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ABSTRACT 

This work investigates the effect of blending biodiesel with diesel on the combustion of an 

isolated fuel droplet. Biodiesel blends substituting diesel oil in different concentrations on 

volumetric basis, in addition to neat diesel and biodiesel were studied. High speed schlieren and 

backlighting imaging techniques have been used to track droplet combustion. The results showed 

that partial substitution of diesel oil by biodiesel at the test conditions led to increasing 

secondary atomization from the droplet, compared to neat diesel or biodiesel fuel droplets. This 

in turn enhances evaporation, mixing, and then combustion. Additionally, the results showed that 

biodiesel has a higher burning rate compared to diesel, and that increasing biodiesel in the 

blend increases the burning rate of the blend. Nucleation has also been traced to take place 

inside the droplets of the blends. Moreover, flame size (height and width) has been reduced by 

increasing biodiesel concentration in the blend. 
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INTRODUCTION 

Diesel fuels constitute the main source of pollutant emissions. Studies have shown that the 

formation of these pollutants can be reduced by including oxygenated fuels on diesel blends 

[1,2]. Biodiesels are presently the most widely attractive fuels for this objective due to various 

advantages; such as higher biodegradation, reduced toxicity, safe storage, and enhanced lubricity 

compared to the ordinary diesel fuels [3]. In fact, they are being increasingly utilized in gas 

turbine engines [4–6] in addition to the compression ignition engines [7–10]. Biodiesels are 

derived from animal fats or vegetable oils and are usually blended with diesel in different 

proportions and used without substantial engine modifications. This is due to the complete 

miscibility of biodiesel on diesel fuels [3]. However, compared to conventional diesel fuels, 

biodiesel has a higher viscosity that results in poor atomization characteristics [3,11], and a 

higher NOx emission due to the increase in combustion efficiency and adiabatic flame 

temperature by the presence of oxygen in biodiesel [8,12]. Therefore, biodiesel addition to diesel 

in the form of blends is practically advocated than complete replacement.   

Consequently, liquid fuel spray is an integral of small size droplets [13]. Therefore, 

understanding droplet combustion gives a good insight towards the understanding of the 

combustion characteristics of the liquid fuel spray. Hence, droplet combustion of biodiesel-

blended diesel has been a widely studied subject. A variety of biodiesel fuels according to 

production method and raw elements, in addition to variable blending ratios and variable droplet 

configurations (suspended and freely falling droplets) have been used for studying the 

combustion of biodiesel-blended diesel fuel droplet. Botero et al., [14] have studied the effect of 

blending diesel with castor oil biodiesel on the combustion of freely falling droplets. They 

observed a significant reduction of soot formation in the blends compared to diesel. And they 
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found that the burning of biodiesel is lower than that of diesel due to lower heating value and 

higher boiling point of bioethanol compared to diesel. Pan and coworkers used a freely falling 

chamber for studying the combustion of multicomponent fuel droplet consisting of diesel-

biodiesel blends [15] and diesel-biodiesel-alcohol blends [16] under reduced gravity conditions. 

The droplet is suspended by a ceramic fiber inside the chamber. They pointed out the decrease in 

soot shell around the diesel droplet by biodiesel addition. Additionally, they showed that the 

biodiesel blends are generally following the characteristics of the multicomponent fuel droplet 

combustion. Li et al., [17] have studied the effect of blending diesel with fatty acid methyl ester 

(FAME) biodiesel on the combustion characteristics of a freely falling droplet. However, they 

claimed that biodiesel has a higher burning rate compared to diesel, which is controversial to the 

previous results. Whereas Zhu et al., [18] have found that blending diesel with methyl oleate (as 

biodiesel) results in decreasing the burning rate and flame temperature to certain levels for 

blends of less than 20% methyl oleate. Then, both are increased when increasing methyl oleate 

concentration in the blend. Xu et al., [19] studied the droplet combustion of algae-based 

biodiesel and its equi-volume blend with diesel (BD50). They found that the burning rate of both 

biodiesel and BD50 are close to that of the conventional diesel.  

