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BACKGROUND It is widely accepted that edema occurs early in the ischemic zone and persists in stable form for at

least 1 week after myocardial ischemia/reperfusion. However, there are no longitudinal studies covering from very early

(minutes) to late (1 week) reperfusion stages confirming this phenomenon.

OBJECTIVES This study sought to perform a comprehensive longitudinal imaging and histological characterization

of the edematous reaction after experimental myocardial ischemia/reperfusion.

METHODS The study population consisted of 25 instrumented Large-White pigs (30 kg to 40 kg). Closed-chest 40-min

ischemia/reperfusion was performed in 20 pigs, which were sacrificed at 120 min (n ¼ 5), 24 h (n ¼ 5), 4 days (n ¼ 5), and

7 days (n ¼ 5) after reperfusion and processed for histological quantification of myocardial water content. Cardiac

magnetic resonance (CMR) scans with T2-weighted short-tau inversion recovery and T2-mapping sequences were

performed at every follow-up stage until sacrifice. Five additional pigs sacrificed after baseline CMR served as controls.

RESULTS In all pigs, reperfusion was associated with a significant increase in T2 relaxation times in the ischemic region.

On 24-h CMR, ischemic myocardium T2 times returned to normal values (similar to those seen pre-infarction). Thereafter,

ischemic myocardium-T2 times in CMR performed on days 4 and 7 after reperfusion progressively and systematically

increased. On day 7 CMR, T2 relaxation times were as high as those observed at reperfusion. Myocardial water content

analysis in the ischemic region showed a parallel bimodal pattern: 2 high water content peaks at reperfusion and at day 7,

and a significant decrease at 24 h.

CONCLUSIONS Contrary to the accepted view, myocardial edema during the first week after ischemia/reperfusion

follows a bimodal pattern. The initial wave appears abruptly upon reperfusion and dissipates at 24 h. Conversely, the

deferred wave of edema appears progressively days after ischemia/reperfusion and is maximal around day 7 after

reperfusion. (J Am Coll Cardiol 2015;65:315–23) © 2015 by the American College of Cardiology Foundation.
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ABBR EV I A T I ON S

AND ACRONYMS

CMR = cardiac

magnetic resonance

FOV = field of view

I/R = ischemia/reperfusion

NEX = number of excitations

ROI = region of interest

STIR = short-tau

inversion recovery

TE = echo time

TR = repetition time

T2W = T2 weighted
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T issue characterization after myocar-
dial ischemia/reperfusion (I/R) is of
great scientific and clinical value. Af-

ter myocardial I/R, there is an intense ede-
matous reaction (due to abnormal fluid
accumulation in the interstitial and/or cardio-
myocyte compartments) in the post-ischemic
myocardium (1–5). Cardiac magnetic reso-
nance (CMR) is a noninvasive technique that
allows accurate tissue characterization of the
myocardium (6). In particular, T2-weighted
(T2W) and T2-mapping CMR sequences have
the potential to identify tissues with high wa-
ter content (7). Few experimental studies
have correlated post-I/R T2-CMR data with myocar-
dial water content (2,8), and these validations were
undertaken at different times after reperfusion.
Many recent experimental and clinical studies have
used these CMR sequences to retrospectively eval-
uate post-myocardial infarction edema on the basis
of the assumptions that myocardial edema appears
early after I/R, persists in a stable form for at least
1 week (9,10), and is accurately visualized by CMR.
SEE PAGE 324
However, the time chosen for the CMR examination
varies significantly among studies, from 1 day (9,10)
up to several weeks (9–16) after reperfusion. In addi-
tion, post-I/R T2W signal intensity and T2 relaxation
time are affected by other factors besides water con-
tent: T2-CMR results can be modulated indepen-
dently by hemorrhage (17,18), microvascular
obstruction (19), and even cardioprotective therapies
(20–22). There is, therefore, intense debate about the
accuracy of CMR-based methods for detecting, quan-
tifying, and tracking the post-infarction edematous
reaction (7,23). Given the growing use of CMR tech-
nology to quantify post-I/R edema in clinical trials
(24,25), a comprehensive characterization of the
time course of post-I/R myocardial edema, including
evaluation of both CMR and histological reference
standards, is needed (22–24,26–28).
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The present study aimed to comprehensively
characterize myocardial edema and reperfusion-
related tissue changes after I/R, covering from early
to late reperfusion stages. For this, we performed a
full CMR and histopathological study in a large animal
(pig) model of I/R.

