
This is a repository copy of Vortices in resonant polariton condensates in semiconductor 
microcavities.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/130263/

Version: Accepted Version

Book Section:

Krizhanovskii, D.N., Guda, K., Sich, M. orcid.org/0000-0003-4155-3958 et al. (3 more 
authors) (2017) Vortices in resonant polariton condensates in semiconductor microcavities.
In: Proukakis, N.P., Snoke, D.W. and Littlewood, P.B., (eds.) Universal Themes of 
Bose-Einstein Condensation. Cambridge University Press , p. 424. ISBN 9781107085695 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1

Vortices in resonant polariton condensates in
semiconductor microcavities

D. N. Krizhanovskii, K. Guda, M. Sich, M. S. Skolnick

Department of Physics and Astronomy, the University of Sheffield,

Sheffield, S3 7RH, United Kingdom

L. Dominici, D. Sanvitto

NANOTEC, Istituto di Nanotecnologia — CNR, Via Arnesano, 73100

Lecce, Italy

Abstract

We review studies of quantised vortices in polariton condensates in three

main configurations, namely offresonant, optical parametric oscillator OPO

and direct resonant excitation. A brief introduction is given on the typical in-

terferometric detection and spinor nature of polaritons. Specific experiments

are described in details, highlighting the dynamics of spontaneous and im-

printed vortices in OPO and resonant polariton condensate, and the role of

nonlinearities. Time-resolved measurements reveal metastable rotational po-

lariton flow indicating superfluid-like behaviour. In the case of a ring-shaped

pump, a transition from the vortex state with angular momentum M = 1

to M = 2 is observed due to interplay between gain and polariton-polariton

interactions. Finally, we demonstrate the direct pulsed initialization of a

condensate carrying an half-vortex, and the spontaneous creation of vortices

when starting from ring-shaped condensates. These are created in vortex –

anti-vortex pairs due to the interplay between breaking of y 7→ −y reflection

symmetry in the system and conservation of orbital angular momentum.

1.1 Introduction

Coherent macroscopically occupied states (condensates) attract major in-

terest since they exhibit a number of interesting phenomena, such as su-

perfluidity, vortices and solitons. As well as coherent condensates of liquid

helium and dilute atomic gases, condensates of semiconductor microcavity

polaritons constitute an appealing testbed allowing easy optical manipula-

tion and direct imaging of the condensate due to the photonic part of their

hybrid light-matter wave-function[1, 2]. In contrast to the atomic BEC the
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polariton system is a non-equilibrium system[3], where a dynamic balance

between loss and gain from an external pump field is formed. Furthermore,

polaritons also have strong nonlinearities while their spinor nature allows

for half-integer vorticity.

In this chapter, we review the main obervations of polariton vortices and

also describe some specific experiments more in detail. In the first para-

graphs, we give an introduction to the quantised vortices in condensates,

how they can be recognized using interferometric detection, and to the

spinor nature of polaritons. We briefly discuss spontaneous generation of

vortices under nonresonant excitation. Then we consider non-equilibrium

polariton condensates arising from polariton-polariton parametric scattering

into macroscopically occupied signal at ks ∼ 0 and idler states at ki ∼ 2kp
for resonant pump excitation into the lower polariton branch at k = kp. This

regime corresponds to the so-called optical parametric oscillator (OPO, see

Figure 1.3(a)), which has attracted significant interest [4, 5]. Importantly,

the phase of the signal is not imprinted by the pump but forms sponta-

neously due to U1 symmetry breaking as in the case of incoherently pumped

condensates[6]. The OPO system consists of three macroscopically occupied

coherently coupled signal, pump and idler states and hence is more com-

plicated than a single resonant fluid or nonresonatly pumped condensate.

In this chapter we mainly focus on the properties of vortices in the signal

condensate and how these are affected by the pump and idler. Finally, a

description of some main experiments in the case of resonant excitation at

k = 0 is presented, comprising the case of a direct imprint of a polariton

condensate with the topological charge of a full or half-vortex.

The phenomenology of spontaneous pattern formation is much richer in

non-equilibrium than in equilibrium systems [7], with vortices being a typical

example. Vortices are topological defects occurring in optics and condensed

matter as well as in particle physics and cosmology. In vortices in quantum

fluids the phase of a field winds around vortex core where the density is

almost zero with a change for a complete loop being an integer multiple of

2π. Therefore, a vortex can be described by a state with quantised orbital

angular momentum (OAM), also said phase winding. In optics this degree of

freedom can be further used in photonic quantum information applications

and also polariton vortices have been proposed for information processing [8].