Broadly speaking, it can be inferred that there are different types of biodiesel fuels 

depending on the method and raw elements used for production. Each of these types has its own 

chemical and physical properties in addition to the variety of conventional diesel fuels. 

Therefore, a unified description of the combustion characteristics of diesel-biodiesel blends is 

hardly affordable. Hence, experimental investigation is desirable for studying the combustion 

characteristics of the resulting blends from any diesel-biodiesel combination. This in turn, is the 

first objective of the present work.  On the other hand, it can be seen that the majority of the 



5 

conducted work is aimed to evaluating droplet size evolution, burning rate, and flame to droplet 

stand-off ratio, which are the basic investigated parameters. Though, there are some other 

parameters that are as important as the aforementioned ones. Secondary atomization is one of 

these parameters that are of practical importance in spray combustion systems due to its role in 

enhancing fuel-air mixing and then improving combustion efficiency. Secondary atomization is 

the processes of droplet disintegration into smaller size droplets. This disintegration results when 

the dynamic forces acting on the droplet are higher than the restoration force of the droplet [20]. 

Droplet dynamics during the combustion of multicomponent fuel droplets are of importance as 

well, since the combustion of these droplets is relatively different from that of a single 

component droplet. Therefore, the main objective of the current work is to give an insight full 

scale exploration of the combustion characteristics of the biodiesel-blended diesel fuel droplet 

using high speed imaging. This exploration is carried out using backlit imaging for droplet and 

flame size investigations, in addition to tracking secondary atomization using Schlieren imaging. 

Schlieren imaging gives the capability of differentiating between different objects by 

temperature gradient. Therefore, it is useful for tracking the small size sub-droplets emitted from 

the original droplet. 

  

EXPERIMENTAL WORK 

Biodiesel blends substituting diesel oil in concentrations of 7%, 10%, 20% and 30% on 

volumetric basis, in addition to neat diesel and neat biodiesel have been studied. For simplicity, 

the blends will be symbolized as BD07, BD10, BD20, and BD30, while diesel and biodiesel will 

be given the symbols D100 and B100 respectively. The biodiesel fuel used in experiments is a 

B100 Petrobras biodiesel; it is basically a Methyl ester derived from tallow and soybeans oil of 
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40% and 60% by volume respectively. The physical properties of both diesel and biodiesel are 

listed in Table 1. The diesel-biodiesel blends are prepared in lab prior to experiments. Fuel 

droplets are generated and suspended on a 75 µm cross-shaped silicon carbide (SiC) fibre mesh 

using a micro-fine syringe with hypodermic (0.33*12.7mm) needle. A relatively constant volume 

of fuel is injected by the syringe to minimize droplet size variation throughout the different tests. 

A Photron-SA4 high speed colour camera has been used for tracking droplet lifetime during 

combustion with two different techniques. The former is backlighting imaging which is used for 

tracking droplet and flame size evolution. In this technique, two 6-volt LED lights with white 

light diffuser have been mounted behind the droplet and opposite to the camera lens as shown in 

Figure 1. A Nikon AF Micro NIKKOR 60mm f/2.8D lens with a 55mm macro extension tube set 

is attached to the camera for obtaining a detailed focused image of the droplet and the 

corresponding flame. Camera framing rate is set to 1000 frame per second, shutter speed is 

1/1000s, and resolution is (1024x1024). In the latter technique, a z-type Schlieren imaging setup 

has been used for tracking droplet combustion as shown in Figure 2. In this setup, a Dolan-

Jenner MI-150 fibre optic high intensity illuminator (1) has been used as a light source, and 

attached to it is a Trixes 40x 25mm magnifier lens (2) for light focus. The droplet setup (4) is 

aligned between two 12 inch diameter, 10 feet focal length parabolic mirrors (3) which are used 

for reflecting the light into the high speed camera (9). Attached to the camera is a Nikon AF 