METHODS

STUDY DESIGN. Experiments were performed in
castrated male Large-White pigs weighing 30 kg to
40 kg. A total of 25 pigs completed the full protocol
and comprised the study population. The study was
approved by the Institutional Animal Research Com-
mittee and conducted in accordance with the rec-
ommendations of the Guide for the Care and Use of
Laboratory Animals. The study design is summarized
in Figure 1. Five pigs (Group 1) served as controls and
were sacrificed with no intervention other than
baseline CMR. In 20 pigs, reperfused acute myocar-
dial infarction (I/R) was induced experimentally by
closed-chest 40-min left anterior descending coro-
nary artery occlusion. These pigs were sacrificed at
120 min (n ¼ 5, Group 2), 24 h (n ¼ 5, Group 3), 4 days
(n ¼ 5, Group 4), and 7 days (n ¼ 5, Group 5) after
reperfusion. CMR scans, including T2W short-tau
inversion recovery (STIR), T2-mapping, and delayed
enhancement sequences, were performed at every
follow-up stage until sacrifice (i.e., animals sacrificed
on day 7 underwent CMR examinations at baseline,
120 min, 24 h, day 4, and day 7). After the last follow-
up CMR scan, animals were immediately euthanized,
and myocardial tissue samples from ischemic and
remote areas were rapidly collected for evaluation of
water content by histology.
MYOCARDIAL INFARCTION PROCEDURE. The I/R
protocol has been detailed elsewhere (29). Anesthesia
was induced by intramuscular injection of ketamine
(20 mg/kg), xylazine (2 mg/kg), and midazolam
(0.5 mg/kg), and maintained by continuous intrave-
nous infusion of ketamine (2 mg/kg/h), xylazine
(0.2 mg/kg/h), and midazolam (0.2 mg/kg/h). Animals
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FIGURE 1 Study Design
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The study population comprised 5 groups of pigs (n ¼ 5/group) used to characterize myocardial edema during the first week after ischemia/

reperfusion. Cardiac magnetic resonance (CMR) scans, including T2-weighted short-tau inversion recovery and T2-mapping sequences, were

performed at every follow-up until sacrifice (i.e., animals sacrificed on day 7 underwent baseline, 120-min, 24-h, day 4, and day 7 CMR).
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were intubated and mechanically ventilated with ox-
ygen (fraction of inspired O2: 28%).  Central venous and
arterial lines were inserted, and a single bolus of
unfractionated heparin (300 IU/kg) was administered
at the onset of instrumentation. The left anterior
descending coronary artery, immediately distal to the 
origin of the first diagonal branch, was occluded for 40 
min with an angioplasty balloon introduced via the 
percutaneous femoral route using the Seldinger tech-
nique. Balloon location and maintenance of inflation 
were monitored angiographically. After balloon 
deflation, a coronary angiogram was recorded to 
confirm patency of the coronary artery. A continuous 
infusion of amiodarone (300 mg/h) was maintained 
during the procedure in all pigs to prevent malignant 
ventricular arrhythmias. In cases of ventricular fibril-
lation, a biphasic defibrillator was used to deliver 
nonsynchronized shocks.

