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Abstract

Graph-based representations are powerful tools in structural pattern recognition and

machine learning. In this paper, we propose a framework of computing the deep

depth-based representations for graph structures. Our work links the ideas of graph

complexity measures and deep learning networks. Specifically, for a set of graph-

s, we commence by computing depth-based representations rooted at each vertex as

vertex points. In order to identify an informative depth-based representation subset,

we employ the well-known k-means method to identify M dominant centroids of the

depth-based representation vectors as prototype representations. To overcome the bur-

densome computation of using depth-based representations for all graphs, we propose

to use the prototype representations to train a deep autoencoder network, that is opti-

mized using Stochastic Gradient Descent together with the Deep Belief Network for

pretraining. By inputting the depth-based representations of vertices over all graphs to

the trained deep network, we compute the deep representation for each vertex. The re-

sulting deep depth-based representation of a graph is computed by averaging the deep

representations of its complete set of vertices. We theoretically demonstrate that the

deep depth-based representations of graphs not only reflect both the local and global

characteristics of graphs through the depth-based representations, but also capture the

main structural relationship and information content over all graphs under investiga-

tions. Experimental evaluations demonstrate the effectiveness of the proposed method.
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1. Introduction

Analyzing data using graph-based representations has attracted an increasing in-

terest in machine learning and pattern recognition, due to the representational pow-

er of graph structures. Typical applications include a) analyzing bioinformatics and

chemoinformatics data [1] (e.g., classifying graph-based representations of proteins or5

chemical compounds into different species), b) recognizing graph-based object descrip-

tions from images [2], c) visualizing social networks [3] (e.g., Twitter and Facebook

friendship networks, DBLP citation networks), etc. One challenge arising in analyz-

ing graph-based representations of data is how to convert the discrete graph structures

into numeric features, since this allows standard pattern recognition techniques to be10

directly applied to graphs.

The aim of this paper is to propose a new framework of computing deep depth-

based representation of a graph through the use of deep learning networks [4]. Our ap-

proach is to identify a family of dominant depth-based representations [5] as prototype

representations, and then train a deep network that can better preserve the non-linear15

graph structure information. The resulting deep depth-based representations of graphs

are computed through the trained deep networks.

1.1. Literature Review

Although graph-based representations are powerful tools for structural pattern recog-

nition, the main drawback associated with graph structures is the lack of a correspon-20

dence order or labels for the vertices, i.e., we do not explicitly know how to align

different graph adjacency matrices. Compared to vector-based pattern recognition, this

in turn limits the set of standard machine learning algorithms that can be directly ap-

plied to problems of graph classification or clustering [6]. One way to overcome this

problem is to convert the graph structures into a numeric characteristics [7].25

Generally speaking, most existing methods can be categorized into two classes,

namely 1) embedding graphs into an uncorrelated vectorial space and 2) defining a
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graph kernel to characterize the similarity of different graph structures in a high di-

mensional Hilbert space. Proponents of the first class of methods tend to represent

graphs as permutation invariant features in a vector space, where standard machine30

learning techniques designed for vector-based data can be directly employed. For in-

stance, Wilson et al. [8] have computed graph invariant from algebraic graph theory.

They use the spectral decomposition of a Hermitian property matrix as the complex

analogue of the Laplacian, and construct symmetric polynomials associated with the

eigenvectors. Bunke et al. [7] have embedded graphs into vectors by employing both35

vertex and edge attributed statistics. Ren et al. [9] have computed vectorial graph fea-

tures via the Ihara zeta function. They first transform each graph into a directed line

graph and then identify the cycles residing on the line graph. The resulting graph fea-

tures are computed by counting the number of cycles having different lengths. Kondor

and Borgwardt [10] have computed invariant graph skew spectrum features, by map-40

ping each graph adjacency matrix into a symmetric group function and computing the

associated bispectral invariants. Bai and Hancock [11] have developed a framework to

compute depth-based representations of graphs. Specifically, they first decompose each

graph into a family of expansion subgraphs with increasing size, and then measure the

entropy-based information content of these substructures. Unfortunately, these state-45

of-the-art methods tend to approximate graph structures in a low dimensional vector

space, and thus discard correlation information. By contrast, the proponents of graph

kernels can characterize graphs in a high dimensional Hilbert space and thus better

preserve the structural correlations of graphs [12].

One of the most generic frameworks of defining graph kernels is the concept of50

R-convolution proposed by Haussler [13]. The main idea underpinning R-convolution

graph kernels is that of decomposing graphs into substructures of limited sizes and

then comparing pairs of specific substructures, such as walks, paths, subtrees and sub-

graphs. Under this scenario, Kashima et al. [14] have defined a marginalized kernel by

comparing pairs of random walks associated with vertex and edge labels. Costa and55

Grave [15] have proposed a pairwise neighborhood subgraph distance kernel, by count-

ing pairs of isomorphic pairwise neighborhood subgraphs. Bach [16] has proposed a

point cloud kernel based on a local tree-walk kernel, that is computed by factorizing a
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graphical model on the subtrees. Wang and Sahbi [17] have defined a graph kernel for

action recognition, by describing actions as directed acyclic graphs (DAGs) and count-60

ing the number of isomorphic walk pairs. Harchaoui and Bath [18] have proposed

a segmentation graph kernel for images by counting the inexact isomorphic subtree

patterns between image segmentation graphs. Bai et al. [19] have defined an aligned

subtree kernel by counting pairs of inexact isomorphic subtrees rooted at aligned ver-

tices. Alternative state-of-the-art graph kernels based on R-convolution include a) the65

subtree-based hypergraph kernel [20], b) the subgraph matching kernel [1], c) the opti-

mal assignment kernel [21], d) the aligned Jensen-Shannon subgraph kernel [22], and

e) the fast depth-based subgraph kernel [23].