NIKKOR 50mm f/1.8D lens (7) and the 55mm macro extension tube (8) for magnifying the 

droplet image. A knife edge (5) has been used for creating the Schlieren effect and a Hoya 49mm 

close up lens (6) is used for focusing the light towards the camera. Imaging has been carried out 

at 10000 frames per second to provide sufficient time for tracking, whereas shutter speed and 

resolution are fixed to 1/10000s and 1024x1024 respectively. The droplet is suspended on the 
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centre of the SiC fibre mesh. Droplet ignition is performed by heating one of the mesh sides 

using a butane flame that is placed below the fibre at relatively far distance from the droplet so 

that no interference between the droplet and flame is taking place. The butane flame is then 

removed once ignition takes place. Droplet lifetime is evaluated by the appearance and 

disappearance of the visible flame. The image before the first appearance of the visible flame is 

assumed as the start of droplet lifetime (t0), and the image at which the visible flame disappears 

is assumed as the end of droplet lifetime (ttotal). Droplet diameter at that former image is assumed 

as the initial diameter (D0). The images are recorded for the time between droplet ignition and 

flame extinction. The acquired images have been stored in (TIFF) format and processed by 

specifically written algorithms using Matlab. Each test has been repeated four times, from which 

the average droplet initial diameter is evaluated to be 1.2±0.07 mm. 

 

IMAGE PROCESSING 

Matlab has been implemented for processing the images and extracting the required 

features. A series of processes are performed sequentially on the images to extract the required 

features. These processes are carried out according to a special algorithm whose sequence is 

shown in Figure 3. Once read, the image is cropped into a specific size decided by the nature of 

analysis, whether it is droplet or flame analysis. Then, image enhancement is carried out first by 

transforming the image from an RGB format into a grayscale format. Then, image 

complementation is applied in the case of droplet analysis rather than flame analysis, because 

droplets are shown to be relatively dark in both backlit and shadowgraph imaging techniques. 

This is due to the droplet being between the light source and camera. Whereas, the flame is 

luminous by its own and its light intensity is higher than that of the light source, therefore it does 
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not have the dark appearance of the droplet. Thereafter, hole filling, intensity thresholding, 

filtering, and opening are applied on the image to isolate the selected object (droplet or flame) 

for feature extraction. A sample of image processing on diesel fuel droplet is shown in Figure 4. 

The maximum discrepancy between the extracted object size using the described image 

processing algorithm and its size on the raw image is 1 pixel. This has resulted in an uncertainty 

of 0.3% in the results. Morphological operators are then applied on the resulting image for 

evaluating the area, perimeter, centroid, in the case of droplet, and boundaries length in the case 

of flame. 

 

RESULTS AND DISCUSSION 

Backlit Imaging 

Droplet combustion characteristics have been investigated for the diesel/biodiesel blends 

(BD07, BD10, BD20, and BD30) in addition to those of neat diesel (D100) and neat biodiesel 

(B100). Backlighting imaging has been used for studying droplet size evolution and the 

corresponding visible flame dimensions. This technique offers the benefits of sharply visualizing 

the boundaries of both the droplet and the corresponding flame. These boundaries are then used 

for tracking and calculating droplet size evolution and flame size variation in response to droplet 

combustion advancement. 

Figure 5(a) shows the sequence of events of BD07 droplet combustion captured by 

backlighting imaging with each frame representing (1ms) of droplet lifetime. The figure shows 

that the droplet is relatively circular in shape and its boundaries are highly defined. The flame 

boundaries and evaporation zone are also well-defined. Figure 5(b) shows the occurrence and 

development of nucleation inside the droplet. As mentioned earlier, the tests have been repeated 



9 

four times for every fuel. The repeatability of droplet burning rate has been measured by 

evaluating the standard deviation of the resulting droplet burning rate. The standard deviation for 

D100, B100, and BD10 is evaluated to be 0.05, 0.04, and 0.08 respectively, and for the other 

fuels is 0.03. These low values of the standard deviation are suggesting a relatively high 

repeatability of the calculated results.    

