and

alsomodel selection, can be formulated on the basis of Bayesian principles [12,21,13]. It will be shown that, among the poten-

tial advantages offered by a Bayesian formulation are:

� The estimation procedure will return parameter distributions rather than point estimates of parameters.

� Predictions can (in principle) be made by integrating over all possible models consistent with the data, weighted by their

probabilities.

� Evidence for a given model structure can be computed, leading to a principled means of model selection.

The Bayesian approaches to NLSI/systemmodels can be applied to both white- and black-box models; in fact, methods for

black-box models arguably emerged first e.g. Bayesian learning algorithms for Multi-Layer Perceptron (MLP) neural net-

works [22]. In terms of white-box models, Bayesian methods are not new to structural dynamics, as evidenced by over

20 years of work by Jim Beck and colleagues [23–27]; however, they have by no means been fully exploited. More recently,

Bayesian ID methods for white-box differential equation models have emerged in the context of systems biology [28,29].

In order to discuss the advantages of a Bayesian approach, it is useful to re-state what the problem of SI is, i.e. given mea-

sured data from a structure, how does one infer the equations of motion which ‘generated’ the data. Although the problem

can be stated simply, it has a number of technical difficulties and is generally not at all easy to solve. At the base of the issues

is the fact that SI is an inverse problem of the second kind and can be extremely ill-posed even if the underlying equations

are assumed to be linear in the parameters of interest; the ‘solution’ may not be unique. Furthermore, if the equations of

motion of the system of interest are not linear in the parameters, the difficulties multiply.

Much of the difficulty can be blamed on uncertainty again; even if the issue is simply that the measurements or data from

a system will almost always be contaminated by some form of random noise. For notation, assume data

D ¼ fðxi; yiÞ; i ¼ 1; . . . ;Ng of sampled inputs xi and outputs yi. If there is no noise, then the identification algorithm of choice

should give a deterministic estimate of any system parameters w; however, if noise �ðtÞ is present, w will become a random

variable conditioned on D. In this context one arguably no longer wishes an estimate of w, but to specify ones belief in its

value, expressed through some appropriate uncertainty framework. If the framework of choice is probability theory, the

problem becomes one of estimating the probability density function of the parameters pðwjD;MÞ, where the density is con-

ditioned on the training or estimation data D, but also on the choice of modelM. Thus, in the presence of noise, the most one

can learn from any data is the probability density function of the parameters; however, in a probabilistic context, this is

everything.2

Even so, the uncertainty in any estimated parameters is by no means the only uncertainty of interest. The usual objective

of SI is to provide some sort of predictive model i.e. a mathematical model which can estimate or predict system outputs if a

different system input is given. If a crisp parameter estimate is all one has, the best one can do is a crisp prediction; however,

if a parameter distribution is known, one can potentially do better and form a predictive distribution. Suppose the response to

a new input sequence x� were desired, one could in principle find the density for the predicted outputs,

y� � pðy�jx�;w;D;MÞ ð7Þ

and then the mean of this distribution would give ‘best’ estimates for predictions, and the covariance would allow one to

establish confidence intervals. Note that the prediction assumes the presence of a w. In practice, one might use the mean

or the mode of the parameter distribution, but these are still point estimates, not reflecting the uncertainty in the parameters.

A fully Bayesian prediction strategy would, again, in principle, allow one to marginalise over parameter estimates, i.e.,

p y�jx�;D;M
� �

¼
Z

p y�jx�;w;M
� �

p wjD;Mð Þdw ð8Þ

2 The notation conventions for probabilistic quantities in the paper are as follows. A lower-case p signifies that the quantity is a density associated with a

continuous random variation; an upper-case P denotes the probability associated with a discrete random variable.
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This is a very powerful idea: allowing for a fixed model structure, one makes predictions using an entire set of parameters

consistent with the training data; each point in parameter space weighted according to the likelihood of the given data. In

practice, there are problems in implementing the full Bayesian approach due to the difficulty of evaluating the integral in (8).

Another advantage offered by the Bayesian approach is that it can potentially weigh the evidence for competing model

forms. Suppose the true model structure must be one of a finite number fMi; i ¼ 1; . . . ;Mg; one can imagine computing the

probability of observing the data PðDjMiÞ and selecting the model with highest probability. Even more in the Bayesian spirit,

one could marginalise over all possible model structures e.g. for prediction,

pðy�jx�;DÞ ¼
XM

i¼1

pðy�jx�;Mi;DÞPðMijDÞ ð9Þ

Unfortunately, the posterior over models PðMijDÞ is difficult to compute. If one appeals to Bayes theorem in the form,

PðMijDÞ ¼
pðDjMiÞPðMiÞ

pðDÞ ð10Þ

and assumes equal priors on models, one arrives at the Bayes factor,

Bij ¼
PðMijDÞ
PðMjjDÞ

¼ pðDjMiÞ
pðDjMjÞ

ð11Þ

which weights the evidence for two models in terms of marginal likelihoods of the data given the models. Sadly, the mar-

ginal likelihoods are usually intractable integrals.

In summary, assuming one can overcome some of the computational difficulties involved (e.g. high-dimensional numer-

ical integrals), the Bayesian framework for NLSI is very general indeed. Like the evolutionary approaches, the Bayesian ones

have no technical problems with unmeasured states or models which are nonlinear in the parameters. All of this suggests

that NLSI has been reduced to the problem of finding appropriate computational algorithms for machine learning; that

the problem of NLSI has been reduced to one of machine learning. The next part of the discussion here will argue that this

is not the case.

2.4. Is NLSI just machine learning?

To recap, it appears that NLSI can be formulated in terms of a machine learning approach; the problems raised so far

relate only to difficulties in numerical calculations. The argument here is going to be that NLSI is more than this, and the

first argument will be based on going back to the idea of uncertainty.

The previous discussion has highlighted the importance of considering uncertainty; however, in the reality of modelling

engineering systems and structures, one needs to go a little further and address the issue that there are two main types of

uncertainty.

Aleatory Uncertainty: is essentially randomness. Examples are measurement noise superimposed on data or the beha-

viour of truly stochastic systems (i.e. Brownian motion). This is uncertainty which cannot be removed – irreducible

uncertainty.

Epistemic Uncertainty: is essentially ignorance. It commonly arises because all of the underlying causes (physics) of a

problem are not known. This type of uncertainty can be removed by designing experiments to learn the missing physics

– it is reducible.

The case will be presented here that even the Bayesian approach discussed earlier is not adequate to address the full

issues of uncertainty because it is only really formulated to deal with aleatory uncertainty.3 In reality, there may be ignorance

of the form of the model, even of the underlying physical principles of the processes at work.

Dealing with epistemic uncertainty leads one naturally to the idea of a Grey-Boxmodel. A grey-box model is one for which

only some of the underlying physics is specified i.e. it has a white-box component; one can then attempt to reduce any

model error by adding a nonparametric component and learning its behaviour from data. This observation in turn leads

to the idea of two types of grey-box models:

� A grey-box model will be said to be of Type A if the nonparametric component is a true black-box model.

� A grey-boxmodel will be said to be of Type B if the nonparametric component is motivated in some way by physics rather

than simple possession of a universal approximation property.

Type B models are arguably the result of physics and creativity and cannot be found by learning from data alone. Two

examples will be considered here.

3 Although it will not be pursued here, one might argue that it is not logical to speak of irreducible uncertainty at all. To prove that uncertainty is truly

aleatory, one would need to establish that there is no possible experiment which could reduce it. This is surely not provable, so the statement that a given

uncertainty is aleatory is not falsifiable and thus scientifically meaningless [30].
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2.4.1. Friction models

Friction is dynamically the resistance to motion produced by interfacial contacts between two bodies in relative motion.

The phenomenon has a microstructural origin, and the detailed physics is the subject of the discipline of tribology. A true

white-box model of friction would be prohibitively costly for most purposes of structural dynamics, so simplified effective

models are usually assumed. The most simplistic semi-physical representation is via the Coulomb model which simply

reverses the action of a constant force when the direction of motion reverses; in the context of an SDOF oscillator, one has,

m€yþ Fð _yÞ þ ky ¼ xðtÞ

Fð _yÞ ¼ Fcsgnð _yÞ ð12Þ

The Coulomb model is very limited, but is conceptually simple and very convenient for SI. Among the immediate limita-

tions of the model is the fact that it does not distinguish between static and dynamic friction and that it does not account for

the hysteresis loops which are observed in reality. In order to accommodate the hysteresis effect, the more sophisticated

Dahl model was introduced in 1968; the basic model has the form,

m€yþ r0zþ ky ¼ xðtÞ

_z ¼ _y 1� sgnð _yÞr0z

Fc

� �

1� sgnð _yÞr0z

Fc

�
�
�
�

�
�
�
�

dD

ð13Þ

where the z is a state variable interpreted as the elastic deformation of surface asperities of adjacent bodies (note the resem-

blance to the Bouc-Wen model in this respect; this is a characteristic of hysteresis models) and r0 represents a sort of aver-

age asperity stiffness and dD determines the shape of the hysteresis but, in the literature, is often set to unity. The Dahl model

is a Type B grey-box model; the white-box component is simply an SDOF oscillator, while the black-box component is con-

structed by considering a model of the average movement/displacement of microscopic asperities. The SI problem has

become more difficult than the Coulomb case (the model has an unmeasured state and is nonlinear in the parameters)

but gives a better representation of the dynamics, respecting better as it does, the underlying physics of the problem.

The Dahl model motivated the construction of a better model – the LuGre model [31]. While the Dahl model captures the

difference between static and dynamic friction (sometimes called predisplacement) and hysteresis, it is unable to account for

stick-slip behaviour and the so-called Stribeck effect (decrease of friction with velocity over a certain velocity regime; visible

in Fig. 2(a)). A simplistic view of the LuGre model is that it adds an effective damping component for the average asperity

movement (Fig. 3).