Atomic Bose-Einstein condensates [9], liquid helium [10] and semicon-

ductor lasers [11] (VCSELs) exhibit formation of vortices. In equilibrium

systems such as a BEC of cold atoms or liquid helium the existence of sta-

ble vortex is a manifestation of superfluidity. In nonequilibrium systems, like

non-resonant incoherently pumped polariton condensate in CdTe microcav-
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ities, spontaneous vortices may form due to the interplay between polariton

flows and natural photonic potential disorder, e.g. localized defects [12]. Half-

vortices, where only one spin (or circular polarisation, which is associated

to SAM, spin angular momentum) component of the condensate exhibits a

vortex can be also observed [13]. It is important that the excitonic compo-

nent in the polariton wavefunction leads to very strong polariton-polariton

interactions and consequently to a giant χ(3) optical nonlinearity, which af-

fect the vortex formation as discussed in the manuscript. These very strong

interactions also enable observation of effects such as bright solitons [14, 15]

or polariton superfluidity at very moderate particle densities. Vortices can

be generated in polariton superfluids flowing against an obstacle as a result

of oblique dark solitons breaking into streets or trains of vortex - anti-vortex

pair at subsonic critical velocities of the quantum fluid [16, 17].

The aim of this chapter is to describe several experimental results show-

ing the effect of interactions and of the nonequilibrium polariton nature

on the formation and dynamics of polariton vortices in OPO and resonant

condensates. Firstly, we demonstrate that vortices in a polariton conden-

sate can be created using a weak external imprinting beam (which we term

the im-beam). The vortex core radius is determined by polariton-polariton

interactions leading to a decrease of the vortex radius with increasing par-

ticle density [18]. It is shown that OAM is conserved during pair polariton-

polariton scattering and hence the imprinting of vortices on the signal state

is accompanied by formation of an antivortex in the corresponding idler

state [18]. The measurements of temporal evolution of an imprinted vortex

reveal metastable polariton flow consistent with a superfluid-like behaviour

of the interacting polariton system. Secondly, we show that vortices may

arise spontaneously in an artificially created potential landscape [19]. The

optically induced potential can be created by a ring-shaped pump beam,

carrying zero orbital angular momentum (OAM). The formation of a stable

vortex with OAM M = 1 is observed due to breaking of the y 7→ −y re-

flection symmetry of the system. At higher excitation density the interplay

between the kinetic energy of the vortex due to localisation, the potential

interaction energy within the condensate and the spatial distribution of the

gain results in spontaneous formation of a vortex with OAM M = 2. Fi-

nally, we investigated vortices in an artificial condensate injected directly

at k = 0 by a pulsed pump beam [19]. One powerful tool of the resonant

scheme is that it allows to create the condensate directly with an initial full

or half-vortex topological charge and to follow their evolution in different

regimes. Also, it is possible to start with a zero-winding state but with a

space inhomogeneous profile, in order to induce and observe the formation
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of a vortex – anti-vortex pair, dictated by the conservation of OAM. All

the experiments were performed at 4 K. The detailed description of the

GaAs-based microcavity samples and experimental techniques can be found

in Refs. [18, 19].

1.2 Signature of vortex in interference and phase maps

One useful characteristic of polariton condensates is their hybrid photonic-

electronic nature, which continuously emits photons coherently with the con-

densate wavefunction. In this sense not only imaging of the fluid is possible,

but also of the phase of their complex wavefunction. This can be retrieved

when letting the emission from the fluid to interfere with a coherent wave:

two major cases are possible. One, the emission from a fluid which is created

by nonresonant excitation (and hence becomes noncoherent with the exci-

tation beam), has to be let auto-interfere with itself, either with a centre-

or axis-symmetric copy of the emission image, or with an expanded and

homogeneous portion of the same field. This also allows time-resolved mea-

sures of the emission provided the coherence time is long enough, while the

time resolution is limited by the emission duration itself. Two, the emission

from a resonantly excited polariton fluid, can be let interfere instead with

the original exciting pulse, which is possible and indeed typical only for the

resonant excitation scheme and not for the offresonant one. Here the time

resolution is given by the pulse width. In both cases, signature of a vortex

is seen by typical patterns in the interferograms: a fork-like dislocation with

an excess number of fringes on one side equal to the quantised charge of

the vortex M . Here we show in Figure 1.1 an exemplificative case of the

vortex recognition scheme for a resonant OPO vortex, where panel (a) is

the intensity map and (b) the interferogram (extracted from [20]).

Typically such images are used, together, to report on the observation,

formation and motion of quantised vortices. A further possible step, is to

use digital holographic technique, i.e., Fourier analysis, to retrieve maps of

the phase distribution of the fluid, as in panel (c). These show for each excess

fringe in the original interferograms, a phase singularity, which is the very

centre of the vortex around which the phase windsM times. Note that a fork-

like interference slit or a thickness varying plate can be both used also for

the shaping of a photonic gaussian LG00 beam into a LG0M Laguerre Gauss

vortex beam, to be used for direct resonant imprint. Alternatively, space

light modulators (SLM, cf. ref. [21]) or q-plate devices (patterned liquid

crystal phase-retarder, see [22, 23, 24]) can be used with more versatility
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Figure 1.1 Figure taken from Ref. [20]. Panel (a) reports the space distri-
bution of the intensity associated to the vortex state. When overlapped to
a homogeneous wavefront of a coherent beam, the resulting interferogram
shows a fork-like pattern as that of panel (b). The associated phase map
retrieved by means of Fourier filtering is reported in panel (c), displaying
a phase singularity with a M = +1 winding of the phase around the core.

to such an extent. For a more detailed explanation of time-resolved digital

holography imaging in polariton fluids see [20, 25].