Unfortunately, as we have stated, the R-convolution graph kernels usually employ

substructures of limited sizes. As a result, most of the aforementioned kernels only70

reflect local graph characteristics, i.e., these kernels cannot capture characteristics of

graph structures at the global level. To address this problem, Bai et al. [2, 24] have

developed a family of graph kernels based on information theoretic measures, namely

the classical and quantum Jensen-Shannon divergence. Specifically, they use either the

classical or the quantum random walk associated with the divergence to measure the75

similarity between graphs at a global level based on entropies. Johansson et al. [25]

have developed a global graph kernel based on geometric embeddings. Specifically,

they use the Lovász number as well as its associated orthonormal representation to

capture the characteristics at a global level.

One common weakness arising in most of the aforementioned state-of-the-art meth-80

ods, either graph embedding methods or graph kernels, is that of ignoring information

from multiple graphs. This is because the graph embedding method usually captures

characteristics for each single graph structure. On the other hand, the graph kernel

only reflects graph characteristics for each pair of graphs. As a summary, developing

effective method to preserve the structural information residing in graphs still remains85

a challenge.

4



1.2. Contribution

To overcome the shortcoming of both existing graph embedding methods and graph

kernels, in this paper, we aim to present a novel framework for computing deep depth-

based representations for graph structures. Our work links the ideas from graph com-90

plexity and deep learning networks [4]. In particular, for a set of graphs under analysis,

we commence by computing the depth-based representations rooted at each vertex [23].

This is done by decomposing a graph structure into a family of expansion subgraphs

of increasing sizes rooted at a vertex, and then measuring the entropy-based complexi-

ties of the subgraphs and use this to construct a complexity trace, i.e., the depth-based95

representation of the root vertex. Since the complexity trace encapsulates entropic

information flow from the root vertex to the global graph structure, the depth-based

representation can simultaneously capture both local and global graph characteristics.

With the depth-based representations of vertices over all graphs to hand, we em-

ploy the well-known k-means method [26] to identify k dominant centroids of these100

depth-based representation vectors as prototype representations. Since the prototype

representations are identified by minimizing the sum of square distances between all

depth-based representations and the centroid points (i.e., the prototype representations)

of their clusters, the prototype representations can reflect representative characteristics

of all depth-based representations encountered. As a result, the prototype representa-105

tions can encapsulate dominant characteristics over all used graphs.

In order to reflect the high dimensional structural information of graphs well, we

propose to further capture the manifolds of these prototype representations using deep

learning networks [4]. This is motivated by the recent success of deep learning [3, 27],

that has been proven a powerful tool of learning complex relationships of data [28].110

Specifically, with the prototype representations as input data, we train a deep neural

network (i.e., the deep autoencoder network [3]) that is optimized using Stochastic Gra-

dient Descent together with the Deep Belief Network [29] for pretraining. Note that,

training the deep network associated with the smaller set of prototype representation-

s can significantly reduce the burdensome computation associated with depth-based115

representations of all graphs. Since the deep autoencoder network can minimize the

reconstruction error of the output and input prototype representations that encapsulate
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the dominant structural information over the vertices of all graphs, the deep network

can capture the salient information for these graphs in a highly non-liner latent space.

By inputting the depth-based representations of vertices over all graphs to the trained120

deep network, we compute the deep representation for each vertex. The resulting deep

depth-based representation of a graph is computed by averaging the deep representa-

tions of all its vertices. We theoretically demonstrate that the deep depth-based repre-

sentations of graphs not only reflect both the local and global characteristics of graphs

through the depth-based representations, but also capture the main relationships and125

information over all graphs under investigations. Experimental evaluation demonstrate

the effectiveness of the proposed method.

1.3. Paper Outline

The remainder of this paper is organized as follows. Section 2 reviews the prelimi-

nary concepts that will be used in this work. Section 3 details the proposed framework130

for computing deep depth-based representations of graphs. Section 4 provides the ex-

perimental evaluation of the new method. Section 5 concludes this work.

2. Preliminary Concepts

In this section, we review some preliminary concepts that will be used in this work.

We commence by reviewing the concept of depth-based representation from entropy-135

based complexity measures. Finally, we show how to identify the k dominant centroids

of the depth-based representation vectors as prototype representations based on the

well-known k-means clustering method.

2.1. Depth-Based Representations

In this subsection, we review how to compute the depth-based representation root-140

ed at each vertex of a graph [23]. The depth-based representation is a powerful tool

for characterizing the topological structure in terms of the intrinsic complexity. One

way of computing the representation is to gauge the information content flow through

a family of K-layer subgraphs of a graph (e.g., subgraphs around a vertex having min-

imal path length K) of increasing size and to use the flow as a structural signature. By145
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measuring the entropy measure of each expansion subgraph, Bai et al. [23] have shown

how to use this this to characterize each graph as a depth-based complexity trace repre-

sentation that gauges how the entropy-based complexities of the expansion subgraphs

vary as a function of depth.

Specifically, assume a sample graph is denoted as G(V,E), where V and E are the

vertex and edge sets respectively. We first compute the shortest path matrix of G(V,E)

as SG based on the well-known Dijkstra’s algorithm. Note that SG follows the same

vertex permutation with the adjacency matrix of G and each element SG(v, u) indicates

the shortest path length between vertices u and v. Assume the neighbourhood vertex

set of v ∈ V is denoted as NK
v and satisfies

NK
v = {u ∈ V | SG(v, u) ≤ K}. (1)

For each vertex v ∈ V of G(V,E), a family of K-layer expansion subgraphs GK
v (VK ; EK)

rooted at v is defined as
⎧

⎨

⎩

VK
v = {u ∈ NK

v };

EK
v = {(u, v) ⊂ NK

v ×NK
v | (u, v) ∈ E}.