Figure 6 shows the droplet size evolution for diesel, biodiesel, and diesel/biodiesel blends 

with time. Droplet size evolution has been estimated using the equivalent circular area of the 

droplet projected area evaluated by image processing using Matlab. Droplet size evolution is 

expressed in terms of the normalized droplet diameter square. Droplet diameter is normalized 

with respect to its initial diameter. This is according to the D2-law of droplet combustion which 

states that (D/D0)
2
=1-K(t/D0

2
) [21]. Hence the droplet lifetime has also been divided by the 

droplet initial diameter squared. From the figure it can be seen that the lifetime of the biodiesel 

droplet is slightly higher than that of the diesel droplet. And that the lifetime of the blends is 

proportional with biodiesel concentration in the blend. This suggests that blending biodiesel with 

diesel leads to enhanced combustion rate and in turn increased fuel consumption. This is in 

agreement with previous findings on engine performance [8–10]. Additionally, it can be seen 

that droplet size fluctuation in the diesel/biodiesel blends is higher than that in the base diesel 

and biodiesel droplets. This is because of the occurrence of secondary atomization from the 

multicomponent compared to the single-component fuel droplets. The secondary atomization 

from droplet surface makes it to sustain irregularities in shape as a reaction to the ejection of sub-

droplets. This in turn, will result in a wavy shape all around the surface giving the fluctuation in 

droplet size. Moreover, as shown in the regions highlighted by the circles in Figure 6, for a short 

time period within the interval bounded by 0.5 and 0.6 s/mm2 of droplet lifetime, a slightly 
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constant droplet size pattern is noticed for the blends compared to diesel and biodiesel. This is 

referred to the heating and evaporation of the less volatile component in the multicomponent 

mixtures [22]. These components last to the end inside the droplet, and then start to boil and 

evaporate causing the droplet size to increase due to increased internal pressure by vapour 

generation [23]. In the present work, biodiesel is the less volatile component [24]. Hence, diesel 

will evaporate first leaving the biodiesel to accumulate in the centre of the droplet. This will 

result in a form of nucleation and phase separation between diesel and biodiesel as shown in 

Figure 5(b). After a certain time, the concentrations of the mixture will change due to diesel 

depletion and biodiesel accumulation resulting in a new mixture of high biodiesel concentration. 

Therefore, biodiesel will move towards the droplet surface due to concentration gradient. 

Though, at the droplet surface, biodiesel will evaporate at a temperature higher than that of 

diesel. This will result in increasing the droplet surface temperature, and accordingly increasing 

the temperature inside the droplet. Consequently, the remaining diesel that is trapped inside that 

droplet will start boiling and generate vapour that will increase the internal pressure of the 

droplet and causes its expansion. This expansion is shown to occur in the second half of its 

lifetime and for the diesel and blends rather than biodiesel. For diesel, the expansion is less 

intensive compared to the diesel/biodiesel blends, and it may be related to constituents of diesel. 

Since the diesel fuel is a mixture of different components that have different volatilities, making 

the diesel droplet to behave similarly like the multicomponent fuel droplets. The expansion onset 

time and occurrence intervals have been evaluated for all the blends and shown in Figure 7. It 

can be inferred from the figure that the higher the biodiesel content in the mixture the earlier the 

droplet expansion to occur. However, the overall expansion interval is decreased by increasing 

biodiesel in the blend. This means that increasing biodiesel in the blend leads to faster 
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occurrence and faster termination of droplet expansion. This could be linked to the same phase 

separation process discussed above. Where, increasing biodiesel content in the blend will 

decrease the time required for the change in concentrations due to diesel depletion and biodiesel 

accumulation, and therefore, decreasing the expansion onset time. Additionally, increasing 

biodiesel content in the blend will lead to decreasing diesel concentrations and will reduce the 

amount of trapped diesel in the droplet centre, and in turn reduces vapour generation rate, 

leading to the decline in droplet expansion time.   