1.3 Polariton spinor nature and half-vortices

The polarization degree of freedom within photons coupled to the spin of

excitons makes the polariton condensate a spinor quantum fluid, analogous

two a two-component atomic BEC. This property allows to obtain a rich

variety of topological excitations featuring different polarization patterns, as

described in [13, 26, 27, 28]. All these states are analogous to purely photonic

vectorial fields, apart from three main features typical for polaritons: strong

nonlinearity, sample disorder landscape and symmetry breaking terms such

as TE-TM or x-y splitting. Two main interesting states are possible when

looking at a full basis of, say, right and left (R, L) polarization components.

In the first case, usually referred to as a full-vortex (FV), a vortex with

the same winding exists in both polarisations. This results in a fixed linear

polarization with a integer winding of the phase. The second case is a vortex

in only one spin population coupled to a Gaussian or homogeneous profile

in the opposite spin population, and is usually referred to as a half-vortex,

HV. Such term derives from the half-integer winding of both phase and

linear polarization direction which is seen in a HV state, as illustrated in

Figure 1.2.

Here the left and right panels show the cases of lemon and star half-
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Figure 1.2 Figure taken from Ref. [28]. The two kind of half-vortices, lemon
(left) and star (right), with their associated polarization patterns. At large
distance from the centre, the polarization is linear and its direction makes
a half-rotation when one moves around a space circumference.

vortices, respectively, which are associated to homologue or heterologue

OAM and SAM directions. Nonresonant spontaneous generation or reso-

nant imprinting of half-vortices are both possible, see in the following and

the last sections.

1.4 Nonresonant excitation and spontaneous vortices

Several different observations of spontaneous vortices have been made in

nonresonantly created polariton condensates. Initially, the first detection of

spontaneous formation of pinned quantized vortices in the Bose-condensed

phase of a polariton fluid, allowed to draw parallels between polariton sys-

tems and conventional BEC [12]. Subsequently, a coexistence of half-quantum

vortices (HV) and single-quantum vortices (FV) was shown in microcavity

polaritons, as expected for a spinor quantum fluid [13, 29]. In these cases

Lagoudakis et al. showed the role of the landscape disorder in pinning one

or the other of the two elementary states. This role was later confirmed

by the dynamical imaging of the dissociation of a full-vortex into a pair

of half-vortices [26], which also put into evidence the creation of different

combination of elementary charges giving rise to patterns such as that of an

hyperbolic vortex [27].

Recently, starting from a ring shaped potential, the formation of a dif-

ferent kind of a more generic half-vortices with the polarization winding

spanning both linear and circular states [30] was observed. Inhomogeneous
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spot profiles can be used to induce formation of a single vortex-antivortex

pair [31], or of a lattice consisting of a few vortices [32], due to an interplay

of phase-fluctuations and disorder pinning. Other non-homogeneous optical

pump beams such as multiple spots can generate a lattice of many vortices,

due to the locking of propagating flows over long area and their mutual

interference [33]. A structured optical pump beam could also be used to

induce the breaking of chiral symmetry, inducing transfer of orbital angu-

lar momentum and creation of a single exciton-polariton vortex (so called

chiral polaritonic lenses, see [34]). In either cases, the role of nonlinearities

are fundamental, in both driving the polaritonic flows out of the originally

excited area and in locking their mutual phase.

The effect of spontaneous free-single or bound-pair vortices on the long-

range-order coherence of a superfluid and their link to the BerezinskyKoster-

litzThouless (BKT) transition were discussed in [35]. Spontaneous vortices

under off-resonant pumping have been observed also in organic polariton

condensates in a disordered landscape. Here fluctuating formation of vor-

tices were highlighted thanks to single or few shots interferograms [36, 37].

1.5 OPO condensates with imprinted and spontaneous

vortices

1.5.1 Vortices imprinted on OPO condensate

In this section we describe a method to excite a vortex in an OPO system.

Figure 1.3(b) shows the real space image of the OPO signal recorded at pump

power 3 times above the condensation threshold, Pth. The uniform spatial

distribution of the emission indicates high quality of the studied microcavity

sample with very weak disorder [38]. In order to create a vortex state in

the OPO signal emission a weak continuous wave im-beam carrying OAM

M = +1 is introduced (Figure 1.3(c)). The power of the im-beam is ∼ 40

times less than that of the signal and its frequency is tuned in resonance with

the signal frequency. As it is shown in Figure 1.3(d) under the application of

the im-beam the spatial distribution of the signal is modified with a resultant

well-defined dip of diameter (FWHM) ≈ 7µm, (radius ≈ 3.5µm (HWHM))

labeled A. The dip arises from a vortex imprinted on the condensate profile.