(2)

Note that the K-layer expansion subgraph GK
v is the global structure of G(V,E) if K150

is equal or larger than the length of the greatest shortest path starting from vertex v to

the remaining vertices of G(V,E). Fig.1 gives an example to explain how to compute

a K-layer expansion subgraph rooted at a sample vertex v̂C ∈ V . The left-most figure

shows the determination of K-layer expansion subgraphs for a graph G(V,E) which

hold |N1
v̂C

| = 6 and |N2
v̂C

| = 10 vertices. While the middle and the right-most figure155

show the corresponding 1-layer and 2-layer subgraphs regarding the vertex v̂C , and are

depicted by red-colored edges. In this example, the vertices of different K-layer sub-

graphs regarding the vertex v̂C are calculated by Eq.(1), and pairwise vertices possess

the same connection information in the original graph G(V,E).

Definition (Depth-based representations of vertices): For the graph G(V,E), let

the family of K-layer expansion subgraphs rooted at each vertex v ∈ V be denoted

as {G1
v , · · · ,G

K
v , · · · ,GL

v }. Based on the definition in [23], the L-dimensional depth-
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Figure 1: An Example of Computing K-layer Expansion Subgraphs.

based representation DBL
v of vertex v is defined as

DBL
v = {HS(G

1
v), · · · , HS(G

K
v ), · · · , HS(G

L
v )}, (3)

where K ≤ L and HS(G
K
v ) is the Shannon entropy of GK

v computed using the steady160

state random walk [2]. ✷

We observe a number of interesting properties for the depth-based representation.

First, it is computed by measuring the entropy-based complexity on the gradually ex-

panding subgraphs rooted at a vertex, and thus encapsulates rich intrinsic depth com-

plexity information rooted at the vertex. Second, since the computational complexity

of the required Shannon entropy associated with the steady state random walk is only

quadratic in the number of vertices [2], the depth-based representation can be efficient-

ly computed [23]. Furthermore, based on Eq.(2), we observe that the family of K-layer

expansion subgraphs rooted at a vertex v satisfy

v ∈ G1
v · · · ⊆ GK

v ⊆ · · · ⊆ GL
v ⊆ G.

This observation indicates that these expansion subgraphs form a nested sequence, i.e.,

the sequence of subgraphs gradually expand from the local vertex v to the structure

of the global graph. As a result, the depth-based representation can simultaneously

capture the local and global graph structure information.165

2.2. Identifying Prototype Representations

In this subsection, we identify the centroids over all depth-based representation vec-

tors. In particular, assume a set of N graphs is denoted as G = {G1, · · · , Gi, · · · , GN}.

Based on Eq.(3), for each graph Gi we commence by computing the L-dimensional

depth-based representations of each vertex of Gi as vertex points. Assume there are
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n vertices over all graphs in G, and the L-dimensional depth-based representations of

these vertices are DB
L = (DBL

1 ,DBL
2 , . . . ,DBL

n). We use the k-means method [26]

to identify M centroids over all depth-based representations in DB
L, i.e., we divide

these representations into M clusters and compute the mean vector for each cluster.

Specifically, given M clusters Ω = (cL1 , c
L
2 , . . . , c

L
M ) where L corresponds to the pa-

rameter of these L-dimensional depth-based representations, the k-means method aims

to minimize the following objective function

argmin
Ω

N
∑

i=1

∑

DBL
j
∈cL

i

∥DBL
j − µL

i ∥
2, (4)

where µL
i is the mean of the depth-based representation vectors belonging to cluster cLi .

Since Eq.(4) minimizes the sum of the square Euclidean distances between the vertex

points DBL
j and their centroid point of cluster cLi , the M centroid points {µL

1 , · · · , µ
L
M}

can reflect main characteristics of all L-dimensional depth-based representations in170

DB
L. In other words, these centroid can be seen as a family of L-dimensional pro-

totype representations that encapsulate representative characteristics over all graphs in

G.

3. Deep Depth-based Representations of Graphs

In this section, we introduce a framework of computing the deep depth-based rep-175

resentations of graphs, by linking the ideas of depth-based complexity measures and

the powerful deep learning networks. We commence by reviewing the concept of deep

autoencoder network [29]. Finally, we show how to compute the deep depth-based

representation through the deep network.

3.1. Deep Autoencoder Networks180

In this subsection, we briefly review the concept of deep autoencoder, that is a

deep learning network [29]. This network is one kind of unsupervised model and is

composed of a encoder network and a decoder network. The encoder network consists

of multiple non-linear functions that map the input data to a representation space, i.e.,

the encoder network transforms the original data into the deep representations [3]. On185
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Figure 2: The Architecture of the Deep Autorencode Network.

Table 1: Terms and Notations

Symbol Definition

n number of vertexes

K number of layers

S = {s1, ..., sn} the adjency matrix for the network

X = {xi}
n
i=1, X̂ = {x̂i}

n
i=1 the input data and reconstructed data

Y k = {yk
i }

n
i=1 the k-th layer hidden representation

Wk, Ŵk the k-th layer weight matrix

bk, b̂k the k-th layer biases

θ
(k) = {Wk, Ŵk, bk, b̂k} the overall parameters

the other hand, the decoder network consists of multiple non-linear functions mapping

the deep representations in the representation space to the reconstruction space, i.e., the

decoder network reconstructs the original data based on the deep representations. It has

been proven that the deep representation between the encoder and decoder networks

smoothly captures the data manifold embedded in a highly non-liner space. As a result,190

the deep representation enhances the linear separability of the original data [29], and

provides an elegant way of analyzing the original data.