The equations of motion for the LuGre model incorporated into the motion of an SDOF oscillator are,

m€yþ r0zþ r1 _zþ r2 _yþ ky ¼ xðtÞ

_z ¼ _y� r0j _yj
sð _yÞ z

sð _yÞ ¼ FC þ ðFS � FCÞ exp �
_y

v s

� �dvs
( )

ð14Þ

where FS and FC are the static and Columb friction coefficients respectively, sð _yÞ is the Stribeck curve, vs is the Stribeck veloc-

ity and dvs is the Stribeck shape factor (dvs ¼ 2 is often used in the literature). A parametrised model of the Stribeck curve can

be included in the overall identification/learning problem. Note that, although some of the parameters do not have com-

pletely clear physical interpretations, others – like FC and FS – encode simple, direct physics.

Other friction models have evolved in turn from the LuGre model, including the Leuven integrated friction model which

also accounts for presliding hysteresis [33]. However, the point has been made for now; Type B grey-box models like the

Dahl and LuGre models are based on physical and engineering insight and rely on the introduction of model terms which

are very problem specific and capture behaviour in a parsimonious manner, that would be difficult for black-box basis terms

to capture in such a small number of terms. While the grey-box structures are more challenging from an NLSI viewpoint,

they are addressable using the powerful methods discussed earlier; for a study on the issues associated with estimating

grey-box friction models more generally, the reader may consult [34].

2.4.2. Hysteresis models

The second example of a class of Type B grey-box models is provided by hysteretic systems. Setting aside friction, hys-

teretic or memory-dependent phenomena are observed in many areas of physics and engineering such as electromagnetism,

phase transitions and elastoplasticity of solids [35]. As in the case of friction, the exact physics at play is often complex and a

simplified effective model structure can be sufficient for the purposes of engineering dynamics. As introduced in Section 2.2,

one of the most commonly-used effective hysteresis models is the Bouc-Wen (BW) model. As shown earlier, the BW model

incorporates an unmeasured system state specified by an additional equation of motion, which allows a versatile
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representation of a family of hysteresis loops (Fig. 4). Unlike the friction models, the BW model does not have a direct phys-

ical interpretation; however, it has been constructed in order to give the aforementioned versatility.

Sadly, the BW model is not generally versatile enough. Various effects commonly occur in hysteretic systems which can-

not be captured by the basic model. One example is given in Fig. 5, which shows pinching of the hysteresis loops for a nailed

sheathing connection in a wooden frame [36].

As in the case of the friction models, new terms need to be added in order to capture the missing physics. As before, these

are designed as effective terms intended to capture the required behaviour without detailed modelling of the microstructural

physics which cause it. One of the most successful extensions of the BW model is the Bouc-Wen-Baber-Noori (BWBN) Model

[37–39]. The BWBN model is designed to capture the pinching effect illustrated earlier, and also to model the strength and

stiffness degradation observed in many real hysteretic structural systems. The form of the model is,

_z ¼ hðzÞ
gð�Þ

_y Að�Þ � mð�Þ½bsgnð _yÞjzjn�1zþ cjzjn�
n o

ð15Þ

where gð�Þ; mð�Þ and hðzÞ are parameters associated with the strength, stiffness and pinching, degradation effects; gð�Þ; mð�Þ
and Að�Þ are increasing functions of the absorbed hysteretic energy �,

gð�Þ ¼ g0 þ dg�ðtÞ

mð�Þ ¼ m0 þ dm�ðtÞ

Að�Þ ¼ A0 þ dA�ðtÞ ð16Þ

The pinching function hðzÞ is specified as,

Fig. 2. Results from experimental friction force measurement taken from [32]: (a) shows the Stribeck effect and (b) shows the hysteresis loop.

Fig. 3. Graphical representation of variable state z in two friction models: (a) Dahl model, (b) LuGre model (following [32]).

202 K. Worden et al. /Mechanical Systems and Signal Processing 112 (2018) 194–232



hðzÞ ¼ 1� f1ð�Þ exp �ðzsgnð _yÞ � qzuÞ
2

f2ð�Þ2

 !

ð17Þ

where

f1ð�Þ ¼ ð1� expðp�ÞÞf

f2ð�Þ ¼ ðw0 þ dw�Þðkþ f1ð�ÞÞ ð18Þ

and zu is the ultimate value of z, specified by,

Fig. 4. Samples from the range of hysteresis loops allowed within the BW model (following [17]).

Fig. 5. Illustration of a nailed sheathing connection in a wooden frame and the corresponding pinching hysteresis curve [36].
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znu ¼ 1

mðbþ cÞ ð19Þ

Explaining how the extra terms are motivated is beyond the scope of this paper, the reader should consult the original

references. The point here is that the BWBN model is a Type B grey-box model, informed by basic physics (like the absorbed

energy) but not attempting to capture it in all its microstructural detail. As in the case of the friction models, the result is a

parsimonious model which will capture behaviour better than a black-box model with a comparable number of parameters

would.

Once one has the model (and some data), machine learning can take over in order to estimate parameters (or to select

between candidate models), but getting the model form is another matter. One might argue about whether extraction of

a model of this complexity is SI, or whether it is fundamental physics; the current authors would argue that it is SI – it is

not intended as an exploration of basic physics, but as a means of providing an effective predictive model.

2.5. Conclusions

The local conclusions for this section are as follows:

� The Bayesian and evolutionary viewpoints on nonlinear SI offer quite general frameworks for the estimation of model

parameters. They offer advantages over point parameter estimation (populations in the case of the evolutionary approach,

distributions in the case of the Bayesian). In terms of uncertainty analysis, the Bayesian approach is likely to be advan-

tageous even when evolutionary schemes allow estimates of parameter confidences.

� Many of the insights here have come from machine learning work, along with very powerful parameter estimation and

model structure detection techniques from the Mechanical and Electrical Engineering communities; this synergy is pre-

cisely what the VUB workshop was intended to expose.

� Machine learning is not everything. System identification needs physical insight and expertise in order to overcome the

problem of model form uncertainty. This is just as true for grey-box models as white-box models.

� Although it has not been discussed yet, the problems of developing an optimal test or data collection strategy is still not

completely possible using automated analysis (this will be discussed in the context of the Benchmark One results).

The paper next moves on to the VUB benchmark problems. Each problem was addressed by subgroups of the overall

team. As discussed earlier, each subgroup separately adopted an evolutionary optimisation approach. In two cases, the algo-

rithm adopted was an extension or variant of the Differential Evolution algorithm described earlier; in the other, a type of

swarming algorithm motivated by the behaviour of Antarctic krill was adopted. In terms of Benchmark One and the white-

box component of Benchmark Three, it would have been a straightforward matter to adopt a Bayesian white-box approach;

in fact, some of the current authors have recently applied Approximate Bayesian Computation (ABC) techniques to the prob-

lem of hysteretic (Bouc-Wen) system identification, with a great deal of success [40,41]. However, applying the methods in

order to make a comparison here, would have lengthened the paper considerably. In terms of Benchmark Two, it is probably

fair to say that there is no comprehensive Bayesian approach to the identification of Wiener-Hammerstein models agreed

upon in the research community; althoughMCMCmethods could clearly be applied if the computational burden did not pro-

hibit it.

3. Benchmark one: a Bouc-Wen system

3.1. Introduction

With this section, begins the study of the VUB benchmarks. In each case, the participants in the workshop were presented

with a detailed specification of the problem, including how to access or generate the required data. Only those details which

are necessary for understanding the results here will be included in the current paper.

This section is concerned with Benchmark One, which required the system identification of a simulated SDOF Bouc-Wen

(BW) hysteresis system. As discussed earlier, the general BWmodel [16,17] is one of the most commonly-used mathematical

models for describing hysteretic behaviour. It was used as a benchmark because of the specific challenges associated with

the system possessing an unmeasurable internal variable and the dynamic nature of the nonlinearity. As the current authors

had already developed a successful evolutionary approach to BW system identification [15], the opportunity was taken to

focus on two methodological issues: benchmarking the identification with a linear model, and choosing appropriate (if

not optimal) excitation signals for the generation of training data.

In this case, the detailed specifications of the benchmark can be found in [42]. Restating the equation of motion for the

BW oscillator in the form and notation of [42] gives,

mL€yðtÞ þ rðy; _yÞ þ zðy; _yÞ ¼ xðtÞ ð20Þ

wheremL is the systemmass, yðtÞ is the displacement and xðtÞ is the force input. The static nonlinear term, rðy; _yÞ, which only

depends upon the current values of displacement and velocity, is assumed to be linear,
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rðy; _yÞ ¼ kLyþ cL _y ð21Þ

where kL and cL are the linear stiffness and linear viscous damping parameters. The history-dependent (hysteretic) nonlinear

term, zðy; _yÞ, obeys the first-order differential equation,

_zðy; _yÞ ¼ a _y� b c _yj j zj jt�1zþ d _y zj jt
� �

ð22Þ

where a; b; c; d and t are the Bouc-Wen parameters which control the shape/structure of the hysteresis loop.

For the purposes of the benchmark study, the BW system to be identified was encoded within a Matlab p-file. This gave

the user complete freedom over the choice of force input. This freedom was critical to the system identification strategy

which will be discussed in the next section. The BW p-file made use of a Newmark numerical integration scheme and

detailed guidelines were given regarding upsampling, filtering and decimation for generation of data. The p-file also added

a constant level of Gaussian band-limited noise to the output displacement; the force input was assumed to be free of noise.

In order to allow comparison of different system identification strategies, two fixed test datasets were provided. One of these

datasets was a random phase multisine dataset whilst the other was a sine-sweep dataset. The test data sets were not to be

used during the parameter estimation phase of the work but were to allow reporting of a Figure-of-Merit (FoM) for each of

the two test datasets, which could be used to compare identification results across participants. The FoM was an un-

normalised Root-Mean-Square error, defined by,

FoM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Nt

XNt

i¼1
ðyi � ŷiÞ2

s

ð23Þ

where Nt is the number of points in the given test set, i is the sample index and the caret denotes quantities estimated by the

model.