This is demonstrated by measuring the spatial phase variation of the OPO

condensate [12]. For this purpose the interference pattern between the signal

image in Figure 1.3(d) and the image inverted around a central point of

symmetry was recorded, so that the region of a vortex core (labelled A)

interferes with the region B (see Figure 1.3(d)) where the phase is nearly
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Figure 1.3 Figure taken from Ref. [18]. (a) Schematic diagram of OPO. (b)
Real space image of the signal with no imprinting beam. (c) Image of Gauss-
Laguerre imprinting beam (im-beam). (d) Signal with weak im-beam of (c),
showing an imprinted vortex labeled A. (e) Interferogram revealing the 2π
phase variation around the vortex of (d). (f) Vortex in signal, labeled A,
created by excitation at the idler position with Gauss-Laguerre beam. (g)
Interferogram revealing the vortex with OAM Ms = −1 created in (f). The
red lines are cross-sections through the vortex cores of (c) to (d), with the
sizes of the cores (FWHM) indicated.

constant. The resultant interference pattern shown in Figure 1.3(e) reveals

the two fork-like dislocations, demonstrating formation of a single vortex in

OPO signal state with OAM Ms = 1 around region A.

Since the im-beam is very weak it does not modify substantially the OPO

signal population. However it changes spatial distribution of the phase of

the OPO emission. Since the phase of the signal is undetermined in the

OPO, the few polaritons injected by the im-beam lock the signal phase

to their own. That is why the process above is described as ”imprinting”.

We note, that experimentally a minimum ratio of the im-beam to signal

power density of about ∼ 1/45 is required to imprint a vortex in the OPO
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Figure 1.4 Dynamics of a vortex of angular momentum Ms = 1 imprinted
into the signal steady state of a cw OPO signal. Four snapshots of the
evolution of the vortex core at 7 ps, 47 ps, 90 ps and 132 ps after the probe
pulse has arrived, are shown. In (a-d) the vortex core can be identified by
the fork dislocation which is formed when the signal is made interfere with
a constant wavefront taken from a spatial expanded part of the emission.
In (e-h) the same images are shown in the intensity map. Figure taken from
Ref. [41].

condensate. Decoherence processes occurring in polariton condensates due

to fluctuations probably determine this limit [39, 40].

1.5.2 Temporal dynamics of a vortex imprinted on OPO

polariton condensate

In another experiment [41] a picosecond laser pulse carrying OAM was em-

ployed to imprint a vortex state into the OPO signal steady state driven by

a cw laser pump. The vortex behaviour with time was then tracked using a

streak camera. The time evolution of an Ms = 1 vortex excited on top of the

OPO signal and its interference pattern, which characterises unequivocally

the vortex state, are shown in Figure 1.4. The external pulsed im-beam was

set to have an intensity smaller than the signal state. In the sequence of

Figure 1.4 it is possible to follow the vortex dynamics after the probe has

generated it within the first few picoseconds. The vorticity, which was im-

printed into the steady state of the signal, remains in the condensate for

a time which is at least one order of magnitude longer than the polariton

lifetime and is only limited by the time it takes to get out from the pump

spot area. Such observation is a clear evidence that the quantum fluid of
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polariton is behaving as a superfluid, showing frictionless rotation for times

longer than the coherence time of the state: fringes, which show the typical

fork like dislocation, disappear while the vortex core is still detectable in the

intensity maps.

The formation of metastable rotating currents, in polariton fluids, show-

ing the absence of scattering with defects (always present in microcavity

samples), is consistent with the theoretical model of excitations in non-

equilibrium polariton condensates [42]. This model predicts that perturba-

tions created by defects are not able to propagate long distances due to finite

damping rates of the excitations. As a result it is much harder to break the

topological stability of the supercurrents.

The sample inhomogeneities, however, still play a significant role and are

very useful in this experiment since they provide a deterministic path for

the injected vortex that would otherwise undergo a random drift out of the

injection spot. Such effect allows for the detection of the vortex dynamics

which, contrarily would be washed out by the averaging over the many

experimental realisations.

1.5.3 The effect of polariton-polariton interactions on vortex size

In Ref. [18] the effect of polariton-polariton interactions on the vortex size

has been investigated. We note, that orbital angular momentum of light has

been investigated in parametric down-conversion experiments [43], where

the optical non-linearity has a χ(2) form. By contrast, polariton-polariton

interactions lead to the χ(3) nonlinearity, which gives rise to OPO processes

as well as to the blueshifts of polariton modes. As a result of these interac-

tions the vortex size is determined by the healing length [44], a characteristic

length scale within which a locally perturbed condensate wavefunction re-

turns to its unperturbed value. In the case of a vortex the expression for

the healing length of the OPO condensate ξ ≈ Ms(2meffκns)
−

1

2 can be ob-

tained by equating a typical kinetic energy associated with a vortex in the

condensate, ≈ M2
s (2meffξ

2)−1 to the interaction energy (blueshift), which

is ≈ κns (all energies are scaled to ~
2). Here meff is the polariton effective

mass, κ is the strength of the non-linearity, Ms is the value of OAM in the

vortex, and ns is the signal population density. Therefore, the healing length

should scale with the number of particles as n−0.5
s .