The architecture of the deep autoencouder network used in this work is shown in

Fig.2, and the parameters of the deep network are summarized in Table.1. Assume xi
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is the input, then the hidden representations for each layer are computed as

yki =

⎧

⎨

⎩

σ(W (1)xi + b(1)) if k = 1;

σ(W (k)yk−1
i + b(k)) if k = 2, ...,K.

(5)

After K steps, we obtain y
(K)
i through the encoder network, i.e., we transform xi into

y
(K)
i (the deep representation of xi). Then, after another K steps, we can obtain the

output x̂i by reversing the calculation process of encoder through the decoder network,

i.e., we reconstruct the input xi as x̂i through y
(K)
i . The objective of the deep autocoder

network is to minimize the reconstruction error of output x̂i and input xi, and the loss

function is defined as

L =

n
∑

i=1

∥x̂i − xi∥
2
2 (6)

To optimize the deep autocoder network, we first use the Deep Belief Network [29]

to pretrain its parameters to avoid trapping in local optimum in the parameter space.

Then, the deep network is optimized by means of the Stochastic Gradient Descent195

method, where the gradients can be conveniently obtained by applying the chain rule

to backpropagate error derivatives first through the decoder network and then through

the encoder network, i.e., back-propagate ∂L
∂θ

to update θ
k.

As [3] stated, although the reconstruction process does not explicitly preserve the

original input xi, minimizing the reconstruction error can smoothly capture the mani-200

folds of original data and thus capture the main characteristics of the data.

3.2. The Deep Representation through Deep Networks

In this subsection, we propose a new deep depth-based representation that repre-

sents a graph as embedding vector. Let G = {G1, · · · , Gi, · · · , GN} be a set of graph-

s. For each graph Gi(Vi, Ei) ∈ G, we commence by computing the L-dimensional

depth-based representation of each vertex v ∈ Vi based on Eq.(3) as

DBL
i;v = {HS(G

1
i;v), · · · , HS(G

K
i;v), · · · , HS(G

L
i;v)},

where the subscripts i, v and L correspond to the graph Gi ∈ G, the vertex v ∈ Vi and

the greatest length of the shortest paths over all graphs in G, respectively. Based on the
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definition in Section 2.2, we identify a family of L-dimensional prototype representa-

tions. Specifically, with the L-dimensional depth-based representations of all graphs in

G to hand, we perform the k-means method to identify M centroids, i.e., we divide the

depth-based representations into M clusters and compute the means {µL
1 , · · · , µ

L
M} of

these clusters as the L-dimensional prototype representations. We further use the pro-

totype representations {µL
1 , · · · , µ

L
M} as input data to train a deep autoencoder network

proposed in Section 3.1. Training the deep network using the smaller set of prototype

representations not only avoids the burdensome computation of using depth-based rep-

resentations of all graphs in G, but also preserves the dominant information of these

graphs for the training process. With the trained deep autoencoder network to hand,

for each graph Gi(Vi, Ei) ∈ G, we use its L-dimensional depth-based representations

DBsGi
= {DBL

i;1, · · · ,DBL
i;v, · · · ,DBL

i;|Vi|} rooted at all vertices in Vi as input, here

the subscripts 1 to |Vi| of DBsGi
correspond to the 1-th to Vi-th vertex in Vi. Based

on Eq.(5) we obtain a set of |V | deep representation vectors of all vertices in Vi as

DRsGi
= {y

(K)
1 , · · · , y(K)

v , . . . , y
(K)
|Vi|

}, (7)

where y
(K)
v is the deep representation of DBL

i;v , i.e., y
(K)
v is the deep representation of

vertex v ∈ Vi for Gi. Then, the deep representation of Gi is

DRGi
=

∑

v∈|Vi|

y(K)
v , (8)

i.e., DRGi
is the mean vector of the deep representation vectors in DRsGi

. The re-

sulting deep depth-based representation DDBGi
of each graph Gi ∈ G is computed

by performing the Principle Component Analysis (PCA) [30] on the graph deep rep-205

resentation matrix DRG = (DRG1 | · · · |DRGi
| · · · |DRGN

) to embed the each deep

representation DRGi
of Gi in a principle space. Since the deep representation DRGi

of each graph Gi can effectively capture the manifold of all graphs in the deep space,

the deep depth-based representation DDBGi
enhances the linear separability of the

graphs. The algorithm of computing the deep depth-based representation is shown in210

Algorithm 1.
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Algorithm 1 Vertex labels strengthening procedure

Input: A set of graphs G = {G1, · · · , Gi, · · · , GN}.

Output: The deep depth-based representation DDBGi of each graph Gi, and parameters θ of

the Deep Autoencoder Network (DAN).

1: Initalization

• For each graph Gi(Vi, Ei) ∈ G, compute the L-dimensional depth-based representations

DBL

i;v for each vertex v ∈ Vi based on Eq(3).

• Use the k-means method to divide the depth-based representation vectors of all graphs in

G into M clusters and compute these cluster means {µL
1 , · · · , µ

L

M} as the L-dimensional

prototype representations.

2: Train the DAN with Parameters in Table.1.

• Input the prototype representations as the input data X , and pretrain DAN through Deep

Belief Network to initialize the parameters θ = {θ(1), · · · , θ(K)} for DAN.

• Repeat

• Based on X and θ, compute X̂ using Eq.(5).

• Compute the least square error between X̂ and X as L =
∑

n

i=1 ∥X̂ −X∥22.

• Using the Stochastic Gradient Descent to update θ, i.e., back-propagate ∂L

∂θ
to update θ.

• Until converge

3: Compute Deep Depth-based Representations.

• Based on Eq.(7) and (8), compute the deep representation DRGi for each graph

Gi through the trained DAN , perform PCA on the deep representation matrix

DRG = (DRG1 | · · · |DRGi | · · · |DRGN
) to compute the deep depth-based represen-

tation DDBGi .