CMR PROTOCOL. A baseline CMR scan was performed
immediately before myocardial infarction and subse-
quent CMR scans were performed at post-infarction
follow-up time points until sacrifice. All studies were
performed in a Philips 3-T Achieva Tx whole-body
scanner (Philips Healthcare, Best, the Netherlands)
equipped with a 32-element phased-array cardiac coil.
The imaging protocol included a standard segmented
cine steady-state free-precession (SSFP) sequence to
provide high-quality anatomical references, a T2-
weighted triple inversion-recovery (T2W-STIR)
sequence, a T2-turbo spin echo (TSE) mapping
sequence, and a late gadolinium enhancement
sequence. The imaging parameters for the SSFP
sequence were field of view (FOV) of 280 � 280 mm,
slice thickness 6mmwith no gaps, repetition time (TR)
2.8 ms, echo time (TE) 1.4 ms, flip angle 45�, cardiac
phases 30, voxel size 1.8 � 1.8 mm, and 3 number of
excitations (NEX). Imaging parameters for the T2W-
STIR sequence were FOV 280 � 280 mm, slice
thickness 6 mm, TR 2 heartbeats, TE 80 ms, voxel size
1.4 � 1.95 mm, delay 210 ms, end-diastolic acquisition,
echo-train length 16, and 2 NEX. The imaging param-
eters for the T2-TSEmapping were FOV 300� 300mm,
slice thickness 8 mm, TR 2 heartbeats, and 10 echo
times ranging from 4.9 to 49.0 ms. Delayed enhance-
ment imaging was performed 10 to 15 min after intra-
venous administration of 0.20 mmol of gadopentetate
dimeglumine contrast agent per kg of body weight (30)
using an inversion-recovery spoiled turbo field echo
(IR-T1TFE) sequence with the following parameters:
FOV of 280 � 280 mm, voxel size 1.6 � 1.6 mm, end-
diastolic acquisition, thickness 6 mm with no gap, TR
5.6 ms, TE 2.8 ms, inversion delay time optimized to
null normal myocardium, and 2 NEX. SSFP, T2W-STIR,
and IR-T1TFE sequences were performed to acquire 13
to 15 contiguous short-axis slices covering the heart
from the base to the apex. To track T2 relaxation time
changes across time, T2 maps in all studies were ac-
quired in midapical ventricular short-axis slices cor-
responding to the same anatomical level.

CMR DATA ANALYSIS. CMR images were analyzed
using dedicated software (MR Extended Work Space
2.6, Philips Healthcare, and QMass MR 7.5, Medis,
Leiden, the Netherlands) by 2 observers experienced
in CMR analysis. T2 maps were automatically gener-
ated on the acquisition scanner by fitting the signal
intensity of all echo times to a monoexponential
decay curve at each pixel with a maximum likelihood
expectation maximization algorithm. T2 relaxation
maps were quantitatively analyzed by placing a wide
transmural region of interest (ROI) at the ischemic
and remote areas of the corresponding slice in all
studies. Hypointense areas suggestive of microvas-
cular obstruction or hemorrhage were included in
the ROI for T2 quantification purposes. Delayed
gadolinium-enhanced regions were defined as >50%
of maximum myocardial signal intensity (full width at



FIGURE 2 Time Course of CMR T2 Relaxation Time and Corresponding

Myocardial Water Content During the First Week After I/R
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Note the parallel courses of cardiac magnetic resonance (CMR) fluctuations and

histologically determined edema (dashed red lines). (A) Time course of absolute T2 relax-

ation time values (ms) in the ischemic myocardium during the first week after ischemia/

reperfusion (I/R). Bars represent means and standard errors of the means. The top of the

panel shows representative images from1 animal that underwent 40-min/7-day I/R andCMR

T2-weighted short-tau inversion recovery and T2-mapping examinations at all time points.

All T2mapswere scaled between 30 and 120ms. (B) Time course of absolute differences (%)

in water content between ischemic (midapical anteroseptal left ventricular wall) and remote

(posterolateral left ventricular wall) zones during the first week after I/R. Bars represent

means and standard errors of the means. Absolute differences were 0.0� 0.2% for group 1

(sacrificed at baseline with no other intervention than CMR), 5.2�0.6% for group 2 (I/R 120

min), 1.1�0.7% for group 3 (I/R 24 h), 2.4� 1.3% for Group 4 (I/R 4 days), and 5.1� 1.0% for

group 5 (I/R 7 days). All pairwise comparisons for the absolute differences in myocardial

water content were explored, adjusting the p values for multiple comparisons using the

Holm-Bonferroni correction. Comparisons between different groups remained statistically

significantwith the exception of the following: group 1 (control) vs. group 3 (I/R 24 h), group

3 (I/R 24 h) vs. group 4 (I/R 4 days), and group 2 (I/R 120 min) vs. group 5 (I/R 7 days).
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half maximum) with manual adjustment when
needed. If present, a central core of hypointense
signal within the area of increased signal was
included as late gadolinium-enhanced myocardium.
Regional transmurality of contrast enhancement was
evaluated in the same segments where ROIs for T2
quantification were placed with a scheme on the basis
of the spatial extent of delayed enhancement tissue
within each segment (31). Segments with more than
75% hyperenhancement were considered segments
with transmural enhancement.