In order to investigate this population dependence the vortex radius in the

OPO condensate was measured at different pump powers, which determine

the density of particles in the signal. The real space images of the OPO

condensate with an imprinted vortex are shown in Figures 1.5(a) and (b)
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Figure 1.5 Figure taken from Ref. [18]. (a), (b) Images of a signal vortex
at (a) 0.9 kWcm−2 and (b) 2.6 kWcm−2. Experimental vortex core radius
of the OPO signal as a function of pump power (c) and as a function of
the signal intensity (d) for an im-beam core radius of ∼ 4µm (circles) and
∼ 7µm (triangles), respectively.

for pump powers P=∼ 1.5Pth and P=∼ 4.5Pth, respectively. The vortex

radius (healing length) apparently reduces with increasing signal particle

density. The vortex core radius (Figure 1.5(c)) decreases from ∼ 5.5 µm at

threshold down to ∼ 3 µm at excitation density 5 times above threshold.

Moreover, very similar variations of the vortex size with polariton density

were observed for two different sizes of the im-beam, indicating that the

profile of the imprinted vortex is an intrinsic property of the interacting

polariton condensate. As is shown in Figure 1.5(d) the dependence of the

vortex radius versus signal intensity scales approximately as n
−

1

2

s (solid line)

in agreement with the expression for the healing length above. However, at

small signal intensities the vortex radius does not diverge as expected from

the n
−

1

2

s , but is probably limited by the finite signal size.

Let’s compare the magnitudes of the vortex radius in the polariton and

atom systems: for polaritons, meff ∼ 10−5me, and κns ∼ 10−1 meV. By

contrast in a rubidium BEC with a density n ∼ 1014 cm−3 the effective

mass of an atom is much larger meff ∼ 105me than that of a polariton,



12

which is compensated by the much smaller interaction energy per single

particle gn = 4πasn~
2/M ∼ 10−7 meV where the atom scattering length

as ≈ 5 nm [44] and g is the atom interaction strength. As a result, the

healing length for the polariton and the atom systems are of the order of

10 µm and 0.1 µm, respectively.

In the OPO system the vortex is imprinted onto the signal condensate,

which arises due to polariton-polariton scattering from the pump into the

signal and idler. If the pump state is driven by a laser with zero OAM, then

conservation of OAM in the polariton-polariton scattering should dictate

formation of an antivortex state with OAM Mi = −1 in the idler. It is diffi-

cult to directly image the idler state and hence to demonstrate the creation

of an anti-vortex state, since the idler intensity is typically > 100 times

weaker than that of the signal [40] due to the small photonic component of

polariton states at high momenta. In order to demonstrate the conservation

of OAM in the parametric scattering a seed laser beam with OAM Mi = +1

was applied at the angle and energy where the OPO idler would appear.

The seed laser stimulates the pair polariton scattering from the pump with

resultant formation of the ‘signal’ forming at k ∼ 0. The signal state im-

aged in Figure 1.3(f) carriers an anti-vortex state with OAM Ms = −1 as

is further confirmed by the corresponding self-interference image shown in

Figure 1.3(g) [18].

1.5.4 Spontaneous vortices with OAM Ms = 1 in an OPO

condensate using ring-shaped excitation

In this section we show that spontaneous vortices may also appear in the

OPO condensates subject to optically shaped external potential due to po-

lariton flow from high to low potential energy (and high to low gain) region.

The OPO is excited using the ring-shaped pump, which is prepared by plac-

ing an opaque mask on the way of the Gaussian excitation laser beam [19].

As a result of such excitation the OPO condensate also has a ring-shaped

profile as shown in Figure 1.6(c). The corresponding self interference pat-

tern of the signal emission is shown in Figure 1.6(d), which exhibits clearly

the fork-like dislocations indicating vortex formation with orbital angular

momentum OAM Ms = 1 as in the case of imprinted vortex.

Polariton-polariton interactions, which are stronger in the high than in

low density region, form an optically induced potential trap due to density-

induced polariton blue-shifts. As a result, polaritons flow from high to low

density region in the center of the pump spot acquiring kinetic energy and

rotary motion with the resulant formation of a vortex state. The radius of the



Vortices in resonant polariton condensates in semiconductor microcavities 13

(a)

B

A

10 m
(c)

 

(e)

(b) (d)

 

 

(f)

0.03 0.5 0.7

Figure 1.6 . Figure taken from Ref. [19].(a) is the spatial image of a uniform
OPO condensate. (b) shows the interference pattern obtained by interfer-
ing the image with its inverted image and overlapping positions A and B.
No fork, i.e. no vortex is observed. (c) shows the image of an ring shaped
condensate, induced by a ring-shaped pump beam. The corresponding in-
terference image (d) reveals a single spontaneous vortex inside the ring. (e)
and (f) show the case where the mask was moved towards the edge of the
beam and no vortex forms.

optical potential trap coincides with the typical vortex size (healing length)