Figure 8 shows the rate of change of droplet size with time for all the investigated fuels. 

This rate of change is normalized with respect to droplet initial diameter to eliminate the effect of 

size change between the studied droplets. The negative values illustrate the droplet size 

reduction, while droplet expansion is shown by the positive values. The figure shows that droplet 

size fluctuation is higher for the blends when compared to neat diesel and neat biodiesel droplets 

due to the same reasons mentioned earlier for droplet expansion as a result of volatility 

difference between diesel and biodiesel. Furthermore, it can be seen from the figure that all the 

droplets show a slight increase in size in the first 10-20% of the overall droplet lifetime. This is 

due to the transient heating of the droplet during combustion [25,26]. 

Figure 9 shows the calculated average burning rate constant of diesel, biodiesel, and their 

blends respectively. The burning rate constant is the ratio of the droplet initial diameter squared 

to the droplet lifetime, and it represents the slop of the D2-t curves shown in Figure 6. Thus, it 

gives an indication of the burning rate of the fuels under investigation. The figure shows that the 

burning rate of biodiesel fuel droplet is higher than that of the diesel droplet. This is in agreement 

with what is found by Li et al., [17] and contradicts the findings of Botero et al., [14]. In addition 

to the agreement with published data on break specific fuel consumption of the engines fuelled 



12 

by diesel biodiesel [27]. This higher burning rate tendency is related to the increase in 

evaporation rate of biodiesel compared to diesel [17]. Figure 9 shows also that the burning rate 

of the blends is initially lower than that of diesel, and that increasing biodiesel content in the 

blends increases the burning rate of the droplet. This is attributed to the higher burning rate of 

biodiesel compared to diesel, and to the chaotic nature of multicomponent fuel droplet 

combustion compared to single component diesel.  

Figure 10 shows the variation of the luminous flame height with time for diesel, biodiesel, 

diesel/biodiesel blends of 7, 10, 20, and 30% biodiesel volume in the blend. Flame height has 

been normalized according to the initial droplet diameter for each fuel. Time as well has been 

normalized in accordance to the total time required for complete combustion of the droplet, in 

order to study flame behaviour for all the fuels across the portion of time. From the figure it can 

be seen that diesel droplet has the highest flame while biodiesel has the lowest, and in between 

are the flames of the diesel/biodiesel blends. This is attributed to the sooting tendency of the 

fuels, where biodiesel has a lower sooting tendency compared to diesel that is classified as a 

sooting fuel. Again, this supports the previous findings of the effect of biodiesel on decreasing 

soot generation when added to diesel [14–16]. This in fact is the idea behind adding biodiesel to 

diesel. It can be seen from the figure as well that at the early 10-20% of the overall droplet 

combustion, there is a dramatic increase in flame height of almost all the fuels except biodiesel. 

This is due to the combustion of the fuel vapour that is generated by droplet heating and 

evaporation before ignition. After the vapour is consumed by combustion, flame height decreases 

to a certain level that is defined by fuel evaporation from the droplet surface and the tendency of 

this fuel to generate soot during combustion. However, this sudden increase in flame height has 

not been seen for biodiesel droplet, which could be attributed to the flash point of biodiesel that 
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is much higher than that of diesel. This means that biodiesel needs a higher temperature for 

evaporation and ignition, in addition to the aforementioned low sooting tendency of biodiesel. 

All these factors led to biodiesel flame height being less than that of diesel and diesel/biodiesel 

blends. 

Figure 11 shows the normalized luminous flame width versus normalized combustion time 

for the droplet combustion of the fuels under investigation. It can be seen from the figure that the 

diesel flame is the widest among all, followed by the blends, and then it comes the biodiesel 

flame. Generally, the arrangement is similar to that of Figure 10, except that sudden rise in flame 

height which is not seen in the width, since vapour is flowing upward. Since flame width is 

constant and is not affected by buoyancy, then it might be considered as the flame diameter. 