QUANTIFICATION OF MYOCARDIAL WATER CONTENT

BY HISTOLOGY. Paired myocardial samples were
collected within minutes of euthanasia from the
infarcted and remote myocardia of all pigs. Tissue
samples were immediately blotted to remove surface
moisture and introduced into laboratory crystal con-
tainers previously weighed on a high-precision scale.
The containers were weighed before and after drying
for 48 h at 100�C in a desiccating oven. Tissue water
content was calculated as follows: water content
(%) ¼ ([wet weight � dry weight]/wet weight) �100.
An empty container was weighed before and after
desiccation as an additional calibration control.

STATISTICAL ANALYSIS. Normal distribution of each
data subset was checked using graphical methods
and a Shapiro-Wilk test. For quantitative variables
showing a normal distribution, data are expressed as
mean � SD. Leven’s test was performed to check the
homogeneity of variances. A 1-way analysis of vari-
ance was conducted for comparison of myocardial
water content among groups (from animals sacrificed
at different time points). To take repeated measures
into account, a generalized mixed model was con-
ducted for comparison of T2 relaxation times among
different time points. As this study was exploratory,
all pairwise comparisons were explored, adjusting
p values for multiple comparisons using the Holm-
Bonferroni method. In all cases, data from the
ischemic and remote myocardium (i.e., myocardial
water content and T2 relaxation time values) were
separately analyzed. All statistical analyses were
performed using commercially available software
(Stata version 12.0, StataCorp, College Station, Texas).

RESULTS

NATURAL EVOLUTION OF MYOCARDIAL EDEMA

DURING THE FIRST WEEK AFTER I/R. CMR imag ing .
Baseline (i.e., before ischemia) mean T2 relaxation
times were 47.2 � 2.6 ms and 46.3 � 1.7 ms for the
midapical anteroseptal and posterolateral left ven-
tricular walls, respectively. In all pigs, early



TABLE 1 Measurements of T2 Relaxation Time in the Ischemic and Remote Myocardium

at Different Time Points During the First Week After Ischemia/Reperfusion

Baseline

T2 Relaxation Times (ms)

R-120 min R-24 h R-Day 4 R-Day 7

Group 1 (Control) IM 47.7 � 4.0

Rem 46.1 � 1.5

Group 2 (I/R-120 min) IM 48.7 � 0.6 73.3 � 10.0

Rem 46.8 � 1.8 47.0 � 1.0

Group 3 (I/R-24 h) IM 46.5 � 1.9 72.4 � 12.3 45.9 � 5.3

Rem 46.2 � 2.6 48.6 � 3.0 45.2 � 0.6

Group 4 (I/R-4 days) IM 45.9 � 1.6 73.5 � 4.2 42.7 � 9.3 55.1 � 13.2

Rem 45.5 � 0.8 48.3 � 4.0 47.5 � 3.1 48.2 � 2.9

Group 5 (I/R-7 days) IM 47.2 � 3.5 72.6 � 14.2 47.0 � 2.9 64.9 � 7.9 78.4 � 10.6

Rem 46.7 � 1.5 48.5 � 3.7 51.4 � 5.0 50.1 � 1.8 50.0 � 3.3

Pooled IM 47.2 ± 2.6 72.9 ± 9.9 45.2 ± 6.2 60.0 ± 11.5 78.4 ± 10.6

Rem 46.3 ± 1.7 48.1 ± 3.0 48.0 ± 4.1 49.1 ± 2.5 50.0 ± 3.3

Values are mean � SD. All pairwise comparisons for pooled serial T2 relaxation times were explored, adjusting p
values for multiple comparisons using the Holm-Bonferroni correction. Comparisons between different time
points in the ischemic myocardium remained statistically significant with the exception of the following: baseline
vs. R-24 h, and R-120 min vs. R-day 7. Bold values are those that were compared and are also represented in
Figure 2A.