ξ ∼ 5 µm [18] described by OAM Ms = +1 as discussed above. In this

case the potential energy associated with repulsive interactions in the high

density region (∼ 0.1− 0.2 meV) is similar to the kinetic energy associated

with the vortex in the low density region, making it more favourable for the

condensate to form a stable single vortex. We note that an optical trap with

well-defined boundaries is required for the spontaneous vortex to be formed:

no vortices are observed if the opaque mask is moved close to the edge of

the excitation spot as shown in Figures 1.6(e-f)

It is not very clear why a polariton condensate excited by a ring-shaped

laser favors the vortex with a particular sign of OAM. Generally, the vortex

states with OAM of both Ms = 1 and Ms = −1 are expected to be formed

if the OPO system has y 7→ −y reflection symmetry perpendicular to the

pump wave-vector (kp, 0). An irregular doughnut shape of the pump spot

can easily break this reflection symmetry which may result in a spontaneous

formation of a vortex state with a particular sign of OAM. The results are

consistent with the observation in Ref. [34], where a spontaneous vortex was

observed in a polariton condensate excited by the spatially shaped chiral
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pump beam, which also created an optically induced potential possessing no

cylindrical and y 7→ −y reflection symmetry.

We note that Manni et al. [45] studied nonresonantly pumped conden-

sates using ring-shaped excitation in CdTe microcavities and in contrast to

the results here shown, observed a multi-lobe standing wave pattern, which

is a coherent superposition of wavefunctions with OAMs Ms = +1 and

Ms = −1. Their observation indicates the breaking of cylindrical but not

of reflection symmetry. On the other hand, the reflection symmetry can be

easily broken by some disorder potential across the sample and spontaneous

vortices only with OAM M = 1 can be observed in the same CdTe based

microcavities [12].

1.5.5 Observation of spontaneous vortex with OAM Ms = 2 in

OPO condensate

In this section we explore the effect of the density dependent polariton in-

teractions on the healing length in condensates using the ring shaped pump

beam excitation. Figures 1.7(a-f) and shows real space density images of the

OPO condensate and the corresponding interference patterns for increasing

pump powers from 73 to 180 mW. The images in Figures 1.7(a, d) correspond

to a power of 1.1Pth = 73 mW, just above condensation threshold Pth. The

formation of a vortex with OAM Ms = 1 can be observed. For increasing

pump powers up to 150 mW the condensate keeps its ring-like shape and

the vortex survives maintaining its charge of Ms = 1 (Figures 1.7(b, e)).

However, a surprising change takes place for P = 180 mW (Figures 1.7(c,

f)), when, besides an apparent increase of the core diameter, the fork-like

dislocation develops an additional arm corresponding to the next quantized

vortex state with OAM Ms = 2.

Figure 1.7(g) shows intensity profiles across the center of the vortex for

varying pump intensities. The vortex core diameter (FWHM of the intensity

profiles) vs pump power is shown in Figure 1.7(h). For increasing pump

powers in the range of 70 to 150 mW the core diameter of the vortex changes

slightly from about 13.5 µm down to 12 µm. However, a prominent jump of

the core diameter to 16 µm occurs at 180 mW pump power and coincides

with the transition from the vortex state with OAMMs = 1 to the state with

OAM Ms = 2. With increasing polariton population density the interaction

energy of polaritons away from the vortex core also increases, which is, as

discussed above, compensated by the increased kinetic energy of polaritons

in the vortex core with resultant slight shrinking of the vortex size (healing

length). However, in this experimental arrangement the OPO condensate
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Figure 1.7 Spatial images of vortex with OAM Ms = 1 (a, b) and OAM
Ms = 2 (c). (d, e, f) The interference patterns revealing vortex states with
OAM Ms = 1 (d, e) and Ms = 2 (f). (g) Intensity profiles across the center
of the vortex for varying pump intensities. (h) The vortex core diameter vs
pump power.

is supported by the gain from the ring-shaped pump, which hence places a

lower bound on the vortex core size (the pump density is almost zero in the

middle of the pump spot). Therefore, it appears to be more favorable for the

system to increase the kinetic energy by forming a higher order quantized

vortex state with Ms = 2. As a result of such a transformation the healing

length ξ = Ms(2meffκns)
−

1

2 also should increase abruptly in agreement

with the experimental observation in Figure 1.7.

1.6 Dynamics of vortices in resonant polariton condensates

In this section we see that the versatility of the resonant excitation allows the

direct imprint of a polariton condensate carrying a single, half or multiple
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Figure 1.8 Figure elaborated from data of Ref. [22]. An half-vortex state
is represented by means of its two spin components σ+ and σ

−
, on left and

mid columns, respectively. The initial space distributions of the amplitude
are reported in the bottom of the figure, while the phase maps appear in the
top. The 2D+t strings represent the evolution of the phase singularity for
the vortex component and of the maximum of the density for the gaussian
one, in a 40 ps time range. Last panel puts into evidence a spiralling of the
vortex core around the centroid of the opposite spin population.

vortices, in other terms, directly created with an integer non-zero OAM. Nat-

urally, spontaneous couple-generation of secondary vortices is also possible

within the resonant scheme, for example induced by using an inhomogeneous

pump beam such as ring or multiple spots or by creating the fluid with a

given finite-k and sending it against a defect.