Especially, when compared with flame results under zero gravity conditions, it shows a good 

similarity in shape and magnitude [28].  

Figure 12 shows the variation of flame height to width ratio with time for the fuels under 

study. Since the experiments have been carried out in normal gravity, buoyancy will affect flame 

shape and deviate it from sphericity. Therefore, it is useful to evaluate the ratio of flame height to 

width with droplet lifetime. The figure shows that the flame height to width ratio for the blends is 

higher than those of diesel and biodiesel. Since diesel flame width is relatively higher than others 

due to its higher tendency for soot generation. While biodiesel flame height is relatively lower 

than others and its flame width is relatively low. This resulted in the flame height to width ratio 

for both is lower than their blends. Additionally, the figure shows three distinct regions of the 

ratio with respect to droplet lifetime for almost all the fuels under investigation. The first region 

is shown in the early 20% of the droplet lifetime, where flame height is relatively large due to 

increased evaporation rate by initial heating; therefore a large amount of fuel vapour is 
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accumulated and burned creating a relatively high luminous flame zone. In this region the flame 

height to width ratio is in the range of 2.5-3.5 for all the studied fuels except biodiesel that has a 

ratio of 2. The second region is for the next 60% of droplet lifetime, where steady burning of fuel 

takes place, giving the ratio its major shape and magnitude in the range of 2-2.5 for the blends 

and 1.5-2 for diesel and biodiesel. The third region is the last 20% of the droplet lifetime, where 

the flame starts to shrink height wise while its width remains almost the same until the final 

stages of combustion. These regions are observable in the cases of diesel D100 and the blends 

BD07, BD10, BD20, and BD30, whereas for biodiesel B100 the first and second regions are 

almost similar in peaks, with the first region termination is within 15% of droplet lifetime.   

 

Schlieren Imaging 

Schlieren imaging gave the possibility of tracking sub-droplet emission by secondary 

atomization. Therefore, it has been used for tracking and counting the number of sub-droplets 

emitted for diesel, biodiesel, 7%, 10%, 20%, and 30% diesel/biodiesel blends.  

Figure 13 shows the sequence of events for sub-droplet emission from the BD07 droplet. 

The time difference between images is (100 µs). The sub-droplet had its own flame surrounding 

it, therefore its detection by Schlieren imaging was easily conceivable.    

Figure 14(a) shows the normalized occurrence time of secondary atomization for each fuel 

averaged for three test samples. The index number refers to the count of secondary atomization 

occurrence, where 1 refers to the first secondary atomization, and 2 refers to the second and so 

on. It can be seen from the figure that biodiesel fuel droplet did not experience any secondary 

atomization during all the tests carried out. The other fuels – including diesel – have experienced 

secondary atomization from the early stages after ignition (the first 10% in the case of D100, 
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BD07, and BD30, and the first 20% in the case of BD10 and BD20). It can be seen also that no 

sub-droplet emission takes place beyond the third quarter of droplet lifetime for all the fuels. 

This may be attributed to the depletion of the high volatile components in the fuels and the 

resulting domination of the low volatile components. The combustion of these components - that 

represent some of the constituents in the case of neat diesel, in addition to biodiesel in the case of 

blends – will be relatively similar to the combustion of single component fuels. Additionally, it 

can be seen that at the second half of droplet lifetime of the BD10 and BD20 fuels, a higher time 

period is separating between each two sub-droplets emission events. Moreover, droplet 

secondary atomization could be a random process; therefore qualitative investigation of the 

process is required. Hence the repeatability of secondary atomization has been estimated for each 

of the studied fuels by testing it three times. The average and maximum value of the standard 

deviation evaluated for secondary atomization occurrence along the droplet lifetime for all the 

studied fuels is shown in Figure 14(b). The figure shows that the standard deviation is relatively 

low implying a good repeatability of results. This suggests that secondary atomization is not a 

random process and that it follows a certain trend along the droplet lifetime. 