It is important to note that there can be two important modes of prediction using models generally; although the distinc-

tion is most marked when a pure discrete-time model is used rather than a continuous-time one. Suppose the model output

at sampling instant i is a function of previous samples of input and output. For the training data, measured inputs and out-

puts are available. This means that one can estimate the current output by substituting measured inputs and outputs into the

model function. Somewhat confusingly, some sectors of the SI community refer to this mode of estimation as prediction. A

more stringent test of the model is to start with measured initial conditions and to recursively feed back estimated outputs

into the model function in order to generate the next estimate; this mode is called simulation. For the benchmarks, the par-

ticipants were asked to report simulation errors, where the distinction was possible. For the continuous-time model of

Benchmark One; forward predictions are made by using an initial-value solver, and the mode is naturally simulation. Further-

more, in all cases throughout this paper, the final error measures reported are for an independent testing set, unseen

throughout the training process.

In terms of training, all system parameters were to be identified using alternative training data generated using the sup-

plied p-file.

3.2. System identification strategy and focus of study

As stated above, the focus of the current study will be concerned with presenting the authors’ views regarding two impor-

tant factors, which are sometimes overlooked, related to the success of a nonlinear system identification procedure. The first

of these factors is that the choice of forcing input, in terms of both the signal type and amplitude, plays a critical role in any

NLSI procedure. The second factor relates to the idea that it can be difficult to gauge the success of a nonlinear identification

procedure without the use of a reference or baseline model. It is held that, before conducting a nonlinear system identifica-

tion procedure, the best linear system should first be identified.

Although this was not a focal point of the study, the optimisation algorithm employed in this study was partially chosen

as it was a good opportunity to showcase a relatively new, robust optimisation technique, which may be unfamiliar to many.

The algorithm chosen was the JADE [43] algorithm, a relatively simple, adaptive variant of the better known Differential Evo-

lution (DE) discussed in the introduction here [19]. Whilst the basic DE algorithm is simple and relatively robust, it does

require that the hyperparameters, F (in the mutation operation) and Cr (in the crossover operation) be specified before com-

mencing. Poor choices for these hyperparameters may result in lack of convergence or premature convergence. Furthermore,

it is often the case that the best values for the hyperparameters may vary during the optimisation process. JADE seeks to

address these issues whilst retaining simplicity.

There are a number of key differences between JADE [43] and basic DE [19]. The first occurs during the mutation oper-

ation, whereby the current best solution is combined with a differential of two randomly chosen vectors. The scaling factor

within the mutation operation is drawn from a probability distribution rather than kept at a fixed value as in DE. The cross-

over operation is implemented in the same way as in DE, except that the crossover ratio (which decides the probability of a

child element being drawn from the original or the mutation matrix) is also drawn from a probability distribution rather

than being a fixed constant. The final difference is during the selection phase whereby, in addition to updating the matrix

for use in the next generation, the mean values for the hyperparameter distributions are adjusted to take into account pre-

vious successful values. Within the selection phase, ‘losing’ solutions are saved within an archive and may be selected later to
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form the random differential within the mutation operation. The purpose of this archive is to counteract the greedy nature of

using the current best solution within the mutation phase, thereby preventing premature convergence. Whilst there is an

extra computational cost incurred due to these extra operations in JADE when compared to standard DE, this cost is generally

dwarfed by the cost of function evaluations which will be the same in DE and JADE.

In order to verify the algorithm code and to illustrate the potential benefits of JADE compared with basic DE, a standard

optimisation benchmark problem, namely a ten-dimensional variant of Rosenbrock’s function, was investigated. The results

are shown in Fig. 6. Although both the standard DE and JADE identify the best solution to within machine precision, the JADE

algorithm only requires around one-sixth of the number of generations. In the authors’ experience, this level of saving is

typical.

3.3. Results of linear system identification

As stated previously, it is the authors firm opinion that, before conducting a nonlinear system identification, a baseline

linear system identification is first required. Apart from serving as a baseline and allowing the practitioner to decide if

the extra complexity of a nonlinear ID is justified, the linear SI process is capable of highlighting the point at which a linear

system approximation is no longer capable of reproducing the actual system behaviour to within some degree of error. Iden-

tification of the point at which the nonlinearity begins to have a significant bearing on the response ensures that the non-

linear SI process is being conducted at an appropriate level of forcing. In the current work, the linear SI will also serve to

highlight the influence of the added noise and will help to narrow the search range for the linear parameters within the non-

linear SI.

The aforementioned approach was conducted on the BW system for both a broadband random input and a linear chirp

input. For each input type, a number of forcing levels was investigated. For the broadband random input, signal variances of

0:1; 0:5;1;5;10;50;100;500;1000;5000;1� 104
;5� 104

;1� 105
;5� 105

;1� 106
;5� 106 and 1� 107 N2 were considered,

whilst the amplitudes chosen for the chirp input were 0:1;0:5;1;5;10;50;100;500;1000 and 5000 N. The forcing levels were

chosen to ensure that similar ranges of input signal power were being applied for the random and chirp inputs. Fig. 7 shows

an example of each type of input; both each had a duration of 2 s and were sampled at 15 kHz. The frequency of the chirp

input varied linearly from 2 Hz to 75 Hz.

The Bouc-Wen system was simulated in Simulink with a 4th-order Runge-Kutta numerical integration scheme. For each

of the input types and each of the forcing levels, three runs of the JADE optimisation algorithm were conducted; in each case

a population size of 30 was used and the algorithm was run for a total of 100 generations. The parameter bounds for the

mass, damping and linear stiffness were set at one order of magnitude below to one order above the parameters given in

the problem specification; these bounds are given in Table 1.

On completion of each run, both the lowest FoM (Eq. (23)) and NMSE (Eq. (6)) were stored along with the corresponding

estimates for the mass, damping and linear stiffness parameters. Fig. 8 shows the NMSE values for each of the runs for the

various forcing levels of both the random and chirp inputs. Fig. 8(a) shows the results from the broadband random input

whilst Fig. 8(b) shows the results from the chirp input. There is consistency across the three optimisation runs at each forcing

level in that there is limited scatter in the three points for a particular forcing level. The next observation is of the similarity

in the overall trend of the results, with both the random and chirp results exhibiting a ‘U’ shape. This is explained quite easily

and, in many ways, is the justification for conducting the linear SI. At low levels of input power, the effect of the constant

level of output noise has a large bearing on the error value. At high levels of input power, the increased error is due to

the nonlinear effect becoming more pronounced and a linear system being incapable of reproducing the behaviour. Coinci-

dentally, both the random input and chirp input produce the same minimum value of NMSE of 1.6% although this occurs at

Fig. 6. Plot comparing results of Differential Evolution and JADE optimisation when applied to a 10 dimensional Rosenbrock function.
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an input power of 1000 N2 for the random input and 50 N2 for the chirp input. It may also be noted that the chirp input

results in greater NMSE values than the random input for equivalent power. This information will be revisited in the non-

linear SI section.

Fig. 9 shows the results of the parameter estimation for each of the three JADE runs for each of the forcing levels for the

random input. At low forcing levels, the noise effect results in inconsistent predictive capability. At higher forcing levels, the

nonlinear effect is absorbed into the linear parameter estimates; in particular, the viscous damping term attempts to absorb

the hysteretic effect. At the highest power levels, the viscous damping term reaches its upper bound constraint. Fig. 10 shows

the parameter estimates for the three JADE runs for each of the forcing levels for the chirp input. The results show similar

behaviour to the random input, but the linear SI loses consistent predictive capability at a lower input power.

The linear system identification has served several purposes. It has shown the levels of input power required for the

random and chirp input to result in responses containing a significant nonlinear component, and it also provides the

Fig. 7. Examples of forcing input signals. (a) Shows broadband random input with variance of 10,000 N2 and (b) shows linear chirp input of magnitude 100

N with frequency varying from 2 Hz to 75 Hz. Both inputs were sampled at one frequency of 15 kHz and signal duration was 2 s.

Table 1

Lower and upper bounds for the linear model parameters

for use within the JADE optimisation.

Parameter name Lower bound Upper bound

mL 0.2 kg 20 kg

cL 1 N/(m/s) 100 N/(m/s)

kL 1� 104 N/m 1� 106 N/m
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opportunity to reduce the linear parameter range for the nonlinear SI. After the SI, it was decided to alter the permissible

mass range to be between 1.5 kg and 2.5 kg and the permissible viscous damping parameter to be between 5 N/(m/s) and

30 N/(m/s). It was also decided that the linear stiffness parameter range should not be reduced from the bounds given in

Table 1 due to the linear stiffness effect being divided across the two terms (KL and a) in the BW system.

3.4. Results of nonlinear system identification

Now that the linear SI has been conducted, the nonlinear SI process may commence, informed by the previous results. The

identification followed a similar pattern to the linear identification process. As before, broadband random and chirp inputs

were investigated over a range of different forcing levels; however, on this occasion, some of the lower levels of excitation

were not investigated. In order to eliminate redundancy in the BW model, the b term was combined with the c and d terms.

Furthermore, after some preliminary tests, it was decided that the t term could be fixed to a value of 1.4 For each forcing level,

three runs of the JADE optimisation algorithmwere conducted. Because of the greater complexity of the nonlinear identification

problem, the population size was set to 70 and the optimisation was run for 200 generations. (A rule of thumb for evolutionary

optimisation is that the number of individuals should be set to 5–10 times the number of parameters.) The lower and upper

bounds for the parameters of interest are shown in Table 2.

The lowest FoM and NMSE were stored along with the corresponding nonlinear parameter estimates after each run.

Fig. 8. Plots of NMSE vs. Input Power for linear SI. (a) Shows results of linear identification results using broadband random input and (b) shows linear

identification results using chirp input.

4 In general, this parameter should be determined in a principled manner. It can be included as parameter for estimation, or it can be regarded as a

hyperparameter and decided by cross-validation. However, in this particular analysis, preliminary analysis showed that unity was the only credible choice.