IM ¼ ischemic myocardium; Rem ¼ remote myocardium.

TABLE 2 Measurements of Myocardial Water Content in the Ischemic and Remote

Myocardium at Different Time Points During the First Week After I/R

Water Content (%)

Group 1
(Control)

Group 2
(I/R-120 min)

Group 3
(I/R-24 h)

Group 4
(I/R-4 days)

Group 5
(I/R-7 days)

IM 79.4 � 0.6 84.5 � 0.5 81.2 � 0.5 82.5 � 1.4 85.2 � 0.9

Rem 79.4 � 0.7 79.4 � 0.4 80.0 � 0.4 80.1 � 0.4 80.1 � 0.3

Values are mean � SD. All pairwise comparisons for myocardial water content were explored, adjusting p values
for multiple comparisons using the Holm-Bonferroni correction. Comparisons between different groups in
the ischemic myocardium remained statistically significant with the exception of the following: group 2
(I/R-120 min) vs. group 5 (I/R-7 days).

Abbreviations as in Table 1.
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reperfusion (120-min CMR) was associated with a
sharp and significant increase in T2 relaxation time
above baseline, in the former ischemic area (mid-
apical anteroseptal ventricular wall). T2 relaxation
times returned to baseline values at 24 h post-I/R in
all animals, but subsequently increased progres-
sively, reaching post-I/R values on day 7 similar to
those observed during early reperfusion. Albeit
slight, a linear trend for a progressive increase in T2
relaxation times across different time points was
observed in the remote myocardium. Figure 2A shows
mean changes in T2 relaxation time in the ischemic
myocardium as well as a representative example of 1
animal serially scanned at all time points. Measure-
ments of T2 relaxation time in the ischemic and
remote myocardium at different time points after I/R
are summarized in Table 1. Changes observed in T2W-
STIR and T2-TSE mapping were consistent in all
animals, as seen in Figure 3, which shows images from
8 pigs scanned at the different time points. The
transmural extent of infarction was >80% in all
evaluated segments containing the ROIs for T2
relaxation time quantification.
Myocard ia l water content . Myocardial water con-
tent in noninfarcted myocardium (from animals in
group 1) was 79.4 � 0.6% and 79.4 � 0.7% for
the midapical anteroseptal and posterolateral left
ventricular walls, respectively. In the ischemic
myocardium, an abrupt increase in water content was
detected at early reperfusion. Consistent with the CMR
data, therewas a systematic and significant decrease in
tissue water content in the formerly ischemic region at
24 h, followed by a subsequent increase over the
following days to reach values on day 7 similar to those
observed at early reperfusion. A linear trend for a
slight, but progressive increase in water content across
different time points was observed in the remote
myocardium. Time courses for absolute differences in
water content between ischemic and remote myocar-
dium are shown in Figure 2B. Table 2 summarizes
measurements of water content in the ischemic and
remote myocardium at different time points after I/R.

DISCUSSION

The present experimental study challenges the
accepted view of the development of post-ischemia/
reperfusion myocardial edema. Through state-of-
the-art CMR analysis and histological validation in a
pig model of I/R, we show that the edematous reac-
tion during the first week after reperfusion is
not stable, instead following a bimodal pattern
(Central Illustration). The first wave appears abruptly
upon reperfusion and dissipates at 24 h. Conversely,
the second wave of edema appears progressively days
after I/R and increases to a maximum on post-
reperfusion day 7. To the best of our knowledge,
this is the first study to comprehensively characterize
the time course of myocardial edema during
the first week after I/R, covering from very early to
late reperfusion stages. Because edema has been
perceived as both stable and persistent during at least
1 week after myocardial I/R, it has been used
increasingly both clinically and in the setting of
clinical trials as a marker of “ischemic memory.”
Therefore, our findings that neither of these as-
sumptions is accurate will have important trans-
lational implications.