In a fundamental configuration, the resonant scheme allows to generate a

condensate directly carrying a single full or half vortex state as initial con-

ditions [22]. The wavefronts of the photonic excitation pulse are shaped by a

patterned phase retarder, in order to give Laguerre Gauss beams to be sent

on the microcavity sample. A time resolved imaging of the polariton fluid is

obtained thanks to delay line interferometry of the emission with a coherent

and spatially homogeneous pulse. Each spin population of a full vortex, and

only one spin component in the half vortex, carries a OAM = +1. Every

phase singularity is then digitally tracked in time and their dynamics can be

represented as 2D+t vortex strings/lines. The primary singularities (origi-
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nal vortices), evolve due to an interplay of disorder landscape and nonlinear

potential, which changes in time due to dissipation. An exemplificative case

shows that the twin cores of a full vortex can undergo an erratic movement

at low exciting densities (or at long times), and eventually separate each

from the other under the action of a symmetry breaking term such as xy

or TETM splitting. This is similar to what observed in the case of sponta-

neously formed vortices under nonresonant excitation scheme where disor-

der played a pivotal role [26]. At larger densities instead, the two main cores

are seen to move together for longer times, while the nonlinear potential

somehow screens the disorder potential out. Interspin interactions which are

weak and attractive can supposedly help keeping the cores together. Another

manifestation of them is that the singularity in an half vortex undergoes a

spiralling trajectory around the density maximum of the opposite spin pop-

ulation, which acts as a gaussian trap in the case of a metastable rotating

vortex, as predicted in [46], and experimentally reported in the example of

Figure 1.8.

Instead, when a single polariton condensate is directly injected at k = 0

with an initial zero OAM, a inhomogeneous shape can be used to induce

a fluid redistribution associated to radial currents. For example in [19] the
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Figure 1.9 Taken from Ref.[[19]] Images of the transmitted beam with and
without a 10 micron mask in the pump beam path are shown in (a), (e),
respectively. A potential trap due to a lower polariton density is formed
when the mask is present in the encircled area. (b-d) are interference images
obtained with a reference pulse at t = 0, 6 and 16 ps and show the dynamics
of the formation of a vortex-anti-vortex pair. (f)-(h) Without the potential
trap, no vortex pair is formed.
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condensate was excited with a pulsed laser beam focused into a large spot.

A dip in the condensate background intensity was created by passing the

beam through an opaque mask as above and the temporal dynamics of vor-

tex formation due to polariton flows has been measured in such an optically

induced potential. The detailed experimental arrangements are very similar

to that in Ref. [16]. The real spatial image of the injected condensate is

shown in Figure 1.6(a) with a dark region (encircled) created by the opaque

mask. Figures 1.6(b-d) show the resultant interference patterns recorded as

a function of time after the arrival of the excitation pulse. At time t = 0

the interference pattern indicates a nearly homogeneous phase distribution

of the polariton field: no fork-like dislocations and hence no vortices are ob-

served in the system. At later times the phase pattern becomes disturbed

and then a vortex (V) - anti-vortex (AV) pair is clearly observed at about

t = 16 ps (Figure 1.6(d)). These vortices arise from polariton flow to the

low density region with small potential energy. Polaritons propagate at a

typical speed of about ∼ 1 µm/ps, which probably determines the timescale

of V-AV formation. In this experimental arrangement, spontaneous vortices

are always observed in V-AV pairs, but never as a single vortex, which is a

consequence of the OAM conservation law. Since the polariton condensate

was initially prepared in a state with OAM of M = 0 at t = 0, any sponta-

neous vortex with M = 1 arising from polariton flow should be accompanied

by an anti-vortex [16, 17] with M = −1. In the OPO case studied in pre-

vious sections only single vortex states are observed in the signal, which is

consistent with the fact that an antivortex state is created in the idler. Both

vortex and anti-vortex states are possible in the OPO signal despite the

presence of the idler, although this is not observed in our experiments. For

example, a moving A-AV pair was observed in a spatially extended OPO

signal perturbed with a probe pulse beam carrying an OAM of Ms = 1 [47].

In a different configuration, when the fluid is resonatly injected with a cw

finite-k and sent to hit a localized defect (e.g., photonic point-like defect),

the hydrodynamics regime changes upon density, passing from a superfluid

state without turbulence to the formation of oblique dark solitons and vor-

tex streets in the wake of the potential barrier [17]. The similar emission of

vortex-anti-vortex pairs from a localized defect could be observed also un-

der pulsed pumping, by ultrafast imaging of their transient dynamics [16].

Also lattices of vortex induced by resonant multiple-spot interference were

theoretically studied, together with the stabilizing effects of nonlinearities,

[48, 49] and experimentally realized by use of a mask-shaped potential [50],

somehow analogously to what reported for the lattices described in the non-

resonant section. Recently even an annular chain of co-winding vortices were
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resonantly injected and their evolution in the linear and nonlineare regime

experimentally explored [51].