13



3.3. Discussions and Related Works

The deep depth-based representation DDBGi
of a graph Gi ∈ G proposed in Sec-

tion 3.2 has a number of advantages.

First, unlike most state-of-the-art graph kernels mentioned in Section 1.1, the pro-215

posed deep depth-based representation DDBGi
can simultaneously capture the local

and global graph characteristics. This is because the associated depth-based repre-

sentation for our framework is computed from the entropy measures on the family of

expansion subgraphs, that gradually lead a local vertex to the global graph structure. By

contrast, the mentioned R-convolution graph kernels [1, 14, 15, 16, 17, 18, 19, 20, 23]220

are computed by comparing pairs of subgraphs of limited sizes (e.g., paths, cycles,

walks, subgraphs and subtrees), and thus only reflect local topological information

of graphs. On the other hand, the graph kernels based on the classical and quantum

Jensen-Shannon divergence [2, 24], as well as the Lovász graph kernel [25] are com-

puted based on global graph characteristics (e.g., Shannon or von Neumann entropies,225

and Lovász number associated orthonormal representation). These kernels can reflect

global graph characteristics, but tend to ignore local graph information. As a summary,

most existing graph kernels cannot reflect complete information of graph structures.

Second, unlike most state-of-the-art graph embedding methods mentioned in Sec-

tion 1.1, the proposed deep depth-based representation DDBGi
can effectively cap-230

ture the manifold of the graphs in a highly non-liner latent space, and thus reflect rich

characteristics of graph structures. This is because the deep depth-based represen-

tation DDBGi
is computed through the powerful deep autoencoder network, that can

smoothly capture the data manifold in a highly non-linear space. By contrast, the graph

embedding methods [6, 7, 8, 7, 9, 10, 11] tend to embed graphs from high dimensional235

structure space in a low dimensional vectorial space, and thus lead to information loss.

Third, unlike the state-of-the-art graph kernels and graph embedding methods, the

proposed deep depth-based representation DDBGi
can reflect comprehensive charac-

teristics of all graph under investigations. This is because the required deep autoen-

couder network is trained by using the prototype representations. These representa-240

tions are identified by employing the k-means clustering method on the depth-based

representation vectors of all graphs and computing the centroid of each cluster. S-
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ince the prototype representations can represent the main characteristics of all graphs,

the deep autoencoder network trained from these representations can simultaneously

capture the main information of all graphs. As a result, the deep depth-based repre-245

sentation DDBGi
computed through the deep autoencouder network can encapsulate

all graph characteristics. By contrast, most existing graph kernels [1, 14, 15, 16, 17,

18, 19, 20, 23] compute the kernel value based on pairs of graphs. On the other hand,

the graph embedding methods [6, 7, 8, 7, 9, 10, 11] compute the graph feature vector

based on each individual graph.250

Finally, note that, the depth-based complexity traces [11] and the fast depth-based

subgraph kernel [23] are also based on the depth-based representations. Thus, similar

to the proposed deep depth-based representation, these two existing methods can si-

multaneously capture the local and global graph characteristics too. However, as one

kind of graph embedding method, the depth-based complexity trace can only represent255

graphs in low dimensional vectorial space, and leads to information loss. By contrast,

the proposed method can capture richer graph characteristics through the powerful deep

autoencoder network. Furthermore, both the depth-based complexity trace and the fast

depth-based graph kernel suffer from the drawback of ignoring comprehensive infor-

mation over all graphs under investigations, because these methods only capture graph260

information for each individual graph or pairs of graphs.

The above observations reveal the theoretical effectiveness of the proposed deep

depth-based representation. The proposed method provides an effective way of analyz-

ing graph structures for classification or clustering problems.

3.4. Computational Analysis265

The computational complexity of the proposed deep depth-based representation is

governed by the following computational steps. Consider a set of N graphs each having

S vertices and T edges, and the greatest length L of the shortest paths over all these

graphs. Computing the depth-based representations of vertices for each graph relies on

the calculation of the shortest path matrix, and thus computing the representations of all270

graphs requires time complexity O(N log(S)T ). The identification of the M prototype

presentations relies on performing the k-means method associated with the NS depth-
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Table 2: Information of the Graph-based Datasets

Datasets MUTAG ENZYMES BAR31 BSPHERE31 GEOD31 CATH2

Max # vertices 28 126 220 227 380 568

Min # vertices 10 2 41 43 29 143

Mean # vertices 17.93 32.63 95.42 99.83 57.42 308.03

# Graphs 188 600 300 300 300 190

# Classes 2 6 15 15 15 2

# Disjoint graphs 0 31 0 0 0 7

Proportion of disjoint graphs 0% 5.16% 0% 0% 0% 3.68%

Datasets NCI1 NCI109 COIL5 Shock PPIs PTC

Max # vertices 111 111 241 33 218 109

Min # vertices 3 4 72 4 3 2

Mean # vertices 29.87 29.68 144.90 13.16 109.63 25.60

# graphs 4110 4127 360 150 219 344

# classes 2 2 5 10 5 2

# disjoint graphs 580 605 0 0 0 0

Proportion of disjoint graphs 14.11% 14.73% 0% 0% 0% 0%

based representations of all graphs, and thus requires time complexity O(NSMW )

where W is the iteration number. Training the deep autoencoder network requires

time complexity O(LDCI), where L corresponds to the dimension of input data, D275

is the degree of the deep network, C is the dimension of the hidden layers and I is

the iteration. As a result, computing the deep depth-based representations of all graphs

requires time complexity O(N log(S)T +NSMW + LDCI).