208 K. Worden et al. /Mechanical Systems and Signal Processing 112 (2018) 194–232



3.5. Broadband random training input

Fig. 11 shows the NMSE values for each of the JADE runs for the various forcing levels of the random input, superimposed

onto the equivalent results from the previously presented linear SI results. The plot clearly shows the forcing levels at which

the nonlinear identification provides added value. The improvement only really occurs above an input power of 1000 N2 (the

Fig. 9. Plots of Parameter Estimates vs. Input Power for linear SI for broadband random input: (a) mass, (b) viscous damping, and (c) linear stiffness.
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point at which the linear SI gave the lowest error). As the input power increases, so the NMSE of the nonlinear identification

decreases and the gap between the linear and nonlinear SI widens. The lowest NMSE was 7:3� 10�3
% for one of the runs

with an input power of 5� 106 N2.

Fig. 12 shows the parameter estimates for each of the runs for the broadband input. Most immediately noticeable, is the

significant amount of scatter and inconsistency in the parameter estimates at all but the higher forcing levels; this is likely to

Fig. 10. Plots of Parameter Estimates vs. Input Power for linear SI for chirp input: (a) mass, (b) viscous damping, and (c) linear stiffness.
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be a result of insensitivity to the nonlinear terms at low forcing. There is not only scatter between the three runs at a par-

ticular forcing level, but also a lack of consistency between the estimates at different forcing levels. A lack of variability

between the three JADE runs and consistency between forcing levels is only observable for the highest five input powers

(1� 105 N2 and greater). The only parameter which still lacks some consistency, even at the higher forcing levels is cL,

the linear damping parameter, whose estimates generally increase with increasing input power.

3.6. Chirp training input

Fig. 13 shows the NMSE values for each of the JADE runs for the various forcing levels of the chirp input, superimposed on

the equivalent results from the previously-presented linear SI results. The added value provided by the nonlinear identifica-

tion over linear SI is significantly more pronounced than for the random input and commences at a lower level of input

power. At the highest power level, there is an increase in NMSE values and inconsistency between runs – this may be

due to a mismatch between the Runge-Kutta (used for model prediction) and Newmark (used for generating training data)

numerical integration algorithms. The lowest NMSE obtained was 3:9� 10�4
% for one of the runs with an input power of

5� 105 N2 – this is around 1/20th of the lowest NMSE using random inputs.

Fig. 14 shows the parameter estimates for each of the JADE runs for the chirp input. On this occasion, there is some scatter

between runs and inconsistency between forcing levels for the first three or four forcing levels; after that (i.e. when the non-

linearity has significant effect on the response), the estimates become more consistent. At the highest level of forcing, the

scatter between the three runs returns. The consistency of these parameter estimates, when viewed in combination with

the NMSE plots of Fig. 13, give a large degree of confidence that, by returning a nonlinear model NMSE that shows vast

improvement over the corresponding linear model NMSE, the true system has been identified. This should be contrasted

with the situation where a nonlinear SI (with no prior linear SI baseline) is conducted using a relatively low level of input

forcing and a low value for the NMSE is incorrectly interpreted as meaning the true system has been identified.

Table 3 shows parameter estimates for the chirp input run that resulted in the lowest NMSE of 3:9� 10�4
%. Two of the

three JADE optimisation runs for the 1000 N (equivalent to an Input Power of 5� 105 N2) amplitude chirp forcing input

returned exactly the same parameter values, whilst the other run returned values extremely close to those shown. Fig. 15

shows the predicted displacement response for the estimate that resulted in the lowest NMSE. As would be expected from

Table 2

Lower and upper bounds for the nonlinear model param-

eters for use within the JADE optimisation.

Parameter name Lower bound Upper bound

mL 1.5 kg 2.5 kg

cL 5 N/(m/s) 30 N/(m/s)

kL 1� 104 N/m 1� 106 N/m

a 1� 104 N/m 1� 106 N/m

bc �2� 103/m 2� 103/m

bd �2� 103/m 2� 103/m

Fig. 11. Plot of Normalised Mean Square Error vs. Input Power for linear and nonlinear SI for broadband random input.
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such a low NMSE value, the actual and predicted responses are indistinguishable. Of greater interest is the high degree of

nonlinear behaviour present in the responses, especially from between around 0.4 s to 1.1 s; it is easy to understand why

linear SI would struggle to return anything other than a high NMSE value.

3.7. Model test and figure-of-merit

Once the BW system parameters had been identified using the process detailed in the previous two sections, the pre-

dicted system could then be tested against the two fixed test datasets, namely the random phase multi-sine and the sine-

sweep signal. The test datasets were sampled at 750 Hz and the data that were generated using the estimated system param-

eters were sampled at 15 kHz then downsampled by a factor of 20 to also give a 750 Hz sampling frequency.

3.7.1. Random phase multi-sine testing set

Fig. 16 shows the actual and predicted displacement response plots for the random phase multi-sine test dataset. At first

glance, it may seem that, on this timescale, there is a near-identical match. Closer examination reveals that there is a slight

Fig. 12. Plots of Parameter Estimates vs. Input Signal Power for nonlinear SI for broadband random input: Top left is the mass estimate, top right shows

viscous damping prediction, left middle plot shows linear stiffness prediction, right middle plot shows a, bottom left shows bc prediction and bottom right

plot shows bd prediction.
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mismatch of responses at the start of the signals. Fig. 17 shows a zoomed version of Fig. 16 for the first second of time, and

the mismatch is a little clearer. The mismatch is likely to be a result of issues relating to the transient response. It would be

possible to improve the prediction by fine-tuning the initial conditions on this test dataset, whilst retaining the previously

identified model parameters. Even with the slight initial mismatch, the estimated model returned a very creditable FoM of

4:75� 10�5 m; this corresponds to an NMSE value of 0.51%.

3.7.2. Sine-sweep testing set

Fig. 18 shows the actual and predicted displacement response plots for the sine-sweep test dataset. As with the ran-

dom phase multi-sine test signal, there initially appears to be a near-identical match. Closer examination reveals that

there is a slight mismatch of responses just after they peak at around 145 s. Fig. 19 shows a zoomed version of

Fig. 18 for the time period between 145 s and 160 s. The FoM for the sine-sweep is 1:02� 10�5 m, which corresponded

to a very impressive NMSE value of 0.024%. This success may, in some part, be due to the use of a chirp input for the

identification of the system parameters. In fact, the EO approach here gave the lowest cost solution for Benchmark One

at the time of the workshop.

3.8. Discussion

The work on the first benchmark, presented in this part of the paper, focussed on highlighting the role played by the force

input in the nonlinear SI process and the need for performing a linear system identification before undertaking its nonlinear

counterpart. By conducting SI, the added value of the nonlinear identification can be demonstrated and nonlinear behaviour

can be highlighted.

It is hoped that the work has demonstrated that, whilst random inputs are entirely appropriate for linear SI, they

should be used with caution for nonlinear identification due to their tendency to linearise. It was shown here, that chirp

inputs of corresponding power resulted in significant reduction in NMSE along with reduced variability in identified

parameters.

The results from the two fixed test datasets found that the system was identified with 0.51% NMSE for the random phase

multi-sine data and 0.024% MSE; the corresponding FoMs were 4:75� 10�5 m and 1:02� 10�5 m. These results were

obtained using JADE optimisation in combination with a high-amplitude linear chirp input excitation.

Note that the results presented here do not include confidence intervals for the parameter estimates. As discussed earlier

in the paper, this is not a weakness of the evolutionary approach, as witnessed by the study in [20] which specifically deals

with a Bouc-Wen system. The confidence intervals were not computed here because the objective of the benchmarking exer-

cise was simply to obtain the FoM for the various approaches and report those.

Finally, if the results of this section had been presented as a scientific study in other circumstances, they would be con-

sidered lacking in a very important respect, i.e. the method and the results are not compared with any competing methods

and the approach selected is not evaluated on other datasets. These considerations are vital in a machine learning study in

almost all contexts except the one here; the need for local comparison is obviated by the fact that the overall workshop aim

was to provide comparisons between the approaches of different participants; the consideration of other datasets is clearly

not necessary given the specific focus on the VUB benchmarks.

As discussed earlier, although not covered in any detail here, the discipline of Bayesian inference also offers the possibility

of a general framework for NLSI. As well as general references given in the previous section, the reader may wish to consult

Fig. 13. Plot of Normalised Mean Square Error vs. Input Power for linear and nonlinear SI for chirp input.
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the recent [44,40,41], which illustrate the use of Approximate Bayesian Computation, which can simultaneously estimate

parameters and weigh the evidence for competing model forms. Two of the papers also focus on a BW system (including

an experimental dataset), so can form a useful basis for comparison with the current software.

Fig. 14. Plots of Parameter Estimates vs. Input Signal Power for nonlinear SI for chirp input: Top left is the mass estimate, top right shows viscous damping

prediction, left middle plot shows linear stiffness prediction, right middle plot shows a, bottom left shows bc prediction and bottom right plot shows bd

prediction.

Table 3

Nonlinear parameters giving the lowest NMSE

from the JADE optimisation using a 1000 N

chirp input.

Parameter name Predicted value

mL 2.009 kg

cL 9.9698 N/(m/s)

kL 4:9984� 104 N/m

a 4:9985� 104 N/m

bc 799.6/m

bd �1099.9/m

t 1
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4. Benchmark two: a Wiener-Hammerstein system with process noise

4.1. Introduction

This benchmark presents a Wiener-Hammerstein (WH) electronic circuit where the main challenge results from high pro-

cess noise, which is the dominant noise distortion [45]. The problem is to identify a Wiener-Hammerstein model, which is a

block-structured system, as shown in Fig. 20, comprising two linear time-invariant (LTI) blocks in series, separated by a static

nonlinear function.