1.7 Conclusion

To conclude, the polariton OPO supports a novel topological excitation con-

sisting of a vortex in the signal and an anti-vortex in the idler. We have shown

that the core radius of vortices in the polariton condensate is determined

by polariton-polariton interactions. With ultra-fast measurement techniques

the imprinting method also provides a means to investigate vortex dynamics

on time-scales inaccessible in other systems. Metastable rotational polariton

flow is observed indicating superfluid like behaviour of the nonequilibrium

condensate. The spontaneous formation of quantized vortices in OPO po-

lariton condensates is also observed in an optically induced ring-shaped po-

tential trap. A transition from a vortex state with OAM Ms = 1 to one with

Ms = 2 is observed in OPO condensates driven by a ring-shaped pump,

which inhibits shrinking of the vortex size with power density and makes

it more favourable for the system to switch to the state with higher OAM.

In the case of a polariton population directly injected resonantly at k = 0

by a pump pulse a pair of vortices with OAM of opposite sign can develop,

which preserves the initial injected OAM of M = 0. This excludes the obser-

vation of single vortices for such configuration. Neverthless, the versatility

of coherent scheme allows also the direct excitation of both a single full- or

half-vortex spinor condensate, and to follow their dynamics during the life-

time of polaritons, devising the interplay of nonlinearity, disorder, symmetry

splitting terms and dissipation rates.
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and Deveaud-Plédran, B. 2009. Observation of Half-Quantum Vortices in an
Exciton-Polariton Condensate. Science, 326(5955), 974–976.

[14] M. Sich, D. N. Krizhanovskii, M. S. Skolnick A. V. Gorbach R. Hartley D.
V. Skryabin E. A. Cerda-Méndez K. Biermann R. Hey P. V. Santos. 2012.
Observation of bright polariton solitons in a semiconductor microcavity. Nat.
Photonics, 6, 50–55.

[15] Sich, M., Fras, F., Chana, J. K., Skolnick, M. S., Krizhanovskii, D. N., Gor-
bach, A. V., Hartley, R., Skryabin, D. V., Gavrilov, S. S., Cerda-Méndez, E.
A., Biermann, K., Hey, R., and Santos, P. V. 2014. Effects of Spin-Dependent
Interactions on Polarization of Bright Polariton Solitons. Phys. Rev. Lett.,
112, 046403.

[16] G. Nardin, G. Grosso, Y. Leger B. Petka F. Morier-Genoud, and Deveaud-
Plédran, B. 2011. Hydrodynamic nucleation of quantized vortex pairs in a
polariton quantum fluid. Nat. Phys., 7, 635.

[17] Amo, A., Pigeon, S., Sanvitto, D., Sala, V. G., Hivet, R., Carusotto, I.,
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Role of supercurrents on vortices formation in polariton condensates. Opt.
Express, 20(15), 16366.

[21] Dreismann, Alexander, Cristofolini, Peter, Balili, Ryan, Christmann, Gabriel,
Pinsker, Florian, Berloff, Natasha G., Hatzopoulos, Zacharias, Savvidis, Pav-
los G., and Baumberg, Jeremy J. 2014. Coupled counterrotating polariton
condensates in optically defined annular potentials. Proc. Natl. Acad. Sci.,
111(24), 8770–8775.

[22] Dominici, L., Dagvadorj, G., Fellows, J. M., Donati, S., Ballarini, D., De Giorgi,
M., Marchetti, F. M., Piccirillo, B., Marrucci, L., Bramati, A., Gigli, G., Szy-
maska, M. H., and Sanvitto, D. 2014. Vortex and half-vortex dynamics in a
spinor quantum fluid of interacting polaritons. arXiv, 1403.0487.

[23] D’Ambrosio, Vincenzo, Baccari, Flavio, Slussarenko, Sergei, Marrucci,
Lorenzo, and Sciarrino, Fabio. 2015. Arbitrary, direct and deterministic ma-
nipulation of vector beams via electrically-tuned q-plates. Sci. Rep., 5.

[24] Cardano, Filippo, Karimi, Ebrahim, Marrucci, Lorenzo, de Lisio, Corrado, and
Santamato, Enrico. Generation and dynamics of optical beams with polariza-
tion singularities. Opt. Express, 21(7), 8815–8820.

[25] Dominici, L., Colas, D., Donati, S., Cuartas, J. P. Restrepo, Giorgi, M. De,
Ballarini, D., Guirales, G., Carreño, J. C. Lopez, Bramati, A., Gigli, G., del
Valle, E., Laussy, F. P., and Sanvitto, D. 2014. Ultrafast Control and Rabi
Oscillations of Polaritons. Phys. Rev. Lett, 113, 226401.

[26] Manni, F, Lagoudakis, KG, and Liew, T C H. 2012. Dissociation dynamics
of singly charged vortices into half-quantum vortex pairs. Nat. Commun., 3,
1309.
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