4. Experimental Results

In this section, we empirically evaluate the performance of the proposed deep280

depth-based representations of graphs. We commence by testing the proposed method

on the graph classification problem using standard graph datasets that are abstracted

from bioinformatics and computer vision databases. Furthermore, we also compare the

proposed method with several state-of-the-art methods, e.g., graph kernels and graph

embedding methods.285
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4.1. Graph Datasets

We demonstrate the classification performance of the proposed method on twelve

standard graph-based datasets abstracted from both bioinformatics and computer vi-

sion datasets. These datasets include: MUTAG, ENZYMES, BAR31, BSPHERE31,

GEOD31, CATH2, NCI1, NCI109, COIL5, Shock, PPIs, and PTC(MR). More details290

concerning the datasets are shown in Table.2.

MUTAG: The MUTAG dataset consists of graphs representing 188 chemical com-

pounds, and here the goal is to predict whether each compound possesses mutagenic-

ity [31]. The maximum, minimum and average number of vertices are 28, 10 and

17.93 respectively. As the vertices and edges of each compound are labeled with a real295

number, we transform these graphs into unweighted graphs.

ENZYMES: The ENZYMES dataset consists of graphs representing protein tertiary

structures, and contains 600 enzymes from the BRENDA enzyme database [32]. In

this case, the task is to correctly assign each enzyme to one of the 6 EC top-level

classes. The maximum, minimum and average number of vertices are 126, 2 and 32.63300

respectively.

BAR31, BSPHERE31 and GEOD31: The SHREC 3D Shape database consists of

15 classes and 20 individuals per class, that is 300 shapes [33]. This is a standard

benchmark in 3D shape recognition. From the SHREC 3D Shape database, we estab-

lish three graph datasets named BAR31, BSPHERE31 and GEOD31 datasets through305

three mapping functions. These functions are a) ERG barycenter: distance from the

center of mass/barycenter, b) ERG bsphere: distance from the center of the sphere that

circumscribes the object, and c) ERG integral geodesic: the average of the geodesic

distances to all other points. Details of the three mapping function can be found in

[33]. The number of maximum, minimum and average vertices for the three datasets310

are a) 220, 41 and 95.42 (for BAR31), b) 227, 43 and 99.83 (for BSPHERE31), and c)

380, 29 and 57.42 (for GEOD31), respectively.

CATH2: The CATH2 dataset has proteins in the same class (i.e., Mixed Alpha-Beta),

architecture (i.e., Alpha-Beta Barrel), and topology (i.e., TIM Barrel), but in different

homology classes (i.e., Aldolase vs. Glycosidases). The CATH2 dataset is harder to315

classify, since the proteins in the same topology class are structurally similar. The
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protein graphs are 10 times larger in size than chemical compounds, with 200 − 300

vertices. There is 190 testing graphs in the CATH2 dataset.

NCI1 and NCI109: The NCI1 and NCI109 datasets consist of graphs representing

two balanced subsets of datasets of chemical compounds screened for activity against320

non-small cell lung cancer and ovarian cancer cell lines respectively [34]. There are

4110 and 4127 graphs in NCI1 and NCI109 respectively.

COIL5: We establish a COIL5 dataset from the COIL database. The COIL image

database consists of images of 100 3D objects. We use the images for the first five

objects. For each object we employ 72 images captured from different viewpoints. For325

each image we first extract corner points using the Harris detector, and then establish

Delaunay graphs based on the corner points as vertices. As a result, in the dataset there

are 5 classes of graphs, and each class has 72 testing graphs. The number of maximum,

minimum and average vertices for the dataset are 241, 72 and 144.90 respectively.

Shock: The Shock dataset consists of graphs from the Shock 2D shape database. Each330

graph is a skeletal-based representation of the differential structure of the boundary of a

2D shape. There are 150 graphs divided into 10 classes. Each class contains 15 graphs.

PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs). The

graphs describe the interaction relationships between histidine kinase in different species

of bacteria. Histidine kinase is a key protein in the development of signal transduction.335

If two proteins have direct (physical) or indirect (functional) association, they are con-

nected by an edge. There are 219 PPIs in this dataset and they are collected from 5

different kinds of bacteria (i.e., a) Aquifex4 and thermotoga4 PPIs from Aquifex aeli-

cus and Thermotoga maritima, b) Gram-Positive52 PPIs from Staphylococcus aureus,

c) Cyanobacteria73 PPIs from Anabaena variabilis, d) Proteobacteria40 PPIs from340

Acidovorax avenae, and e) Acidobacteria46 PPIs). Note that, unlike the experiment

in [24] that only uses the Proteobacteria40 and the Acidobacteria46 PPIs as the test-

ing graphs, we use all the PPIs as the testing graphs in this paper. As a result, the

experimental results for some kernels are different on the PPIs dataset.

PTC: The PTC (The Predictive Toxicology Challenge) dataset records the carcino-345

genicity of several hundred chemical compounds for male rats (MR), female rats (FR),

male mice (MM) and female mice (FM). These graphs are very small (i.e., 20 − 30
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Table 3: Classification Accuracy (In % ± Standard Error) Comparisons