Figure 15 shows the effect of biodiesel concentration on the rate of secondary atomization 

from the burning droplet of diesel/biodiesel blends expressed in terms of the average sub-droplet 

emission time. The results represent the average of three tests for each fuel. The emission time is 

normalized by the initial droplet diameter squared for each fuel. The sub-droplets emission time 

refers to the interval of time between two successful emissions. That is the higher the time, the 

lower the fuel tendency for secondary atomization. Hence, it can be seen from the figure that the 

sub-droplets emission time of the blends is higher than that of diesel. Though, increasing 

biodiesel concentration in the blend decreases the emission time, which in turn, implies an 
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enhanced atomization tendency. However, the BD07 emission time values are shown to be closer 

to those of diesel rather than the BD10.  

 

CONCLUSIONS 

In the present work an experimental investigation for the droplet combustion of diesel, 

biodiesel, and diesel/biodiesel blends of 7%, 10%, 20%, and 30% biodiesel concentration has 

been carried out. The followings have been found: 

• The burning rate constant of the biodiesel droplet is higher than that of the diesel droplet. And 

that the lifetime of the blends is proportional to biodiesel concentration in the blend. This 

suggests that blending biodiesel with diesel leads to enhanced combustion rate and in turn 

increased fuel consumption. This is in agreement with previous findings on engine 

performance.  

• Droplet size fluctuation in the diesel/biodiesel blends is higher than that in the base diesel and 

biodiesel droplets. This is because of the occurrence of secondary atomization from the 

multicomponent droplets compared to the single-component droplet. The biodiesel-blended 

diesel droplets have shown a slight freezing in size because of the heating and evaporation of 

biodiesel. Biodiesel lasts to the end inside the droplet, and then start to boil and evaporate 

causing the droplet size to increase due to increased internal pressure by vapour generation.  

• Droplet expansion is shown to occur in the second half of its lifetime and for the diesel and 

blends rather than biodiesel. For diesel, the expansion is less intensive compared to the 

diesel/biodiesel blends, and it may be related to the constituents of the diesel. The higher the 

biodiesel content in the mixture the earlier the droplet expansion to occur. However, the 

overall expansion interval is decreased by increasing biodiesel in the blend.   
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• The burning rate of diesel fuel droplet is marginally higher than that of biodiesel droplet. The 

marginal difference between diesel and biodiesel droplets burning rate is attributed to the 

difference in physical properties. And that increasing biodiesel content in the blends increases 

the burning rate of the droplet.  

• Diesel droplet has the highest flame length while biodiesel has the lowest, and in between are 

the flames of the diesel/biodiesel blends. This is attributed to the sooting tendency of the 

fuels, where biodiesel has a lower sooting tendency compared to diesel that is classified as a 

sooting fuel. At the early 10-20% of the overall droplet combustion, there is a dramatic 

increase in flame height of almost all the fuels except biodiesel. This is due to the combustion 

of the fuel vapour that is generated by droplet heating and evaporation before ignition. 

However, this sudden increase in flame height has not been seen for biodiesel droplet, which 

could be attributed to the flash point of biodiesel that is much higher than that of diesel, in 

addition to the low sooting tendency of biodiesel.  

• Schlieren imaging gave the possibility of tracking sub-droplet emission by secondary 

atomization. Therefore, it has been used for tracking and counting the number of sub-droplets 

emitted for all the fuels.  

• Biodiesel fuel droplet did not experience any secondary atomization during all the tests 

carried out. The other fuels – including diesel – have experienced secondary atomization from 

the early stages after ignition (the first 10% in the case of D100, BD07, and BD30, and the 

first 20% in the case of BD10 and BD20).  

• No sub-droplet emission takes place beyond the third quarter of droplet lifetime for all the 

fuels. This may be attributed to the depletion of the high volatile components in the fuels and 
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the resulting domination of the low volatile components. The combustion of these 

components will be relatively similar to the combustion of single component fuels.  