As with most organs, water is a major component
of healthy cardiac tissue. In steady-state conditions,
myocardial water content is stable and mostly intra-
cellular, with only a very small interstitial component
contained within the extracellular matrix. Cardiac



FIGURE 3 CMR T2W-STIR and T2 Mapping Images From Different Animals During the 1-Week Time Course After I/R
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Serial CMR scans reveal highly consistent bimodal changes in image-determined myocardial edema during the first week after I/R, both in T2-weighted short-tau

inversion recovery (T2W-STIR) imaging (A) and T2 mapping (B). Images from 8 pigs at different time points are shown. All T2 maps were scaled between 30 and 120 ms.

Abbreviations as in Figure 2.
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edema occurs in numerous pathological conditions in
which this homeostasis is disrupted, and affects both
fluid accumulation outside cells (interstitial edema)
and within cardiomyocytes (cellular edema). In the
context of myocardial infarction, edema appears
initially in the form of cardiomyocyte swelling during
the early stages of ischemia (5). Myocardial edema is
then significantly exacerbated upon restoration of
blood flow to the ischemic region. This increase is due
to increased cell swelling (3) and, more importantly,
to interstitial edema secondary to reactive hyperemia
and leakage from damaged capillaries when the hy-
drostatic pressure is restored upon reperfusion (1,4).

CMR has emerged as a noninvasive technology that
allows characterization of cardiac tissue after I/R (6),
with T2-weighted (T2W) CMR sequences especially
suited to detecting high water content in post-
ischemic edematous cardiac muscle (7). Under the
accepted dogma that myocardial edema appears early
after I/R and is present for at least 1 week (9,10,24),
numerous experimental and clinical studies have
used T2W-CMR to retrospectively evaluate the ede-
matous reaction associated with myocardial infarc-
tion. Although visually attractive, T2W imaging is
subject to several technical limitations and does not
offer quantitative T2 measurements that would allow
for comparisons between different studies (32,33).
Recently developed quantitative T2 relaxation maps
(T2 mapping) have been proposed to overcome at
least some of the limitations for the detection and
quantification of myocardial edema (34,35). However,
T2-mapping sequences have inherent limitations, are
time-consuming, and are thus mostly used as a
research tool and require further validation. Large
animal models of I/R offer an ideal platform for such a
validation (36), and, due to its anatomical and phys-
iological similarities to the human heart, the pig
is one of the most reliable models for studying
I/R-related processes.

The disparate time points examined in different
experimental and clinical studies are an important
source of confusion in CMR evaluation of post-I/R
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The development of myocardial edema is a well known phenomenon occurring after

ischemia/reperfusion (myocardial infarction). This edematous reaction was long assumed

to be stable for at least 1 week, but the post-ischemia/reperfusion phase was not previ-

ously tracked in a comprehensive serial study. In the present study, analysis of advanced

cardiac magnetic resonance and histopathology showed that post-ischemia/reperfusion

edema is bimodal. An initial wave of edema abruptly appears upon reperfusion and almost

completely disappears at 24 h. A deferred wave appears later and increases progressively

until day 7. STIR ¼ short-tau inversion recovery.
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edema. As demonstrated in the present study,
because T2 values in the ischemic myocardium
fluctuate significantly during the first week after
reperfusion, the timing of post-infarction imaging is
critically important for noninvasive assessment of
myocardial edema. In a previous study, Foltz et al.
(37,38) suggested a similar myocardial T2 relaxation
time course in a pig model of I/R, with CMR scans at
days 0, 2, and 7 after reperfusion. However, this study
lacked histological validation of myocardial water
content, and the observed T2 value fluctuations were
interpreted as reflecting the oxidative denaturation of
hemoglobin to methemoglobin (17,39) rather than
fluctuations in myocardial water content. The histo-
logical validation in the present study demonstrates
the consistent appearance of 2 consecutive waves of
edema during the first week after I/R, a ground-
breaking concept in the field.