There are precursors for the uses of EO approaches in WH identification. The approach proposed here is very different

from the one reported in [46], where the evolutionary optimisation is used only for the pole-zero allocation problem

reported in [47]. The approaches that are presented in [48,49] are more similar to the method presented in this paper. How-

ever, [48] only considers the problem where the LTI blocks are represented by a FIR model, and a simplified differential evo-

lution algorithm is used. The method presented in [49] uses a biosocial culture algorithm. It is comparable to the approach

presented here, although it requires more hyperparameters to be selected by the user.

In brief, the benchmark data have been generated from an electronic circuit. The first LTI block can be described well with

a third-order lowpass filter. The second LTI subsystem is designed as an inverse Chebyshev filter which has a transmission

zero within the excited frequency range, making the inversion of the filter difficult. The static nonlinearity f ðxÞ has been rea-

lised with a diode-resistor network, resulting in a saturation nonlinearity. The problem is difficult because the high level of

process noise ex will potentially bias the parameters.

The LTI blocks are represented in notation by RðZ�1
;w1Þ and SðZ�1

;w2Þ, where Z�1 represents the backward shift operator

or Z-transform variable and w1 and w2 are the model parameters for the blocks.

For the identification approach chosen here, each linear block will be represented by an ARX model of the form,

Fig. 15. Actual displacement response plotted with best model predicted displacement response for a 1000 N chirp forcing input.

Fig. 16. Actual displacement response plotted with best model predicted displacement response for random phase multi-sine test dataset.
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yi ¼
Xny

j¼1

ajyi�j þ
Xnx

j¼1

bjxi�j þ ei ð24Þ

and the problem will be to estimate the parameters wi ¼ ðai; biÞ for each block. The nonlinear function will be represented

here by a sum over sigmoids,

f ðzÞ ¼ c0 þ
Xnc

i¼1

c1i tanhðc2izþ c3iÞ ð25Þ

with an option to use a polynomial representation included in the code.

One of the issues with identifying WH models is that the representation is not unique. For example, the system represen-

tation is invariant under an exact two-parameter group of transformations,

R ! K1R

S ! K2S

f ðzÞ ! 1

K2

f
1

K1

z

� �

ð26Þ

and this presents a type of ‘gauge’ that can (if so desired) be used to fix scales by setting b1 ¼ 1 in both of the relevant ARX

models. Another source of non-uniqueness is generated by the fact that a delay s on one of the linear blocks, can be com-

pensated by a lead �s in the other [50].

Fig. 17. Zoomed (first second) actual displacement response plotted with best model predicted displacement response for random phase multi-sine test

dataset.

Fig. 18. Actual displacement response plotted with best model predicted displacement response for sine-sweep test dataset.
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The identification problem is thus to estimate the parameters of the LTI blocks and those characterising the static non-

linearity. As for Benchmark One, the problem will be framed in terms of optimisation and an evolutionary scheme is chosen.

Once again, the algorithm is an extension of the basic DE algorithm – in this case, SADE (Self-Adaptive Differential Evolution) is

used. The algorithm has been chosen because, as a population-based approach, it is resistant to getting captured in local min-

ima, and also because it is versatile in terms of the cost function used for minimisation. However, in the study presented

here, the cost function is the ordinary least-squares error. In order to make the paper self-contained, the details of the SADE

extension to DE are briefly presented.

4.2. Self-Adaptive Differential Evolution (SADE)

As stated in the last section when discussing JADE, a potential weakness of the standard DE algorithm is that it requires

the prior specification of a number of hyperparameters. Apart from the population size, maximum number of iterations, etc.,

the algorithm needs a priori specification of the scaling factor F and crossover probability Cr . An algorithm which establishes

‘optimum’ values for the hyperparameters during the course of the evolution is clearly desirable. Such an algorithm is avail-

able in the form of the Self-Adaptive Differential Evolution (SADE) algorithm [51,52]; the description and implementation of

the algorithm here largely follows [52].

The development of the SADE algorithm begins with the observation that Storn and Price, the originators of DE, arrived at

five possible strategies for the mutation operation [19]:

1. rand1: M ¼ Aþ FðB� CÞ
2. best1: M ¼ X� þ FðB� CÞ
3. current-to-best: M ¼ T þ FðX� � TÞ þ FðB� CÞ
4. best2: M ¼ X� þ FðA� BÞ þ FðC � DÞ
5. rand2: M ¼ Aþ FðB� CÞ þ FðD� EÞ

where T is the current trial vector, X� is the vector with (currently) best cost and ðA;B; C;D; EÞ are randomly-chosen vectors in

the population distinct from T. F is a standard (positive) scaling factor. The SADE algorithm also uses multiple variants of the

mutation algorithm as above; however these are restricted to the following four:

Fig. 19. Zoomed (around peak) actual displacement response plotted with best model predicted displacement response for sine-sweep test dataset.

Fig. 20. Schematic of a Wiener-Hammerstein System.
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1. rand1

2. current-to-best2: M ¼ T þ FðX� � TÞ þ FðA� BÞ þ FðC � DÞ
3. rand2

4. current-to-rand: M ¼ T þ KðA� TÞ þ FðB� CÞ

In the strategy current-to-rand, K is defined as a coefficient of combination and would generally be assumed in the range

[�0.5, 1.5]; however, in the implementation of [52] and the one used here, the prescription K ¼ F is used to essentially

restrict the number of tunable parameters. The SADE algorithm here uses the standard crossover approach, except that at

least one crossover is forced in each operation on the vectors. If mutationmoves a parameter outside its allowed (predefined)

bounds, it is pinned to the boundary. Selection is performed exactly as in DE; if the trial vector has smaller (or equal) cost to

the target, it replaces the target in the next generation.

The adaption strategy must now be defined. First, a set of probabilities are defined: fp1; p2; p3; p4g, which are the proba-

bilities that a given mutation strategy will be used in forming a trial vector. These probabilities are initialised to be all equal

to 0.25. When a trial vector is formed during SADE, a roulette wheel selection is used to choose the mutation strategy on the

basis of the probabilities (initially, all equal). At the end of a given generation, the numbers of trial vectors successfully sur-

viving to the next generation from each strategy are recorded as: fs1; s2; s3; s4g; the numbers of trial vectors from each strat-

egy which are discarded are recorded as: fd1; d2; d3; d4g. At the beginning of a SADE run, the survival and discard numbers are

established over the first generations, this interval is called the learning period (and is another example of a hyperparameter).

At the end of the learning period, the strategy probabilities are updated by,

pi ¼
si

si þ di

ð27Þ

After the learning period, the probabilities are updated every generation but using survival and discard numbers estab-

lished over a moving window of the last NL generations. The algorithm thus adapts the preferred mutation strategies. SADE

also incorporates adaption or variation on the hyperparameters F and Cr . The scaling factor F mediates the convergence

speed of the algorithm, with large values being appropriate to global search early in a run and small values being consistent

with local search later in the run. The implementation of SADE used here largely follows [51] and differs only in one major

aspect, concerning the adaption of F. Adaption of the parameter Cr is based on accumulated experience of the successful val-

ues for the parameter over the run. It is assumed that the crossover probability for a trial is normally distributed about a

mean Cr with standard deviation 0.1. At initiation, the parameter Cr is set to 0.5 to give equal likelihood of each parent con-

tributing a chromosome. The crossover probabilities are then held fixed for each population index for a certain number of

generations and then resampled. In a rather similar manner to the adaption of the strategy probabilities, the Cr values for

trial vectors successfully passing to the next generation are recorded over a certain greater number of generations and their

mean value is adopted as the next Cr . The record of successful trials is cleared at this point in order to avoid long-termmem-

ory effects. The version of the algorithm here adapts F in essentially the same manner as Cr but uses the Gaussian Nð0:5;0:3Þ
for the initial distribution. At this point, the reader might legitimately argue that SADE has simply replaced one set of hyper-

parameters (F;Cr) with another (duration of the learning period, etc.). In fact, because DE and SADE are heuristic algorithms,

there is no analytical counter to this argument. However, the transition to SADE is justified by the fact that the algorithm

appears to be very robust with respect to the new hyperparameters.

A benchmark of the SADE algorithm against the standard DE on a Bouc-Wen identification can be found in [15]; it is

shown there that SADE offers a very large speedup in terms of convergence, very similar to the JADE algorithm used for

Benchmark One.

4.3. Algorithm verification

Unlike the other two VUB benchmarks, the current authors had not attempted to identify block-structured systems

before, and thus considered that the developed algorithm code required verification on a known problem. The system chosen

was taken from [53] and comprised the two LTI blocks,

RðZ�1
; h1Þ ¼

0:216Z�1

1� 1:579Z�1 þ 0:67Z�2

SðZ�1
; h2Þ ¼

5:0Z�1

1� 0:875Z�1
ð28Þ

and static nonlinearity,

f ðzÞ ¼ 5zþ 20z2 þ 50z3 ð29Þ
Data were generated using a white noise input. In order to fit the model, the correct number of lags nx and ny were spec-

ified and ten SADE runs were carried out with a population of 90 individuals; 1000 generations were used. The exercise was

rather time-consuming and took of the order of three hours; however, the best solution reached an NMSE of 1:12� 10�28 and

arrived at the model,
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R̂ðZ�1
; h1Þ ¼

0:3468Z�1

1� 1:579ð10ÞZ�1 þ 0:67ð11ÞZ�2

ŜðZ�1
; h2Þ ¼

1:031Z�1

1� 0:875ð10ÞZ�1

f̂ ðzÞ ¼ 15:177zþ 37:666z2 þ 58:655z3 ð30Þ

No parameters were fixed, and the resulting non-uniqueness of the model is clearly visible in the numerator parameters.

The denominator parameters were estimated very accurately (the bracketed quantities after the parameters indicate the

number of following zeroes). Multiplying up the numerator parameters and the linear term in the nonlinear function showed

that the ‘linear gain’ corresponds perfectly with the original system. Fig. 21 shows the evolution of the SADE cost function

across the ten runs; in five of the runs, SADE converged to the ‘global’ minimum, in one of the runs it did not quite converge,

and in four of the runs it arrived at a local minimum.