Datasets MUTAG ENZYMES BAR31 BSPHERE31 GEOD31 CATH2

DDBR 86.57 ± .33 42.16 ± .37 63.00 ± .19 55.00 ± .20 42.76 ± .21 85.79 ± .33

DBCT 85.10± .34 38.00± .37 56.00± .20 47.00± .22 36.67± .23 78.42± .41

ISK 84.66± .56 41.80± .43 62.80± .47 52.50± .47 39.76± .43 67.55± .67

JTQK 83.22± .87 39.38± .76 60.56± .35 46.93± .61 40.10± .46 68.70± .69

UQJS 82.72± .44 36.58± .46 30.80± .61 24.80± .61 23.73± .66 71.11± .88

BRWK 77.50± .75 20.56± .35 −− −− −− −−

WL 82.05± .57 38.41± .45 58.53± .53 42.10± .68 38.20± .68 67.36± .63

SPGK 83.38± .81 28.55± .42 55.73± .44 48.20± .76 38.40± .65 81.89± .63

GCGK 82.04± .39 24.87± .22 22.96± .65 17.10± .60 15.30± .68 73.68± 1.09

Datasets NCI1 NI109 COIL5 Shock PPIs PTC

DDBR 72.58± .45 73.00± .43 70.27 ± .29 40.00± .27 76.76± .41 63.08 ± .50

DBCT 68.32± .25 68.96± .27 68.33± .30 44.00 ± .26 73.26± .43 56.10± .51

ISK 76.21± .25 76.42± .24 38.30± .56 39.86± .68 79.47± .32 60.26± .42

JTQK 81.23 ± .25 81.40 ± .26 30.86± .66 37.73± .72 88.47 ± .47 57.47± .41

UQJS 69.09± .20 70.17± .23 70.11± .61 40.60± .92 65.61± .77 56.70± .49

BRWK 60.34± .17 59.89± .15 14.63± .21 0.33± .37 −− 53.97± .31

WL 80.68± .27 80.72± .29 33.16± 1.01 36.40± 1.00 88.09± .41 56.85± .52

SPGK 74.21± .30 73.89± .28 69.66± .52 37.88± .93 59.04± .44 55.52± .46

GCGK 63.72± .12 62.33± .13 66.41± .63 26.93± .63 46.61± .47 55.41± .59

vertices), and sparse (i.e., 25 − 40 edges. We select the graphs of male rats (MR) for

evaluation. There are 344 test graphs in the MR class.

4.2. Experiments of Graph Classifications350

Experimental Setup: We evaluate the performance of the proposed deep depth-based

representations (DDBR) on several standard graph datasets, and then compare them

with several alternative state-of-the-art graph kernels and a graph embedding method.

The graph kernels used for comparison include: 1) the fast depth-based subgraph ker-

nel based on entropic isomorphism test (ISK) [23], 2) the backtraceless random walk355

kernel using the Ihara zeta function based cycles (BRWK) [35], 2) the Weisfeiler-

Lehman subtree kernel (WL) [36], 3) the shortest path graph kernel (SPGK) [37], 4)

the graphlet count graph kernels with graphlet of size 3 (GCGK) [38], 5) the unaligned

quantum Jensen-Shannon kernel (UQJS) [24], and 6) the attributed graph kernel from
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the Jensen-Tsallis q-differences associated with q = 2 (JTQK) [39]. The graph em-360

bedding method for comparison is the depth-based complexity trace of graphs (DBC-

T) [11], and for each dataset the trace dimension number of the DBCT method corre-

sponds to the greatest shortest path length rooted at a vertex to the remaining vertices

over all graphs in the dataset, following the concept of the depth-based representations

developed in [11].365

For the proposed DDBR method, we train a multi-layer deep autoencoder network

for each graph dataset, and the dimension of each layer is 500, 250, 100 and 30, i.e., the

associated encoder and decoder network both have 4 layer learning structures. More-

over, we set 5% of the vertex number of all graphs in the dataset as the prototype

representation number M , e.g., there are 100 vertices of all graphs in a dataset and M370

is 5. Each deep network is pretained using the Deep Belief Network and then optimized

using the Stochastic Gradient Descent. With the trained deep autoencoder network for

each dataset to hand, we compute the deep depth-based representation vector as the

feature vector for each testing graph. Furthermore, we also compute the depth-based

complexity trace as the feature vector for each graph using the DBCT method. We375

then perform 10-fold cross-validation using the Support Vector Machine Classifica-

tion (SVM) associated with the Sequential Minimal Optimization (SMO) [40] and the

Pearson VII universal kernel (PUK) [41] to evaluate the performance of the proposed

DDBR method and the DBCT method. We use nine folds for training and one fold

for testing. For each method, we repeat the experiments 10 times. All parameters of380

the SMO-SVMs were optimized for each method on different datasets. We report the

average classification accuracies and standard errors of each method in Table.3. For

the WL and JTQK kernels, we set the largest iteration of the required vertex label

strengthening methods (i.e., the required tree-index method for the two kernels) as 10.

With each kernel to hand, we calculate the kernel matrix on each dataset. We perform385

10-fold cross-validation using the C-Support Vector Machine (C-SVM) Classification,

and compute the classification accuracies. Similar to the SMO Classification, we also

use nine samples for training and one for testing, and each classification was performed

with its parameters optimized on each dataset. We report the average classification ac-

curacies and standard errors of each graph kernel in Table.3. Moreover, we also exhibit390
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the runtime of each graph kernel and graph embedding method on different datasets,

and this is measured under Matlab R2011a running on a 2.5GHz Intel 2-Core processor

(i.e., i5-3210m). We these results in Table.4. Finally, note that, the JTQK, WL kernel-

s are able to accommodate attributed graphs. In our experiments, we use the vertex

degree (not the original vertex labels) as the vertex label for these kernels.395

Experimental Results: Overall, in terms of the classification accuracies exhibited by

Table.3, the classifications associated with the proposed DDBR method exhibit better

performance than state-of-the-art methods for comparisons. Specifically, among the 12

testing graph datasets, the DDBR method achieves the best classification accuracies on

8 datasets, i.e., the MUTAG, ENZYMES, BAR31, BSPHERE31, GEOD31, CATH2,400

COIL5 and PTC datasets. On the other hand, for the NCI1, NCI109 and PPIs datasets,

only the accuracies of the JTQK and WL kernels is obviously better than the proposed

DDBR method, and our DDBR method outperforms the remaining methods. More-

over, although the classification associated with the proposed DDBR method does not

achieve the best accuracy on the Shock dataset method, the DDBR method is still com-405

petitive to the DBCT graph embedding method and the UQJS kernel, and outperforms

the remaining methods.