The first wave of edema appears soon after reper-
fusion and dissipates at 24 h. Interestingly, water
content within the ischemic myocardium did not
return to normal values, whereas T2 relaxation time
in the ischemic ventricular wall dropped to baseline
values. It is plausible that the decrease in T2 relaxa-
tion time observed at 24 h is due to at least 2
components: the classically described paramagnetic
effect of hemoglobin denaturation products and the
sharp decrease in myocardial water content at 24 h
post-reperfusion reported here.

The second wave of edema appeared progressively
in the days after I/R and was maximal at day 7.
Interestingly, T2 abnormalities and increased water
content in the ischemic region were ultimately as
impressive as those observed at early reperfusion.
Further studies are needed to elucidate the phy-
siopathology underlying this bimodal edematous
reaction after I/R. It is intuitive to argue that the first
and second waves of post-I/R edema are related to
different pathological phenomena, although this has
not been demonstrated in the present work. Whereas
the first wave seems to be directly related to reper-
fusion, the pathophysiology underlying the second
wave is more challenging to decipher. We speculate
that tissue changes during the first week of infarction
(removal of cardiomyocyte debris from the extra-
cellular compartment and its replacement by water,
collagen homeostasis, and healing of tissue/inflam-
mation, among others) could play a role in this second
edematous reaction.

The data presented here might have implications
for understanding the role of CMR in retrospective
quantification of the post-infarction area at risk.
Given that this study was not designed to corre-
late the actual anatomical area at risk (perfusion
defect during ischemia) with the extension of
CMR-visualized edema, any conclusions in this re-
gard are speculative and distract from this study’s
main objective. Future studies should specifically
evaluate the impact of the dual edema phenomenon
on the role of CMR to accurately quantify area at
risk.

The identification of the time course of post-I/R
myocardial edema has important biological, diag-
nostic, prognostic, and therapeutic implications, and
opens a route to further exploration of factors influ-
encing this phenomenon.

STUDY LIMITATIONS. Extrapolation of the results
of this experimental study to the clinic should be
done with caution. The intensity and time course
of bimodal post-I/R edema may be modified by
several factors, such as the duration of ischemia, pre-
existence of collateral flow, and even the application
of peri-reperfusion therapies to attenuate I/R dam-
age. Nonetheless, the use of a large animal model is of
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COMPETENCY IN MEDICAL KNOWLEDGE:

Myocardial edema that develops after acute infarction

is a bimodal phenomenon with diagnostic, prognostic,

and therapeutic implications.

TRANSLATIONAL OUTLOOK: Temporal variation

in post-ischemic reperfusion edema should be

considered in studies of cardiac magnetic resonance

imaging for quantification of jeopardized myocardium.
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great translational value, especially considering the
difficulty of performing such a comprehensive serial
CMR study (including 1 examination immediately
upon reperfusion) in patients. The data presented in
this study are robust and consistent, and the pig is
one of the most clinically translatable large animal
models for the study of I/R issues, because (unlike
other mammals) its coronary artery anatomy and
distribution are similar to those of humans (40) and it
has minimal pre-existing coronary collateral flow
(41). In addition, as shown here with the direct
quantification of myocardial water content, experi-
mental studies offer the possibility of histological
validation.

In this study, the ROIs for quantification of T2
relaxation time were placed in the entire wall thick-
ness, then were carefully and individually adjusted
by hand to avoid the right and left ventricular
cavities. Therefore, ROIs might include different
myocardial states (i.e., hemorrhage, microvascular
obstruction). We took this approach to mimic the
histological water content evaluation, which was
performed in the entire wall thickness. Given the
parallel courses of T2 relaxation times and water
content, we believe that the possible inclusion of
different myocardial states had little effect on the
results, although it might have had some influence
on the differences in absolute T2 relaxation times
between our study and others that used a different
methodological approach to select ROIs.

CONCLUSIONS

Contrary to the accepted view, the present work
consistently shows that edematous reaction during
the first week after ischemia/reperfusion is not stable,
but follows a bimodal pattern. The first wave of
edema appears abruptly upon reperfusion and dissi-
pates at 24 h. Conversely, the second wave appears
progressively days after ischemia/reperfusion and is
maximal around day 7 after reperfusion.
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