4.4. Benchmark identification

Having established that the SADE algorithm worked on WH identification problems, attention moved to the actual VUB

benchmark. As part of the benchmark exercise, participants were invited to design input signals for the identification, which

could then be run through the benchmark circuit in order to generate training data. The current authors did not design an

input, but decided to simply choose an appropriate dataset from among those created. The data set chosen was that stored as

‘WH CombinedZeroMultisineSinesweep:mat’ which used a period of a random multisine followed by a swept-sine excitation.

The input from the whole dataset is shown in Fig. 22.

The total dataset contained 57,346 points of input and output. A subset comprising the first 10,000 points of each record

was chosen for the training data, which meant that the excitation was only the random multisine. The data were sampled at

78,125 Hz; Fig. 23 shows the frequency domain information pertaining to the training data selected, up to the Nyquist

frequency.

Because of the amount of time needed to run SADE on a 10,000 point training set, it was impractical to determine the

orders of the ARX models in the linear blocks via cross-validation; for this reason input and output orders of 6 lags were used

as it was anticipated that this should be adequate to accurately capture the behaviour of the third-order filters in the circuit.

As discussed with respect to Benchmark One, it is good practice to establish a baseline for the identification by fitting a linear

model. Of course, the linear modelling did not require SADE, an ordinary least-squares approach was used. So that the linear

model captured the same temporal range as the nonlinear model, 12 input and output lags were used.5

In order to judge the results of the Benchmark Two identification, two noise-free test datasets were provided: a random

multi-sine and a chirp; the idea was to report the FoM on the two test sets. In the case of the (12, 12) linear ARX fit, the FoM

values on the two test sets were found to be 0.057 and 0.022 (simulation results: multi-sine and chirp, respectively). These

results proved a little inferior to results from a Best Linear Estimate (BLE) model (see [54], for an explanation of the concept),

fitted by other participants in the workshop; Fig. 24 shows comparisons between the true and predicted results on the two

test sets.

The SADE algorithm was then used to identify the system. As discussed above, ARX(6, 6) models were used for the linear

blocks and four sigmoid functions were used in order to estimate the static nonlinearity (sigmoids were chosen as the static

nonlinearity was known to have a saturation characteristic). Altogether, this gave a model with 37 tunable parameters.

Because SADE is a nonlinear optimisation algorithm, it can be sensitive to the initial ranges chosen for the parameters;

because of this, a number of runs were carried out in order to guide the choice of the initial ranges; these were chosen to

be [�1, 1] for all ARX parameters and [�100, 100] for all sigmoid parameters. Because of the size of the problem, only

one final SADE run was carried out; this used a population of 370 individuals and ran for 1000 generations; this took around

12 h. The converged model gave FoM values of 0.044 on the multi-sine test set and 0.020 on the chirp test set. The predic-

tions on the test sets for the nonlinear SADE model are shown in Fig. 25.

The results for the full nonlinear model on the multi-sine test set are better than a naive linear least-squares, but not as

good as the BLE; the results on the chirp test set are better than both the naive linear model and the BLE. However, the

improvements over a linear model are not at all marked. This begs the question: does the SADE model actually make use

of the static nonlinearity? One can answer this question by making a forward run through the full WH model and plotting

the input to the static nonlinearity, z1, against the output, z2. The results of this exercise are shown in Fig. 26. It is clear that

the SADE WH model is actually nonlinear; furthermore, the saturation characteristic is clearly captured.

5 This was a point on which an element of carelessness was identified after the workshop. While time constraints before the workshop precluded the

optimisation of the lag numbers on the full nonlinear model, guidance could have been obtained from the optimal lag numbers for a linear model, as the linear

model estimation was very fast. Cross-validation analysis after the workshop gave optimal values of the lag numbers as (8, 8) for the linear model. In the light of

this analysis, the choice of (6, 6) for the LTI linear blocks in the full nonlinear model does not seem inappropriate.
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4.5. Discussion

The results for Benchmark Two are provided here as a first attempt at identification of a block-structured system by the

authors. Although the results are far from perfect, it is hoped that the proposed method is of interest. Given that the algo-

rithm performed very well on a noise-free simulation, it is a fair assumption that the poorer results on the actual benchmark

are because of the very high level of internal process noise added. There is room for improvement in several areas. One issue

here is that the ARX model orders are hyperparameters and should have been determined in a principled manner; however,

the very slow nature of the algorithm precluded that here. One of the reasons for the slow convergence was that the algo-

rithm generated individuals for the initial population completely randomly. It was subsequently realised that this generated

many unstable linear blocks, and the corresponding models were essentially wasted in terms of genetic material. As men-

tioned in the introduction, this paper has been written as a record of the authors’ participation in the benchmark exercise,

and only shows the results of the original submissions. However, a more rigorous variant of the algorithm was developed

later and among the advances in that algorithm was a constraint that the initial population contained only stable models
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Fig. 21. SADE cost functions across the ten runs used for the verification problem (red – lowest cost per generation; blue average cost per generation). (For
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Fig. 22. Input data from Benchmark Two training data: WH CombinedZeroMultisineSinesweep:mat.

220 K. Worden et al. /Mechanical Systems and Signal Processing 112 (2018) 194–232



[55]. When the improved SADE algorithm was applied to the ‘Silverbox’ benchmark (much less process noise than the VUB

benchmark) [56], it achieved results consistent with the previous best attempts.

Because the optimisation method here only uses ‘forward’ runs through the WH model, the transmission zero in the sec-

ond LTI block has no effect on the identification; this is a strength of the approach. One of the other possibilities for the SADE

approach is to use more general objective functions without too much disruption to the core algorithm. For example it may

be possible to implement a maximum likelihood variant [57,58].

5. Benchmark three: cascaded tanks

The third of the VUB benchmarks was based on the identification of a physical experiment involving the vertical flow of

water between tanks [59]. The system was considered challenging because it contained an unmeasured state, but mainly

because only a small training set (1024 points) was given.

A combination of physical modelling and machine learning techniques were employed here to address the cascaded tanks

problem. This form of grey-box (see Introduction) model involved first fitting a physical white-box model. Then, the outputs

of the white-box were used to provide additional feature-rich inputs to a black-box model – in this case a Gaussian Process

(GP) regression model.

For the cascaded tanks system, the physics of the problem is understood, but not fully. Because of the detailed behaviour

of the fluid – particularly under the overflow condition – it is not possible to fully capture the behaviour of the system in a

physical model. However, the partial physics models which are available are good approximations to the true behaviour of

the system. This makes this form of grey-box modelling a sensible choice, the white-box model can almost be thought of as a

strong prior for the subsequent Bayesian method.
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Fig. 23. Frequency domain representation of Benchmark Two identification/training data: (a) input and output spectra; (b) FRF magnitude and phase.
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5.1. White-box modelling

Two different white-box models were established to investigate the effect of a more sophisticated model on the predic-

tive performance. When white-box models are formed from known physical behaviour they should perform well in extrap-

olation in addition to any interpolation capability. If large discrepancies are seen between training and testing errors, this

could indicate that the physics of the system chosen fails to capture the true behaviour.

When the system is not in overflow, and assuming Bernoulli’s principle holds, the state equations of the system can be

written as,

_z1ðtÞ ¼ �k1
ffiffiffiffiffiffiffiffiffiffi

z1ðtÞ
p

þ k4xðtÞ þw1ðtÞ
_z2ðtÞ ¼ k2

ffiffiffiffiffiffiffiffiffiffi

z1ðtÞ
p

� k3
ffiffiffiffiffiffiffiffiffiffi

z2ðtÞ
p

þw2ðtÞ
yðtÞ ¼ z2ðtÞ þ eðtÞ

ð31Þ

When the system is in overflow, the model can be described by the following equations,

_z1ðtÞ ¼ �k1
ffiffiffiffiffiffiffiffiffiffi

z1ðtÞ
p

þ k4xðtÞ þw1ðtÞ

_z2ðtÞ ¼
k1

ffiffiffiffiffiffiffiffiffiffi

z1ðtÞ
p

� k3
ffiffiffiffiffiffiffiffiffiffi

z2ðtÞ
p

þw2ðtÞ; z1ðtÞ 6 10

k1
ffiffiffiffiffiffiffiffiffiffi

z1ðtÞ
p

� k3
ffiffiffiffiffiffiffiffiffiffi

z2ðtÞ
p

þ k5xðtÞ þw3ðtÞ; z1ðtÞ > 10

(

ð32Þ

In both these cases, xðtÞ is the input to the system, kn represents the nth parameter of the system and wn and e are the

noise terms. z1 and z2 are state variables representing the liquid levels in the two tanks; only z2 is measured, giving the

observable output y; z1 is thus an unmeasured state. The noise terms are assumed zero in the white-box model, allowing

the black-box to compensate for noise. It is important to form a white-box model without noise, as this can distort the resid-

uals which the black box is trying to fit.
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Fig. 24. Results of linear ARX(12, 12) fit to Benchmark Two test sets: (a) random multi-sine, (b) chirp.
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The equations in (32) define the first physical model to be fitted: Model 1. This model was extended to include losses in

the system due to friction or geometry; this involved adding additional terms, which introduced two more parameters which

required fitting. The extended physics model is shown below in Eq. (33) (from this point on, explicit time dependence in the

variables will be omitted),
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Fig. 25. Results of SADE nonlinear WH fit to Benchmark Two test sets: (a) random multi-sine, (b) chirp.
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Fig. 26. Graph of input versus output for static nonlinearity in full WH model on chirp test set.