In terms of the runtime exhibited by Table.4, the proposed DDBR method is not

the fastest method, but it can still be computed in a polynomial time. By contrast,

some graph kernels obviously have more computational time, and even cannot finish410

the computation in one day. Furthermore, considering the impressive classification

accuracies of the proposed DDBR method on most datasets, the proposed method has a

good trade off between the classification performance and the computational efficiency.

Experimental Analysis: Table.3 indicates that the proposed method has better perfor-

mance on classification problems. The reasons for the effectiveness of the proposed415

DDBR method are threefold. First, the proposed DDBR method can simultaneously

capture the local and global graph characteristics, through the required depth-based

representations that can lead a local vertex to the global graph structure in terms of en-

tropy measures. By contrast, the alternative graph kernels only capture local or global

graph characteristics, and thus lead to information loss. Second, the required deep au-420

toencouder network for the proposed DDBR method is trained by using the prototype
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representations that encapsulate the dominant structural information over the vertices

of all graphs. Thus, only the proposed DDBR method can reflect comprehensive in-

formation of all graph under investigations. By contrast, the alternative DBCT method

and the alternative graph kernels can only reflect information of each individual graph425

or each pair of graphs. Third, the required deep autoencouder network for the proposed

DDBR method can minimize the reconstruction error of the output and input prototype

representations and effectively capture the manifold of the graphs in a highly non-liner

latent space. As a result, the proposed DDBR method based on the deep network can

capture the salient information for these graphs in a highly non-liner latent space. By430

contrast, the alternative DBCT method is one kind of graph embedding method that

represents a graph structure in a low dimensional space. Moreover, although the graph

kernels can well represent graph structure information in a high dimensional Hilbert

space, the proposed DDBR method can smoothly captures the characteristics of graphs

through the powerful deep autoencoder network and has better representative power to435

preserve the graph structure information.

On the other hand, in terms of the less effectiveness of the proposed DDBR method

on the NCI1 and NCI109 datasets, Table.2 indicates that there are 14.11% and 14.73%

of graphs in the two datasets are disjoint graphs, i.e., some vertices have no path to

all the remaining vertices. Since the required depth-based representations for the pro-440

posed DDBR method is computed by measuring the entropies on a family of expansion

subgraphs rooted at each vertex, the disjoint graph cannot guarantee that its gradually

expending subgraphs can accommodate any vertex. In other words, the depth-based

representations of disjoint graphs cannot fully capture the whole information of global

graph structures. This in turn leads to information loss and influences the effective-445

ness of the proposed method on the NCI1 and NCO109 datasets. However, even under

such a disadvantageous situation, the propose methods still outperform most alterna-

tive methods except the JTQK and WL kernels on the two datasets. Furthermore, we

observe that only the JTQK and WL kernel can significantly outperform the proposed

kernel on the PPIs dataset, since only the two alternative kernels can accommodate450

vertex labels. The proposed DDBR method outperforms the other alternative methods

on the PPIs dataset.
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Table 4: CPU Runtime Comparisons

Datasets MUTAG ENZYMES BAR31 BSPHERE31 GEOD31 CATH2

DDBR 68” 4′50” 9′39” 8′10” 7′35” 15′30”

DBCT 1” 1” 3” 3” 3” 4”

ISK 15” 3′30” 3′50” 3′10” 2′40” 9′51”

JTQK 3” 30” 1′22” 1′35” 1′17” 39′14”

UQJS 20” 4′23” 10′30” 13′48” 8′49” 1h14′

BRWK 1” 13” −− −− −− > 1day

WL 3” 21” 30” 25” 15” 53”

SPGK 1” 2” 11” 14” 11” 4′13”

GCGK 1” 2” 2” 2” 2” 8”

Datasets NCI1 NCI109 COIL5 Shock PPIs PTC

DDBR 20′30” 20′20” 10′21” 45” 2′10” 2′42”

DBCT 4” 4” 4” 1” 1” 1”

ISK 2h19′ 2h20” 9′55” 6” 1′40” 59”

JTQK 10′50” 10′55” 7′19” 3” 1′43” 8”

UQJS 2h55′ 2h55′ 18′20” 14” 3′24” 1′46”

BRWK 6′49” 6′49” 16′46” 8” > 1day 29”

WL 2′31” 2′37” 1′5” 3” 20” 9”

SPGK 16” 16” 31” 1” 22” 1”

GCGK 5” 5” 4” 1” 4” 1”

23



5. Conclusion

In this work, we have proposed a new framework of computing the deep depth-

based representation for graphs. This work is based on the ideas of depth-based graph455

complexity measures and the powerful deep learning networks. We have identified a

family of prototype representations that represent the main characteristics of the deprh-

based representations of all graphs. Furthermore, with the prototype representations as

input data, we have trained a deep autoencoder network that can capture the main char-

acteristics of all graphs in a highly non-linear deep space. This deep network was op-460

timized using the Stochastic Gradient Descent together with the Deep Belief Network

for pretraining. The resulting deep depth-based representation of a graph is comput-

ed through the trained deep network associated with its depth-based representations as

input. The deep depth-based representations of graphs not only reflect both the local

and global characteristics of graphs through the depth-based representations, but al-465

so capture the main relationship and information over all graphs under investigation.

Experimental evaluations demonstrate the effectiveness of the new proposed method.

Our future work is to extend the proposed method to a new deep graph represen-

tation learning method that can accommodate both vertex and edge attributed graphs.

Moreover, we will also develop a new framework of computing deep representations470

for hypergraphs [42] that can preserve higher order information than graphs.
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