• The secondary atomization is not a random process and that it follows a certain trend along 

the droplet lifetime. Sub-droplets emission time of the blends is higher than that of diesel. 

Though, increasing biodiesel concentration in the blend decreases the emission time, which in 

turn, implies an enhanced atomization tendency.  

 

NOMENCLATURE 

D [mm] Droplet diameter 
K [mm2/s] Burning rate constant 
H [mm] Flame height 
t [s] Time 

W [mm] Flame width 
 

Subscripts 

i [-] Instantaneous 
0 [-] Initial 

total [-] Total time 
 

Fuels 

B100 Neat Biodiesel 
BD07 93%Diesel+7% Biodiesel 
BD10 90%Diesel+10% Biodiesel 
BD20 80%Diesel+20% Biodiesel 
BD30 70%Diesel+30% Biodiesel 
D100 Neat Diesel 
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Table 1: Diesel and biodiesel properties 
 

Fuel Property Unit Diesel Biodiesel 

Kinematic Viscosity @ 40ºC mm2/s 3.05(a) 4.363(a) 

Density @ 15.5 kg/m3 830(a) 877.8(a) 

Specific Gravity @ 15.5 --- 0.83(a) 0.88(a) 

Flash Point ºC 79(a) 122(a) 

Cloud Point ºC 3(a) 5(a) 

Boiling Point ºC 181(b)
 302(b) 

Pour Point ºC -35 to -15(b) -15 to 10(b) 

Higher Heating Value MJ/kg 47.8(b) 41.2(b) 

Lower Heating Value MJ/kg 43.2(b) 37.1(b) 

Latent Heat of Vaporization kJ/kg 254(b) 254(b) 

(a) From the supplier.  (b) From literature. 
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Figure 1 Backlit imaging setup. 
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Figure 2 Schlieren imaging setup. 
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Figure 3 Image processing flowchart. 
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Figure 4 Sequence of image processing to isolate biodiesel droplet from its surroundings; (a) the 
cropped grayscale image, (b) complementation, (c) holes filling (first), (d) thresholding, (e) noise 

removal by filtering, (f) holes filling (second), (g) final imge of the isolated droplet, (h) 
boundaries of (g) matched with (a). 
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Figure 5 BD07 droplet combustion images showing: (a1-6) droplet and flame, (b1-6) nucleation 

evolution and development. 
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Figure 6 Droplet size evolution with respect to time for all the fuels under investigation; the y-

axis is the normalized droplet size (D/D0)
2, and the x-axis is the normalized droplet lifetime 

(t/��
�). 
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Figure 7 The effect of biodiesel concentration on the droplet expansion starting time and 

occurrence interval. 
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Figure 8 Normalized droplet size fluctuation with respect to the normalized droplet lifetime 

(t/ttotal) for the fuels under investigation. 
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Figure 9 The effect of biodiesel concentration on the burning rate constant. 
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Figure 10 Variation of the normalized flame height (H/D0) with normalized lifetime (t/ttotal) for 

D100, B100, BD07, BD10, BD20, and BD30 droplets. 
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Figure 11 Variation of the normalized flame width (W/D0) with normalized lifetime (t/ttotal) for 

D100, B100, BD07, BD10, BD20, and BD30 droplets. 
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Figure 12 Variation of flame height/width ratio (H/W) with normalized lifetime (t/ttotal) for 

D100, B100, BD07, BD10, BD20, and BD30 droplets. 
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Figure 13 Schlieren images of secondary atomization from a BD07 droplet. 
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Figure 14 (a) Occurrence time of droplet secondary atomization for diesel, biodiesel, and their 

blends, (b) average and maximum standard deviation of three tests for each fuel. 
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Figure 15 Average sub-droplet emission time with respect to biodiesel concentration in the 
diesel/biodiesel blend. 
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