K. Worden et al. /Mechanical Systems and Signal Processing 112 (2018) 194–232 223



_z1 ¼ �k1
ffiffiffiffiffi
z1

p
þ k5z1 þ k4xþw1

_z2 ¼ k1
ffiffiffiffiffi
z1

p � k5z1 þ k6z2 � k3
ffiffiffiffiffi
z2

p þw2; z1 6 10

k1
ffiffiffiffiffi
z1

p � k5z1 þ k6z2 � k3
ffiffiffiffiffi
z2

p þ k5xþw3; z1 > 10

� ð33Þ

The equations shown in (33) define the extended physics model, referred to as Model 2. As in the other benchmarks con-

sidered here, the process of fitting the parameters of these models is cast as a multidimensional optimisation with respect to

a cost function. The normalised mean-squared error (NMSE), (6), between the predictions and the true system outputs is

once more used as the cost function.

Four different optimisation schemes were compared:

� Standard differential evolution (DE) [19] using the classic random binary crossover.

� Particle swarm optimisation (PSO) [60] using sigmoid decreasing inertia weights [61].

� Quantum-behaved particle swarm (QPSO) [62].

� Krill herd (KH) optimisation [63].

The latter two methods represent more recent approaches in optimisation which will be briefly described. The QPSO

method is based on the same principles as the regular particle swarm but the dynamics of each particle is changed from

the classic formulation to one where every particle is treated in a quantum manner. As DE has been described in a little

detail, Particle Swarm Optimisation deserves a brief explanation as it is the basis of two of the methods here [60]. In many

ways, PSO is one of the simplest iterative population-based optimisation algorithms. The PSO algorithm is motivated by

the flocking behaviour of flights of birds in search of food. Each particle (bird) i in the population (flock) is represented by

a vector of its position and velocity ðyi;v iÞ; the update rules for a generation are simply,

v i ¼ v i þ c1X1ðy�i � yiÞ þ c2X2ðy� � yiÞ

yi ¼ yi þ v i ð34Þ

where y�i is the best position experienced so far by particle i, measured in terms of some cost function JðyiÞ, and y� is the best

position of any particle. c1 and c2 are learning factors (hyperparameters) and X1 and X2 are randomly generated. The particles

are thus steered according to their individual experience and that of the flock. The basic algorithm encoded in Eq. (34)

belongs to a simpler class of biologically-inspired algorithms than the DE-inspired family, which are essentially motivated

by real-coded genetic algorithms; the PSO variants are not dependent on operations like mutation and crossover. The PSO

variants are thus interesting to consider alongside of the DE variants. In the ‘quantum’ version of the PSO algorithm, the tra-

jectory of the particles is dependent upon, both, an attractor that is a random combination of the global best and previous

best position for each particle, and a term relating to the particles’ potential fields. This change in the position update pro-

cedure arguably encourages better exploration properties for the QPSO over the PSO.

The krill herd is another population-based optimiser which aims to mimic the behaviour of Antarctic krill, it has been

shown that the krill move according to three factors: the movement of neighbouring krill, a foraging action, and physical

diffusion [64]. This leads to the updates of the particle positions in the KH algorithm being a combination of vectors mod-

elling these three factors. The particles are affected by: the motion of neighbouring particles and the global best particle, a

weighted average of the global best solution and the centre of mass of all individuals (food location), which relates to the

foraging motion; the physical diffusion is modelled by a random perturbation on particle positions.6

Each of the optimisation schemes was run 50 times, with 1500 generations and a population size of 500. The best run and

average run results were compared using the NMSE of Eq. (6); this gives a value of zero for a perfect model or 100 if the

predictions, ŷ, are set to the mean of the true outputs. The results of the optimisation are shown in Fig. 27. It can be seen

that the first model initialises with a lower NMSE; this is likely to be a result of the lower-dimensional parameter space.

However, the mean and best errors in training are significantly improved with the addition of the loss terms in Model 2.

As the dimensionality of the parameter space increases, the differentiation between the optimisation schemes becomes more

apparent; for this particular problem, the QPSO method not only provides the best overall training and testing error, it also

exhibits very fast convergence speeds.

Model 1 shows good performance, with a NMSE below 5; in this case the ability of both the PSO and QPSOmethods to find

a good set of parameters is clearly seen (Table 4).

The addition of the loss parameters in Model 2 allowed a significant improvement of over three percentage points in the

training error and over four points in the model prediction error, as shown in Table 5. Since the additional model terms have

physical meaning, an improvement in model behaviour was expected, but not to the extent seen, given the relatively small

effect the friction and geometry losses have on the system. As stated earlier, the model was considered unlikely to overfit in

6 This last benchmark has been used as an opportunity to illustrate a number of recent optimisation algorithms for the identification problem. As observed

earlier, in general terms, the ‘no free lunch’ theorems [1] suggest that, averaged over all possible types of problem, no one algorithm will win overall; however,

it is interesting to consider newer algorithms for the SI context. The krill algorithm has been chosen somewhat arbitrarily from the (literal) zoo of nature-

inspired algorithms, including those based on: ants, bats, bees, dolphins, fireflies, flowers, monkeys, etc.; such algorithms tend to bear more of a family

resemblance to the PSO types of algorithm than the DE types.
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the traditional sense of an overcomplicated model, due to the additional terms being directly related to physical phenomena.

If the terms relating to the losses had been negligible, this should have led to the optimisation scheme returning very small
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Fig. 27. Comparison of mean and best convergence curves for both the physical models. Tested with the four different optimisers: differential evolution,

particle swarm, quantum particle swarm, and krill herd.

Table 4

Normalised mean-square errors for each optimisation scheme during its best run in training and the

model prediction error on the test set, for that best set of parameters, for Model 1.

Optimiser Training Testing

DE 4.5815 6.8107

PSO 4.2276 5.9309

QPSO 4.2276 5.9313

KH 4.2447 5.9329

Table 5

Normalised mean square errors for each optimisation scheme during its best run in training and the

model prediction error on the test set for that best set of parameters using Model 2.

Optimiser Training Testing

DE 2.5116 3.9537

PSO 1.7416 3.1210

QPSO 1.0174 1.7759

KH 1.0804 1.7816
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values for these parameters and little improvement in NMSE would be seen. The more accurate the model of the physics

used, the better the performance of that model, provided the model incorporates true physical behaviour.

5.2. Black box modelling

For the black-box model used to augment the physical white box, a Gaussian Process (GP) regression model [12,65] has

been used; in particular, the GP-NARX model of [66]. The GP-NARX model is a combination of the standard GP regression

model with a nonlinear auto-regressive framework. That is, combinations of lags in the input and output dimensions are

used to form a higher-dimensional input to the GP model; in addition to this, a lag multiplier is introduced to increase

the spacing between data points. For the sake of completeness, a very condensed description of the GP-NARX model is pro-

vided here.

5.2.1. Gaussian process NARX models

The basic premise of a Gaussian process (GP) is to perform inference over functions directly, as opposed to inference over

parameters of a function. In short, a GP is a distribution over functions, which is conditioned on training data so that the most

probable functions are the best fits to the data.

Let X ¼ ½x1; x2 . . . xN�T denote a matrix of multivariate training inputs, and y denote the corresponding vector of training

outputs. The input vector for a testing point will be denoted by the column vector x� and the corresponding (unknown) out-

put by y�. A Gaussian process prior is formed by assuming a (Gaussian) distribution over functions,

f ðxÞ � GP mðxÞ; kðx; xÞð Þ ð35Þ

where mðxÞ is the mean function and kðx; x0Þ is a positive-definite covariance function.

One of the defining properties of the GP is that the density of a finite number of outputs from the process, both observed

and unobserved, is multivariate normal. This property, combined with standard results for Gaussian distributions, can be

used to condition unobserved points on observed training points: this mechanism effectively fits the GP to the training data.

Following a Bayesian approach, the prior mean can be assumed to be zero (see [65] for a discussion). Assuming a Gaussian

noise model with variance r2
n, the joint distribution for training and testing values is,

y

y�

� �

� N 0;
KðX;XÞ þ r2

nI KðX; x�Þ
Kðx�;XÞ Kðx�; x�Þ þ r2

n

" # !

ð36Þ

where KðX;XÞ is a matrix whose i; jth element is equal to kðxi; xjÞ. Similarly, KðX; x�Þ is a column vector whose ith element is

equal to kðxi; x�Þ, and Kðx�;XÞ is the transpose of the same.

In order to make use of the above, it is necessary to re-arrange the joint distribution pðy; y�Þ into a conditional distribution

pðy�jyÞ. Using standard results for the conditional properties of a Gaussian reveals [65],

y� � N ðm�ðx�Þ; k�ðx�; x�ÞÞ ð37Þ

where

m�ðx�Þ ¼ Kðx�;XÞ½kðX;XÞ þ r2
nI�

�1
y ð38Þ

is the posterior mean of the GP and,

k
�ðx�; x0Þ ¼ kðx�; x0Þ � Kðx�;XÞ½KðX;XÞ þ r2

nI�
�1
KðX; x0Þ ð39Þ

is the posterior variance.

Thus the GP model provides a posterior distribution for the unknown quantity y�. The mean from Eq. (37) can then be

used as a ‘best estimate’ for a regression problem, and the variance can also be used to define confidence intervals. The

covariance function used here is the squared-exponential function, and its hyperparameters, augmented by the noise param-

eter r2
n, can be readily found through maximum likelihood estimation. For considerably more details on GPs than this short

description allows, see [65].

To apply GPs in the NARX framework, one simply performs a GP regression of the form,

yi ¼ Fðyi�1; . . . ; yi�ny
; xi; . . . ; xi�nx Þ ð40Þ

i.e. regress the current system output on a range of past system inputs and outputs.7 After fitting the GP-NARX model, one

way to test it is to compute one step ahead (OSA) predictions, which exclusively use the training data up to that time (as dis-

cussed earlier in Section 3.1, this is prediction in the electrical engineering/control community), i.e.

y�i ¼ Fðyi�1; . . . ; yi�ny
; xi; . . . ; xi�nx Þ ð41Þ

7 In this implementation of NARX, the current input is also included in the model.
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and then compute an error measure. However, a more demanding test is to compute the Model Predicted Output (MPO),

which uses predicted y� values instead of observed y values (and thus corresponds to simulation in EE/control terminology).

It is defined by,

y�i ¼ Fðy�i�1; . . . ; y
�
i�ny

; xi; . . . ; xi�nx Þ ð42Þ

and this test can be conducted on testing data as well as training data, which is an important consideration in the more gen-

eral context of machine learning.

The introduction of the NARX structure to the GP model presents two key challenges; the first is the addition of hyper-

parameters associated with the number of lags in the model and the lag multiplier; the second is that the action of feeding

outputs back onto the input in the GP NARX model breaks one of the basic assumptions of the GP – that there is no noise on

the input. The issue of identifying the number of lags in the model would normally be addressed by the use of a validation set

or a method such as leave-one-out (LOO) cross-validation [22]. In the case of the cascaded tanks system, the small dataset

(1024 points) and the lack of a validation set meant that an alternative approach had to be taken. One of the key stages of

fitting a GP model is the minimisation of the negative log marginal likelihood of the process through optimisation of the

hyperparameters from the covariance function [65]; since the number of options for the lag hyperparameters was small

here, a manual search based on the negative log marginal likelihood of the training data allowed selection of the lag hyper-

parameters. This manual search led to the identification of 15 lags in both input and output with a lag multiplier of two.

From this, the inputs to the GP were taken as xt ; xt�3; . . . ; xt�30 and at yt�1; yt�3; . . . ; yt�31. A squared-exponential kernel with

automatic relevance determination (ARD) was used for the GP covariance structure; the hyperparameters for this can be

optimised using a conjugate gradient descent [67,68] or an evolutionary search. On the other matter, concerning input noise;

in the case of the GP-NARX models here, the noise levels estimated are very small and so should have little effect when fed

back onto the input. The limit being that, if there is no noise on the output and the predictions have zero error there is no

difference between OSA and MPO predictions (and the true outputs). Current work is progressing on incorporating methods

to propagate the uncertainty introduced in this step, where it is thought that the noise level is significant.

5.2.2. Results: black box

Figs. 28(a) and (b) show the ability of the GP NARX model to perform very well in the OSA (prediction) case with an NMSE

of only 0.0565 and all observations lying within the 3r confidence intervals. The results in the MPO (simulation) case, how-

ever, have an NMSE of 4.6174. This performance is better than the initial white-box model (Model 1), but with the addition of

the loss terms in Model 2, the white-box outperforms the GP-NARX black box. The MPO predictions of the GP-NARX model

also have a number of test points lying outside the 3r confidence intervals, which indicates that the model is overconfident

in its predictions. This is likely to be a result of the fact that, in training, true values for the output data are fed into the model,

this effectively trains the model to make OSA predictions; this would not be an issue if the OSA prediction error was approx-

imately zero; however, in the MPO case, the effect of feeding back noise/error on the outputs to the inputs can be clearly seen

to be detrimental to model performance.

5.3. Grey box modelling

The aim of building a grey-box model as discussed in the introduction (also, see [69]), is to make use of all the prior

knowledge as to the system structure which is encoded in the white-box models and then improve predictive performance

of the model with the addition of a black-box component. One way to do this would be to treat the white box as a mean

function of the process and attempt to fit the residuals of the model using a black-box algorithm, as in,

yp ¼ f ðXÞ
zffl}|ffl{

White Box

þ �ðXÞ
zffl}|ffl{

Black Box

ð43Þ

The alternative to this is to use the information that is encoded in the white box model as an additional strongly corre-

lated input to the black box, as in Eq. (44); this allows a nonlinear relationship to be established between the white-box out-

puts and the true system outputs. This incorporation of the white-box outputs as inputs to the black-box model retains a

good signal-to-noise ratio which can be lost when only fitting the residuals.

yp ¼ gðX; f ðXÞ
|ffl{zffl}

White Box

Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

Black Box

ð44Þ

Since the error in the white-box models was low, it was found that the formulation of the grey box in (44) was a far more

effective model. The grey box was tested with outputs from both white-box models to establish if the quality of the white-

box model fit affected the performance of the grey box significantly. It was hypothesised that if the white box were suffi-

ciently accurate, such that it had predictions which were on the noise floor of the data, the addition of a black-box compo-

nent would be unable to either improve the predictive performance or would be susceptible to overfitting, despite the

Bayesian formulation of the GP models.
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It was again necessary to determine the lag hyperparameters for the GP-NARX model, and this was accomplished as

before, with the result being two lags on the inputs, ten on the outputs, and a lag multiplier of two. These lag hyperparam-

eters were used for both grey-box models to allow comparison; since the lags relate to the dynamic behaviour of the model

there should be minimal difference in the dynamics of the two white-box models due to their similar formulation. When

checking that this assumption was valid, it was found that the same set of lags were optimal in both cases with respect

to the marginal likelihood.

Using the outputs of the Model 1 white box as informative inputs to the GP-NARX model yields the results seen in Fig. 29.

As before, very good performance is seen in the OSA case, with an NMSE of 0.0529. There is also a significant improvement

over both white-box Model 1, and the black-box model, with the MPO error lowered to 2.4621. This indicates that the white-

box model is able to provide useful information about the input space to the GP-NARX model, which is not explicitly present

in the training dataset. It should be noted that this model, although offering good improvement in terms of the NMSE metric,

has a large overestimation of water level in the MPO prediction around time point 750; there, the model clearly predicts a

tank level over 10.0, despite this being physically impossible. This error demonstrates the importance of clear engineering

interpretations of model outputs to ensure model validity.

Fig. 30 shows the outputs of the second grey-box model in the OSA and MPO case. Here the inputs of white-box Model 2

are used as informative inputs. The structure reduces the NMSE in the OSA case further to 0.0442, and in the MPO case the

NMSE is lowered to 0.8178. The key improvement is seen around time point 450 where the second grey-box model shows

much better performance than the GP-NARX black box, or the first grey box. It is expected that it is this area of the input

space which is not well explored in the training data; however, the accuracy of the white-box Model 2 is able to provide

information in this area.
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Fig. 28. Comparison of measured and predicted outputs for cascaded tanks problem using Gaussian process black-box model: (a) One-step-ahead

predictions (NMSE 0.0565); (b) Model-predicted output (NMSE 4.6174).
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A summary of the best MPO performance of every model tested is shown in Table 6. The performance of the grey-box

models shows significant improvement over both the white-box models which provide the additional informative inputs,

and the use of just a black-box model. In fact the grey-box model incorporating white box model 2 provided the lowest

FoM achieved in the workshop.

5.4. Discussion

Although the results shown here establish this form of grey-box modelling as a powerful approach to the NLSI problem,

there are a number of caveats that must be addressed before it can be implemented. The first of these is the requirement for

well-understood physics that can be accurately described (at least up to a point) in a series of state equations. There are

many systems considered across engineering in which the governing equations may not be as easily elicited as in the cas-

caded tanks; this is the main reason why NLSI is not simply a matter of machine learning.

It is worth considering the complexity of a model required to allow good performance of a system; for example, one could

ask if the use of a linear dynamic model as a white box would be sufficient for fitting the grey box with good predictive per-

formance. The authors believe that, provided the white box is not incorrect in such a way as it confounds the structure of the

residuals, even a simple white box will aid the performance of the grey box. It remains to be seen if the use of models which

simplify the physics of a system (e.g. finite element methods) will leave enough structure in the residuals for the machine

learning method to fit.
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Fig. 29. Comparison of measured and predicted outputs for cascaded tanks problem using grey-box model based on white-box Model 1: (a) One-step-ahead

predictions (NMSE 0.0529); (b) Model-predicted output (NMSE 2.4621).
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It should be noted that the simulation of the white-box component of the model was computationally inexpensive for the

cascaded tanks system. If the white-box portion of the model is computationally very expensive, there must be some inves-

tigation as to the cost-benefit of increasing model fidelity when the machine learning method will attempt to fit the more

complex physics that is not modelled.

In summary, when conducting NLSI in the presence of well-understood physics, the incorporation of this prior knowledge

in any machine learning technique is a powerful tool. The grey-box framework presented here is an intuitive and modular

approach that has several advantages, these are: retention of engineering insight in the processes that are well understood in

the white box and ability to compare differing black-box methods without the requirement to refit the white-box compo-

nent (this is especially valuable where modelling the physical system is computationally expensive).
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Fig. 30. Comparison of measured and predicted outputs for cascaded tanks problem using grey-box model based on white-box Model 2 (the extended

physics model): (a) One-step-ahead predictions (NMSE 0.0529); (b) Model-predicted output (NMSE 2.4621).

Table 6

Best NMSE and FoM scores for all five models tested in the MPO case.

White 1 White 2 Black Grey 1 Grey 2

Best NMSE 5.9309 1.7759 4.6174 2.4621 0.8178

Best FoM 0.5115 0.2799 0.4550 0.3319 0.1913
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6. Conclusions

It would be unduly repetitive to summarise the local conclusions from the various studies contained in this paper. The

overall conclusions can therefore be quite brief. Following an initial discussion on the nature of nonlinear system identifi-

cation in general, the results from three case studies on benchmark problems are presented here. In all cases, an evolutionary

optimisation scheme of some flavour provides a good, if not excellent, solution. In fact, the approaches presented here gave

the best results of the workshop on two of the three benchmarks (One and Three). This supports the contention, expressed in

the paper’s introduction, that general frameworks for nonlinear system identification are beginning to emerge, potentially

moving the discipline forward from its ‘toolbox’ phase. Some general elements of good practice are highlighted along the

way, among them is the fact that careful design of an ‘optimal’ input excitation can make a serious difference to the results

obtained. Another important lesson is that a grey-box model combining a physical white-box and a nonparametric machine

learning algorithm can provide a predictive model superior to white- or black-box models alone. While the evolutionary

approaches have succeeded in all cases here, it is important to note that equally general frameworks are emerging based

on Bayesian machine learning. Although not explored here for reasons of space, such frameworks offer the possible advan-

tage of combining parameter estimation with model selection. In order to see how such models can be applied to the bench-

marks here, the reader has only to consult some of the other papers in this special issue.
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